• Aucun résultat trouvé

Je dédie ma thèse à mon épouse,

N/A
N/A
Protected

Academic year: 2022

Partager "Je dédie ma thèse à mon épouse,"

Copied!
162
0
0

Texte intégral

(1)

J

e dédie ma thèse à mon épouse, Annick, toi qui a toujours su m’apporter le soutien depuis de nombreuses années. Sans toi, nous n’y serions jamais arrivé. Je dédie ma thèse à mes filles Morgane et Armelle, vous qui m’apportez tant de joie.

D’aussi loin que je me souvienne, la Vie m’a toujours intéressé. Vers l’âge de 4 ans, je me déguisais avec amusement en médecin. Petit, je me promenais avec une loupe pour observer les insectes et la vie aquatique. Plus tard, mes parents m’ont offert un microscope, la panoplie du petit chimiste, etc… En 1990, j’ai participé à l’organisation des « Compa- gnons de la Recherche » grâce à mon professeur de Biologie de l’époque, Mme Poels. A ce moment, j’ai pû dé- couvrir les laboratoires de pharmacie de l’ULB, l’intérêt de chercheurs pour le taxol avec l’espoir de lutter contre le cancer. Peu après, ma future épouse et mes parents me soutenaient dans les débuts des études de Médecine.

En 00, mon stage de Médecine In- terne chez le Prof. Elie Cogan a servi de tremplin pour s’élancer vers le monde, alors inconnu, de la Recherche Médicale.

C’est à la fin de mon premier «grand»

séminaire1 que j’ai fait la connaissance du Prof. Françoise Mascart. Quelques mois plus tard, je menais des travaux de recherche sur la réponse humorale à l’égard d’une adhésine de M. tuberculo- sis au sein de son laboratoire. Ce labo- ratoire de “Vaccinologie et d’Immunité

Hougardy JM. et al. Usual Interstitial pneumonia.

Rev. Med. Brux. 2004;25:78-83.

des Muqueuses” est aussi connu sous le petit nom de «LoVMI».

Au sein du «LoVMI», j’ai fait la connais- sance de plusieurs personnes qui ont définitivement marqué cette période.

Je pense en premier à mes proches col- laborateurs, Stéphane Temmerman et Sammy Place. Ils ont sû me transmet- tre, chacun à leur manière, leur savoir et leurs idées (et bien plus). Je les remercie spécialement et chaleureusement. C’est en pensant à eux, que le mot «équipe»

prend tout son sens.

Mes remerciements vont ensuite vers Virginie Verscheure et Gaëlle Leloux qui ont pu m’aider précieusement dans la réalisation de certaines expériences. Un tout grand merci à Kaat Smits, Françoise Mascart et Camille Locht pour les dernières heures passées à retravailler l’anglais. Merci aussi à: Annick Ocmant, Liliane Schandené, Patrick Stordeur, Jean-Pierre Delville, Martine Ducarme et Zoulika Amraoui, Nour de San, Violette Dirix, Kinda Schepers, Julie Smet, Nadia Assoufi et Magali Anzil. Merci à Annie Drowart, à Jean-Paul Van Vooren. Merci à Kris Huygen et à Alain Lemoine.

Merci à Marc & Yvette, à Louise & Josée, à mes parents.

Enfin, Françoise a notamment su com- prendre et cultiver mon intérêt particul- ier pour la recherche «translationnelle», celle qui est directement transposable lors de la pratique médicale quotidi- enne. L’exploitation des connaissances acquises au sein du laboratoire alors

Préambule

(2)

que nous sommes au lit du malade est extrêmement gratifiante. C’est aussi un moyen de s’appliquer à procurer une médecine meilleure. Je remercie donc particulièrement Françoise Mascart et Camille Locht. Grâce à leur dévouement et à leur énergie, la carte d’identité de la HBHA s’est considérablement enrichie depuis sa découverte en 1996.

A l’instar des arômes d’un excellent bor- deau, les résultats de la HBHA sont rich- es et variés. Fruit d’un travail continu de quelques «saisonniers» guidés par ces vignerons acharnés!

Ce travail a pu être réalisé grâce aux soutiens du F.R.I.A. et de l’ “European Commission within the 6th Framework Program, contract no. LSHP-CT-00- 5067”.

(3)

Contents

Préambule 2

Tableofcontents 4

Jurymembers 6

Abbreviationslist 7

Résumé 9

Summary 11

I.Introduction 13

History 14

Natural history of M. tuberculosis infection 18

Primary infection 18

Latent tuberculosis infection

Tuberculosis disease

Primary tuberculosis

Post-primary tuberculosis 4

Epidemiology 5

World-wide burden of tuberculosis 5 Belgian burden of tuberculosis 6

Microbiology 8

Generalities (4, 5) 8

Habitat 8

Structure of the envelope 9

Antigens of major clinical interest and

other main virulence factors 0

Purified protein derivative 0

Virulence factors related to cell envelope function

or secretion 1

Heparin-binding hemagglutinin (HBHA) 1 Early-Secreted-Antigenic-Target-6 kDa

and Culture-Filtrate-Protein-10 kDa 4

Antigen 85 Complex 5

LAM, LM and PIM 5

HSPx or 16-kDa-alpha-crystallin 6

Laboratory diagnosis of tuberculosis 7 Recent infection and latent tuberculosis 7

Tuberculin-skin test 7

Immunodiagnostic 8

Active tuberculosis 40

Clinical laboratory procedures and

biological samples 40

Microscopy 40

Culture and identification 4

Molecular biology 4

Immunodiagnosis 4

Conventional chest radiography and

computed tomography 4

Immunity and pathogenesis 44

Immunity and intracellular bacteria 44 Immune responses against M. tuberculosis 44

Innate immunity 45

Toll-like receptors 45

Natural killer cells 46

Neutrophils 47

Macrophages and

effector mechanisms 47

Dendritic cells 49

Other cell types: the example of the alveolar epithelial cells 50

Complement 5

Adaptive immunity 5

CD4+ T cells 5

CD8+ T cells 54

Th17 CD4+ T cells 56

Unconventional

T cells 57

Immune regulation and tuberculosis 60

Immunomodulatory cytokines 60

TGF-ß 60

IL-10 61

Regulatory T cells 61

Classification of regulatory CD4+ T cells: naturally occurring or induced 6 Major phenotypic markers of

regulatory T cells 64

Regulatory T cells and infections 70 Subversion of anti-microbial immune responses by the use of regulatory T

cells 7

Antigen-specificity of regulatory T cells during infectious processes 7

A brief global overview… 74

II.Rationales&objectives 76

III.Material&methods 79

IV.Results 82

(4)

4.1. HBHA-Induced IFN-γ Release as a Diagnostic

Tool for Latent Tuberculosis 8

4.1. Supplementary data 9

Potential use of a recombinant form of HBHA instead of native HBHA in the HBHA-IGRA 9

4. Regulatory T cells depress immune responses to protective antigens in active tuberculosis 94

4.. Supplementary data 10

4..1 Role of TGF-ß and IL-10 during the in vitro stimulation of PBMC from TB patients with PPD or

HBHA 10

4... CD4+CD5highFOXP+ Treg cells from TB patients also express other Treg cell-associated

markers 104

4... Involvement of local regulatory T cells 106 HBHA-specific IFN-γ secretion during

TB pleurisy 107

Proportions of pleural and BAL CD4+CD5highFOXP+ T cells 107 Depletion of pleural CD4+CD5high T

cells 107

4.. In vitro expansion of CD4+CD5highFOXP

+CD17low/- regulatory T cells from peripheral blood lymphocytes of healthy Mycobacterium tuberculosis-infected humans

4..1. Supplementary data 119

Role of IL- in the induction/expansion of Treg cells in response to BCG stimulation: 119 Cell-to-cell contact dependent suppressive mechanism mediated by induced/expanded

Treg cells 119

V.DISCUSSION 121

About the release of IFN-γ in response to HBHA 1 HBHA and the natural history of M. tuberculosis

infection 1

HBHA-IGRA and tuberculin skin testing 14 HBHA-IGRA and QuantiFERON TB Gold IT 15 IGRAs and detection of active TB 17 HBHA-IGRA and HBHA-based vaccines 17 Conclusions & perspectives about HBHA-based

IGRA 18

About the involvement of regulatory T cells during M.

tuberculosis infection 19

Introduction 19

Broad outlines of publications on Treg cells

& tuberculosis 10

Murine models and regulatory T cells during TB 1

In vitro induction of Treg cells upon stimulation

with M. bovis BCG 14

Antigen specificity of the Treg cells during

active TB 14

Regulation of regulatory T cells: immunotherapy against M. tuberculosis infections? 16

Therapeutic depletion of Treg cells 16 Modification of Treg cells by

TGF-ß modulation 17

VI.Conclusions&perspectives 139

References 141

Thèseannexe 160

Curriculumvitae 161

(5)

Jury members

President:

Prof. Gevenois. P.-A. Faculté de Médecine, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgique.

Members:

Prof.MascartF.Secretary, Laboratory of Vaccinology and Mucosal Immu- nity, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgique.

Prof.MarchantA. Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgique.

Prof.SergyselsR. Hôpital St-Pierre, Université Libre de Bruxelles, Bruxelles, Belgique.

• Prof.StruelensM.Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgique.

Prof.KestensL. Prins Leopold Instituut voor Tropische Geneeskunde, Ant- werpen, België.

Prof.StengerS. Institut für Klinische Medizinische Mikrobiologie und Hy- giene, Universitätsklinik, Ulm, Deutschland.

(6)

Abbreviations list

A

ADA Adenosine DeAminase Ag85 Antigen-85

AIDS Acquired ImmunoDeficiency Syn- drome

APC Antigen Presenting Cell B

BAL Broncho-alveolar lavage C

cAMP Cyclic Adenosine Monophosphate CCL4 CC Chemokine Ligand 4

CD Cluster of differentiation,

i.e. CD4 : Cluster of differentiation- 4

CFP Culture-Filtrate-Protein CFP-10 Culture-Filtrate-Protein-10 kDa CR Complement Receptor ;

i.e. CR : Complement Receptor- D

DC Dendritic Cells

DNA Desoxyribonucleic Acid

E

ESAT-6 Early-Secreted-Antigenic- Target-6 kDa

F

FOXP Forkhead Box Protein- G

GITR Glucocorticoid-Induced-TNFR- Related protein

H

HBHA Heparin-Binding-Hemagglutinin nHBHA: native HBHA

rHBHA: recombinant HBHA HIV Human Immunodeficiency virus HBV Hepatitis B virus

HCV Hepatitis C virus I

IFN-γ Interferfon-gamma

IGRA Interferon-Gamma-Release-Assay IL Interleukin, i.e. IL-10: Interleukin- 10

IPEX Immune-Dysregulation-

Polyendocrinopathy-Enteropathy- X-linked

L

LAM Lipoarabinomannan

LAMP-1 Lysosome-Associated-Membrane- Protein-1

LTBI Latent tuberculosis infection

LM Lipomannan

M

M. tuberculosis:

Mycobacterium tuberculosis MCP-1 Monocyte Chemoattractant Pro- tein-1

MDR Multidrug resistant

MHC Major Histocompatibility Complex MMP-9 Matrix-Metallo-Proteinase-9 MOTT Mycobacteria Other Than

M. tuberculosis N:NK cells: Natural killer cells

(7)

P

PAMP Pathogen-associated molecular pattern

PBMC Peripheral Blood Mononuclear Cells

PPD Purified Protein Derivative Q

QFT QuantiFERON

R

Rag Recombination-activating gene RD Region of Difference

RNI Reactive Nitrogen Intermediates ROI Reactive Oxygen Intermediates RR Relative Risk

T

TB Tuberculosis TCR T-Cell Receptor

TGF-ß Transforming-Growth-Factor-beta TLR Toll-Like-Receptor,

e.g. TLR- : Toll-Like-Receptor- TNF-a Tumor-Necrosis-Factor-alpha TNFRSF: Tumor-Necrosis-Factor-Receptor-

SuperFamily Treg cells: Regulatory T cells TST Tuberculin skin test TU Tuberculin units

W

WHO World Health Organization X

XDR Extensive drug resistant

(8)

Résumé

Globalement, un tiers de la population mondiale est infectée par Mycobacte- rium tuberculosis, l’agent infectieux de la tuberculose (TB). Fort heureusement, seuls 5 à 10 % des individus infectés développent un jour une TB active. Les individus non malades restent cepend- ant infectés à vie, on parle d’infection la- tente. Chaque année, 8-10 millions nou- veaux cas de tuberculose active sont recensés et M. tuberculosis est responsa- ble de 1,5 à millions de décès. Depuis plus d’une décennie, M. tuberculosis s’est étroitement associé à l’infection par le virus de l’immunodéficience hu- maine. Cette alliance néfaste représente une importante menace pour les pays en voie de développement, car ces pathogènes déciment les forces vives de ces populations. Il faut malheureuse- ment rajouter à ce triste tableau une fréquence grandissante de souches multi-résistantes, voire extensivement multi-résistantes. Face à ces souches, les avancées thérapeutiques du siècle dernier sont pratiquement réduites à néant.

Considérant ces données, il est dé- sormais crucial d’améliorer nos out- ils de dépistage de l’infection latente, de diagnostic de la maladie active, de prévention (vaccins) et de traitement.

Pour atteindre ces objectifs, une des pistes est la caractérisation détaillée des réponses immunitaires. En comparant les réponses immunitaires des sujets in- fectés de manière latente à celles liées à la maladie active, nous pourrons peut- être comprendre certains mécanismes de protection. L’étude des réponses immunitaires induites par la «Heparin-

Binding-Hemagglutinin» (HBHA) s’est faite dans cet objectif. La HBHA est une adhésine exprimée par le complexe M.

tuberculosis. Elle est impliquée dans la dissémination extrapulmonaire du bacille et constitue donc un facteur de virulence. Par ailleurs, une vaccination de souris par seulement doses de 5 µg de HBHA suffit à protéger de l’infection avec une efficacité comparable à celle du vaccin BCG. Chez l’homme, les su- jets sains mais infectés développent d’importantes sécrétions d’interféron- gamma (IFN-γ) en réponse à cet an- tigène, alors que la majorité des patients tuberculeux ne le font pas. Cette dif- férence est importante pour compren- dre une des raisons d’échappement de M. tuberculosis au contrôle immunitaire.

La HBHA est une protéine méthylée et la méthylation s’avère essentielle pour ses propriétés immunoprotectrices.

Nos travaux présentés ici se sont axés sur deux éléments de la réponse im- munitaire à la HBHA chez l’homme : d’une part, l’exploitation de la réponse périphérique d’IFN-γ à la HBHA comme outil de dépistage de l’infection latente et, d’autre part, l’étude des raisons de la faible sécrétion d’IFN-γ spécifique de la HBHA lors de la maladie active.

L’évaluation de la sécrétion périphérique d’IFN-γ en réponse à la HBHA a per- mis de démontrer rétrospectivement que celle-ci permet de détecter plus de 90 % des sujets réagissant positive- ment à l’injection intradermique de tuberculine. De manière intéressante, l’utilisation d’un test commercial, le QuantiFERON TB Gold IT (QFT-IT) n’a permis de détecter que la moitié des sujets infectés sains. De notre point de vue, le QFT-IT ne peut être recommandé

(9)

seul pour le dépistage systématique de l’infection latente par M. tuberculosis. De manière parallèle, un test de stimula- tion basé uniquement sur la sécrétion d’IFN-γ suite à une stimulation à l’ESAT- 6, composant du QFT-IT, n’a pas permis d’augmenter la sensibilité, ni d’ajouter une plus-value au test basé sur la HBHA.

A l’instar de l’intradermoréaction à la tuberculine, le dépistage de la maladie active reste décevant que ce soit par l’utilisation de la HBHA ou de l’ESAT-6.

La TB active est caractérisée par une basse sécrétion périphérique d’IFN-γ en réponse à la stimulation par la HBHA.

Cette faible sécrétion est cependant réversible, puisque un traitement effi- cace permet d’atteindre des taux d’IFN-γ significativement plus élevés. Ceci nous démontre qu’il s’agit d’une suppression associée à la phase active de l’infection.

Nous avons d’abord évalué l’importance de la modulation de la sécrétion d’IFN-γ en réponse à la HBHA par cytokines immunomodulatrices, l’interleukine-10 (IL-10) et le Transforming-Growth-Fac- tor-Beta (TGF-ß). De manière intéres- sante, alors que ces cytokines sont as- sociées à l’infection par M. tuberculosis, la HBHA n’est inductrice ni d’IL-10, ni de TGF-ß. Les lymphocytes T régulateurs (Treg) expriment marqueurs d’intérêt : le CD5, composant du récepteur à l’IL-, et Foxp, un gène régulateur majeur des cellules Treg. Ces cellules sont décrites comme suppressives de réponses immunitaires déclenchées par des antigènes du Soi et du non-Soi.

Nous avons montré que la proportion de lymphocytes Treg périphériques est augmentée en cas de TB active.

Par ailleurs, nous avons également dé- montré que ces cellules suppriment la sécrétion d’IFN-γ et la prolifération induite par la HBHA après stimulation des cellules mononucléées sanguines périphériques de patients tuberculeux in vitro. Cependant, la réponse anti- HBHA des patients tuberculeux, qui est démasquée par la déplétion des lym- phocytes Treg, n’est pas dirigée contre des épitopes protecteurs. En effet, la méthylation n’influence pas leur sécré- tion d’IFN-γ. De ce point de vue, les lym- phocytes Treg sont impliqués dans la maladie tuberculeuse et influencent né- gativement les réponses dirigées contre un antigène protecteur. Cependant, il semble que la TB active soit également associée à une ignorance d’épitopes protecteurs.

Enfin, nous avons également démontré qu’il était possible d’induire des lym- phocytes Treg au départ de cellules san- guines périphériques de sujets infectés sains. En effet, la stimulation in vitro des cellules sanguines périphériques en présence de BCG et de TGF-ß est un moyen rapide pour induire l’apparition de lymphocytes Treg fonctionnels in vitro. Ceci nous interroge quant aux rôles des lymphocytes Treg dans la pathogenèse de la maladie. En effet, un excès de TGF-ß circulant est observé dans certaines conditions cliniques à haut-risque de TB post-primaire. De ce point de vue, les lymphocytes Treg pourraient être des acteurs déterminant dans la perte du contrôle à long terme de l’infection et, par là, pourraient être des cibles thérapeutiques d’intérêts lors de l’infection par M. tuberculosis.

(10)

Summary

Mycobacterium tuberculosis is the caus- ative agent of tuberculosis (TB). It is es- timated approximately one third of the World’s population is infected with M.

tuberculosis. Fortunately, only 5 to 10 % of the infected individuals will develop the disease throughout their life. How- ever, the other healthy infected individ- uals remain infected for life: this is the latent TB infection (LTBI). Every year, 8 to 10 million new cases of TB are recorded globally, and about to million of peo- ple die from the disease. During the last several decades the co-infection of M.

tuberculosis and the human immuno- deficiency virus have worsened the pic- ture. This dreadful association currently affects mostly the poorest people of the World. Unfortunately, bad news never stands alone. We now witness increas- ing emergence of multi-drug-resistant and even of extensively-multi-drug-re- sistant M. tuberculosis strains. Against these strains current therapeutics are virtually useless.

The development of new tools for pre- vention (vaccines), diagnostics and treatment is crucial. In order to fulfill these objectives, detailed studies on the immune responses is one of the main tracks to explore. Indeed, the comparison of immune responses in LTBI subjects with those in TB patients may provide some clues to understand immune mechanisms of protection.

Studies of the immune responses that are specific to Heparin-Binding-Hemag- glutinin (HBHA) may be one of these clues. HBHA is an adhesin, which is ex- pressed by the micro-organisms of the M. tuberculosis complex. It largely con-

tributes to the extrapulmonary dissemi- nation of the tubercle bacilli. Hence, HBHA may be qualified as an important virulence factor. Furthermore, vaccina- tion of mice with three doses of only 5 µg HBHA each affords the same level of protection as vaccination with BCG. In humans, peripheral blood mononuclear cells (PBMC) from LTBI subjects secrete significant levels of IFN-γ in response to HBHA, whereas PBMC from TB patients do not. This discrepancy may be a cor- nerstone in the understanding of some of the mechanisms underlying the im- mune escape mediated by M. tubercu- losis. HBHA is a methylated protein, and the methylation is crucial for its immu- no-protective properties.

This work focused on major issues of the HBHA-specific immune response in humans: the use of the peripheral IFN-γ secretion in response to HBHA as a di- agnostic tool for LTBI and the analysis of the underlying mechanisms to the low IFN-γ secretion during active TB.

In our study, the measurement of HBHA- specific IFN-γ secretion resulted in the detection of more than 90 % of the tu- berculin-skin-test (TST) positive LTBI.

Strikingly, the QuantiFERON TB Gold IT (QFT-IT), a commercial test, failed to identify those LTBI subjects in more than 50 % of the cases. Therefore, we cannot recommend the use of QFT-IT alone instead of the TST for the detec- tion of LTBI. Similarly, a test relying on the detection of IFN-γ secretion upon ESAT-6 stimulation, one of the antigens used in the QFT-IT, was not sufficiently sensitive for the LTBI detection, nor did it improve the sensitivity or the specifi- city of the HBHA-based test. In contrast to the diagnosis of LTBI, the tests based

(11)

on HBHA- or ESAT-6-induced IFN-γ se- cretions displayed poor sensitivity for the diagnosis of active TB.

During active TB, the HBHA-specific IFN-γ secretion in the periphery is low.

However, this weak secretion is revers- ible upon effective treatment, as the IFN-γ response to HBHA is increased af- ter completion of chemotherapy. This is strongly suggestive of an immune sup- pression during active disease. There- fore, we have first evaluated the role of two immunomodulatory cytokines, interleukin-10 (IL-10) and Transform- ing-Growth-Factor-Beta (TGF-ß), in the suppression of the HBHA-specific IFN-γ secretion. We found that neutralization of neither IL-10 nor TGF-ß with specific antibodies induced HBHA-specific IFN-γ secretion by PBMC of TB patients in vit- ro. In contrast, depletion of regulatory T cells (Treg) that express major markers, CD5, a constituent of the IL- receptor, and Foxp, a master regulatory gene, resulted in increased HBHA-specific IFN- γ secretion by the PBMC of TB patients.

These cells are known to be involved in the suppression of immune responses to both Self and non-Self antigens. We fur- ther show that the size of the peripheral Treg cell population increases during active disease. In addition to suppress- ing the HBHA-specific IFN-γ secretion these cells suppress T cell proliferation in response to HBHA in vitro. However, even after depletion of the Treg cells, the uncovered HBHA-specific immune responses are not directed to the meth- ylated epitopes during TB disease.

Finally, we show that Treg cells can be induced (or expanded) from the PBMC of LTBI subjects. Stimulation of those PBMC with BCG in the presence of TGF-ß

resulted in a quick appearance of func- tional Treg cells in vitro. This observation strongly suggests a role of Treg cells in the pathogenesis of TB, in particular in the progression of latency to reactiva- tion. Interestingly, excessive concentra- tion of TGF-ß, associated with various clinical conditions, is high risk factor for post-primary TB. Thus, Treg cells may result in the loss of immune control against latent M. tuberculosis infection.

Therefore, Treg cells may represent po- tential therapeutic targets during M. tu- berculosis infection.

(12)

I. Introduction

(13)

A

s an old foe of the mankind, tubercu- losis (TB) has long been known un- der the names of schachepheth, phtisis , consumption and white plague (figure 1). Circa 189, Johann Lukas Schönlein proposed the terminology “tuberculo- sis” (TB) by referring to the potato-like aspect of the lesions observed during active disease (). TB has often been described through graphic representa- tions of individuals with dorsal spine de- formities (Egyptian artworks, circa 4000 B.C) and, through detailed descriptions of phthisis such as those found in the Hippocratic Collection (“Of the Epidem- ics”, around 400-50 B.C), in the Aretae- us and in the Galen’s writings (circa 150 A.D.).

Today, studies on ancient DNA of micro- bial pathogens have shown that TB was widespread in ancient Egypt and Rome and that Mycobacterium tuberculosis, the causal agent, existed in America and in Borneo well before Columbus.

M. tuberculosis DNA was found in North America in a bison metacarpal bone that was about 17,500 years old (). This latter discovery has been interpreted as evidence for possible transmission of TB from cattle (M. bovis) to humans (M.

tuberculosis) during domestication of cattle circa 8,000 to 15,000 years ago.

However, this assumption has recently been questioned, because M. tubercu-

losis presents chromosomal segments that are absent in M. bovis (4), suggest- ing that M. tuberculosis is actually more ancient than M. bovis. In any case, these historical scientific findings underline the exceptional co-evolution between M. tuberculosis and the hominidis. Dur- ing this long period of dynamic co-evo- lution, selective pressures most certain- ly influenced both the host (human) and the pathogen (M. tuberculosis), forcing the adversaries to negotiate compro- mises. Hence, M. tuberculosis has devel- oped particular survival mechanisms and virulence factors. In contrast, the host has elaborated counteracting host defence mechanisms. However, by now, M. tuberculosis has not (yet) completely succeeded in silently infecting all of us, but we have not fully succeeded in con- trolling it either (5).

During centuries, TB has plagued man- kind and affected some of Europe’s most creative individuals, such as Fred- eric Chopin, Albert Camus, Franz Kafka or Edvard Munch. Rational scientific ap- proaches to study and combate TB were developed essentially since the XIXth century. Successive works were per- formed by honourable scientists such as Benjamin Marten, René T.H. Laënnec, Gaspard L. Bayle, Jean Antoine Villemin, Clemens Von Pirquet, etc... (figure 1).

“Mycobacterium tuberculosis is the most pervasive, morbid, and lethal microbial pathogen of humans. From the equator to the polar circles, on all seven continents, males and females, young and old of all races are at risk from this debilitating, disabling, and potentially fatal infec- tion”

M.D. Iseman, 2000 (1).

History

(14)

In 188, Robert Koch first identified tu- bercle bacillus “in large numbers, es- pecially at the edge or large, cheesy masses” in all tissues in which “the tu- berculosis process has recently devel- oped and is progressing most rapidly”

(6). The pathogen unmasked, numerous studies were (and are still) conducted in multiple scientific disciplines (i.e.

microbiology, immunology, pharmacol- ogy, etc…). All these efforts are carried on with the most optimistic hopes and believes in the potential control of this dreadful disease.

Next page : figure 1.

(15)

+/- 3500 B.C. 2698 B.C.Chinese writings very likely referencing to TB. 1500 B.C. 460-375 B.C. +/- 354-322 B.C.

Indo-Aryan Hindu writings very likely referencing to TB. Hippocratic Collection: detailed description of the various presen- tations of phtisis. However, Hippocrates does not propose a common etiology for this disorders. At this time, it is already recommended to cure TB by mountainous retreats. 1483-1553 A.D.Girolamus Frascatorius writesDe Contagioni and reinforces strongly the concept of contagion which is responsible of disease transmission. 1674-1676 A.D.Anthony Van Leeuwenhoek invents the microscope and describes the existence of protozoa and bacteria. 1865 A.D.Jean Antoine Villemin inoculates rabbits with material issued from tuberculous human tissue and demonstrates the transmissible character of the disease but did not isolate the infectious agent. He also characterizes the epidemiologic features of TB. 1821-1902 A.D.Rudolf Virchow describes the presence of lymphocytes and epithe- loid monocytes within the tubercle. 1859 A.D.Hermann Brehmer opens the first sanatorium for TB patients. 1941-1944 A.D.Jorgen Lehmann proposes the para-aminosalicylate (PAS) in order to treat 2 children with osseous and soft tissue TB. This event marks the begining of the TB chemotherapy.

1906 A.D.Clemens Von Pirquet uses the intradermal injection of tuberculin in order to detect the M. tuberculosis infection. 1909-1921 A.D.Albert Léon Charles Calmette and Jean-Marie Camille Guérin: focus on a vaccine made from successive passages of M. bovis. 1944-1945 A.D.Selman Waksman and Albert Schatz: isolation of the streptomycin from cultures of S. griseus and demonstration of its antituberculous efficicency. 1952 A.D.Gerhard Domagk: identification of a singularly potent compound : the isoniazid (isonicotinic acid hydrazide). 1998 A.D.The sequence of the genome of the most widely used strain in research,M. tuberculosis H37Rv, is completely defined. Last decadeThe number of scientific works on TB is growing exponentially in order to increase accuracy in the fields of microbiology, pathogen- esis, diagnosis, treatment and vaccination. 1822 A.D.M. bourru and James Carson introduce the collapse therapy to cure TB before the era of chemotherapy.

1704-1782 A.D.Benjamin Marten publishesA new theory of Consumptions more escpecially of a phtisis or consumtion of the lungs that anticipate in thoughts Pasteur, Villemin and Koch: proposition of “wonderfully minute living creatures” that are responsible of disease.

+/- 1000 B.C.Ancient Israelites do reference to TB (referenced as schachepheth, maqaq or razon) as a wasting disease in the Old Testament. No reliable distinction from other wasting diseases. +/- 150 B.C.Aretaeus, the Capodocian: fine descriptions of the ultime evolution of the consumption (from Latin consumptio meaning “wasting”) +/- 500 A.D.Dark Ages - Clovis the Franc: Royal Touch to heal scrofula.

After observation of the distribution of phtisis, Aristotle believes that something in the air is responsible for disease.

Probable or confirmed TB identified in egyptianmummies from the Nile River Valley. +/- 131-201 A.D.Galen, the Pergamite proposes a rational approach to cure TB: early recognition, rest, a rich diet and gentle cough suppression. 1514-1564 A.D.Andreas Vesalius writes De humani Corporis Fabrica which gave the bases for modern anatomical science.Antonio Benivieni launches the modern discipline of pathology: description of disseminated adenopathies during TB. 1614-1737 A.D.Sylvius and later, Pierre Desult describe the nodular lesions and referred it as “tubercle”. It is also proposed that illness was contagious by sputum.Thomas Willis proposes a more unified conceptualiza- tion of consumption. He had described TB as a systemic illness that is notably responsible of gross lung destruction. Richard Morton publishesPhthisiologia in 1689 where correlation are made between necropsy findings and clinical manifestations. 1882 A.D.Robert Koch bring into focus some sensitive staining methods of rods within tuberculous material. This allows the first identification of the causal agent of TB. Koch also proofs the causal relationship between these stainable objects and the disease TB by several inoculation experiments. These wonderful experiments and observations allow considerable advances in the fied of TB.

1774-1826 A.D.Gaspard Laurent Bayle andRené Théophile Hyacinthe Laënnec perform wonderful autopsy studies. Fine correlations with antemor- tem histories of the illness are established. Laënnec bring together the diverse forms of tubercles in a single disorder and greatly contributed to the antemortem diagnostic of TB notably by his extensive semiological knowledge of TB and by the invention of the sthetoscope.

source : nanobiomed.de HippocratesAristotleGalenA. Vesalius Chest X-ray illustrating sequelae due to collapse therapy source : www.surgical-tutor.org.uk

R.T. Laënnec R. KochC. CalmetteC. Guérin S. WaksmanG. Domagk

J.A. VilleminR. Virchow

Références

Documents relatifs

Acute lower limb ischemia due to thrombo- embolic arterial occlusions in two previously healthy men with markedly elevated

In accord with previously published data, CD4 + CD5 + Treg cells were increased during active TB in comparison to BCG vaccinated healthy controls (nearly two-fold

La peinture (fig. 324) conserve tous les personnages, mais supprime la distance qui les sépare les uns des autres, en les rassemblant dans une composition verticale compacte. Au

Three trials affected by the COVID-19 pandemic, endTB, endTB-Q, and TB-PRACTECAL, all sponsored by Médecins Sans Frontières, illustrate how COVID-19 ag- gravates the

(B–D) Monocytes isolated from cattle vaccinated against FMDV were co-incubated with autologous CD4 + T cells and either FMDV 25-mer peptide BC2 (5 ng/mL), Hsp70 (1 lg/mL) or BC2

This is in line with published data whereby DCs infected with BCG Pasteur showed an increased expression of MHC class II, CD40 and CD80 Figure 2 CD25 expression by bovine CD2−

Thus the expression of IL-18 by recombinant BCG increases IL-23, IP-10, and IL-10 expression by human DCs and enhances their ability to

Lt, left; Rt, right; GM, gray matter; GBSS, gray-matter–based spatial statistics; p-FWE, family-wise error-corrected p-value RRMS, relapsing- remitting multiple sclerosis. Note: