• Aucun résultat trouvé

& perspectives

Dans le document Je dédie ma thèse à mon épouse, (Page 138-159)

T

he year 007 has marked the 15th anniversary of the discovery by R.

Koch of M. tuberculosis. R. Koch was a convinced optimist. He believed that tu-berculosis would be controlled during the few decades following his discovery.

Unfortunately, M. tuberculosis coexists with mankind since more than 15.000 years and, in response to selective pres-sures, the tubercle bacilli has improved its ability to adapt to its environment (e.g. multi- and extensive drug resist-ance).

Many researches in the TB field focus on the development of new vaccines, new diagnostic tests and new treatments.

This work, carried out in the Laboratory of Vaccinology and Mucosal Immunity, supports the contention that HBHA is a major candidate for new IGRAs. Ad-vantages of IGRAs are numerous, and large-scale applications of IGRAs would constitute a major advance in the rapid diagnosis of LTBI. Their use for the di-agnosis of active TB is more question-able, although they may be adapted to the local compartments (e.g. BAL, CSF).

This work also constitutes a start point for a large-scale, prospective study with HBHA-IGRA, that will be conducted in the laboratory.

The low levels of IFN-γ secretion during active TB in human provided an oppor-tunity to better understand TB patho-genesis. The characterization of this low peripheral HBHA-specific IFN-γ secre-tion has led to the discovery that active TB is characterized by the (excessive) presence of Treg cells. These Treg cells express classical markers for Treg cells, such as CD5, FoxP, CTLA-4, GITR and low levels of CD17. The Treg cells were specific for M. tuberculosis and were

in-ducible in the presence of mycobacteria and TGF-ß1 in vitro. Thus, the ability to induce Treg cells may be regarded as a virulence trait of M. tuberculosis. As they suppress protective immune responses, Treg cells can modify the disease out-come and represent therefore potential target cells for future therapeutic ap-proaches.

References

. Iseman M. Tuberculosis Down Through the Centuries. In:A Clinician’s Guide to Tuberculosis. st edition (january 5, 2000) ed: Lippincott Williams & Wilkins, 2000; -9.

2. Lomax E. Hereditary or acquired disease?

Early nineteenth century debates on the cause of infantile scrofula and tuberculosis.

J Hist Med Allied Sci 977; 32:356-374.

3. Donoghue HD, Spigelman M, Greenblatt CL, et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA.

Lancet Infect Dis 2004; 4:584-592.

4. Ernst JD, Trevejo-Nunez G, Banaiee N.

Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. J Clin Invest 2007; 7:738-745.

5. Kaufmann S, Alan S, Rafi A. Introduction.

In: Kaufmann S, Alan S, Rafi A, eds.

Immunology of infectious diseases.

Washington, D.C.: ASM Press, 2002; -2.

6. Koch R. Die aetiologie der tuberculose.

Berl Klinische Wocheschr 882; 9:22-230.

7. Péhu M, Dufourt A. Tuberculose médicale de l’enfance, 927.

0. Iseman M. How is tuberculosis transmitted?

In:A Clinician’s Guide to Tuberculosis:

Lippincott Williams & Wilkins, 2000; 2-49.

. Strom L, Widstrom G. [Experiments with radioactive tubercle bacilli relative to immunity against tuberculosis.]. Acta Paediatr 95; 40:23-27.

2. Pethe K, Alonso S, Biet F, et al. The heparin-binding haemagglutinin of M.

tuberculosis is required for extrapulmonary dissemination. Nature 200; 42:90-94.

3. Dock W. Apical localization of phtisis. Am Rev Tuberc 946; 53:297-305.

4. Neyrolles O, Hernandez-Pando R, Pietri-Rouxel F, et al. Is Adipose Tissue a Place for Mycobacterium tuberculosis Persistence? PLoS ONE 2006; :e43.

5. Sharma M, Sharma S, Roy S, Varma S, Bose M. Pulmonary epithelial cells are a source of interferon-gamma in response to Mycobacterium tuberculosis infection.

Immunol Cell Biol 2007.

6. Menozzi FD, Reddy VM, Cayet D, et al.

Mycobacterium tuberculosis heparin-binding haemagglutinin adhesin (HBHA) triggers receptor-mediated transcytosis without altering the integrity of tight junctions. Microbes Infect 2006; 8:-9.

7. Debbabi H, Ghosh S, Kamath AB, et al.

Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L274-279.

8. Iseman M. Preventive chemotherapy of tuberculosis. In:A Clinician’s Guide to Tuberculosis: Lippincott Williams &

Wilkins, 2000; 355-398.

9. Daley CL. Tuberculosis latency in humans.

In: Rom W, Garray S, eds. Tuberculosis.

Second edition ed: Lippincott Williams &

Wilkins, 2004; 85-99.

20. W.H.O. Tuberculosis Fact Sheet N°04, revised March. 2006; 04.

2. Association TL. Canadian Tuberculosis Standards, 5th edition 2000. In, 2000.

22. EuroTB. Surveillance of Tuberculosis in Europe. Report on tuberculosis cases notified in 2004. 2004:1-115.

23. FARES. Rapport épidémiologique de la tuberculose - Belgique 2000.

24. FARES. Registre de la tuberculose 200 &

Résultats du traitement de la cohorte 2000.

Belgique et ses 3 régions. In: Fondation contre les affections respiratoires et pour l’éducation à la santé, 2003.

25. FARES. Registre belge de la tuberculose 2003. In, 2005.

26. Grzybowski S, Enarson D. [Results in pulmonary tuberculosis patients under various treatment program conditions].

Bull Int Union Tuberc 978; 53:70-75.

27. Enarson D, Chiang C, Murray J. Global Epidemiology of tuberculosis. In: Rom W, Garray S, eds. Tuberculosis. Second edition ed: Lippincott Williams & Wilkins, 2004; 3-3.

28. Iseman M. Tuberculosis in relation to HIV and AIDS. In:A Clinician’s Guide to

Tuberculosis. st edition (january 5, Williams & Wilkins, 2000; -9.

30. W.H.O. Tuberculosis Fact Sheet N°04, revised March 2007. 2007; 04.

3. W.H.O. Global Tuberculosis Control : surveillance, planning, financing. 2005.

32. Check E. Unlikely partners tackle TB funding woes. Nat Med 2007; 3:265.

33. W.H.O., Regional_Office_for_Europe.

Virtually untreatable TB affects Europe. 8 september 2006.

34. Vincent V, Martin C, Denis F. Bactériologie fondamentale : aspects réçents. In:

Denis F, Perrone C, eds. Mycobacterium tuberculosis et Mycobactéries atypiques:

Elsevier, 2004; 7-38.

35. Iseman M. Biology and Laboratory Diagnosis. In:A Clinician’s Guide to Tuberculosis: Lippincott Williams &

Wilkins, 2000; 2-49.

36. Bercovier H, Kafri O, Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 986; 36:36-4.

37. Cole ST, Brosch R, Parkhill J, et al.

Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 998; 393:537-544.

38. Cole ST. Learning from the genome sequence of Mycobacterium tuberculosis H37Rv. FEBS Lett 999; 452:7-0.

39. Hernandez-Pando R, Jeyanathan M, Mengistu G, et al. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection.

Lancet 2000; 356:233-238.

40. Crick DC, Brennan PJ, McNeil MR. The Cell Wall of Mycobacterium tuberculosis.

In: Rom W, Garray S, eds. Tuberculosis.

Second edition ed: Lippincott Williams &

Wilkins, 2004; 5-35.

41. Landi S. Preparation, Purification, and Stability of Tuberculin. Appl Microbiol 963; :408-42.

42. Lachmann PJ. Purified protein derivative (PPD). Springer Semin Immunopathol 988; 0:30-304.

43. Huebner RE, Schein MF, Bass JB, Jr. The tuberculin skin test. Clin Infect Dis 993;

7:968-975.

44. Smith I. Mycobacterium tuberculosis virulence : a genetic analysis. In: Rom W, Garray S, eds. Tuberculosis. Second edition ed: Lippincott Williams & Wilkins, 2004; 35-6.

45. Menozzi FD, Rouse JH, Alavi M, et al. Identification of a heparin-binding hemagglutinin present in mycobacteria. J Exp Med 996; 84:993-00.

46. Yanagishita M, Hascall VC. Cell surface heparan sulfate proteoglycans. J Biol Chem 992; 267:945-9454.

47. Menozzi FD, Bischoff R, Fort E, Brennan MJ, Locht C. Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin.

Proc Natl Acad Sci U S A 998; 95:2625-2630.

48. Delogu G, Brennan MJ. Functional domains present in the mycobacterial hemagglutinin, HBHA. J Bacteriol 999;

8:7464-7469.

49. Host H, Drobecq H, Locht C, Menozzi FD. Enzymatic methylation of the Mycobacterium tuberculosis heparin-binding haemagglutinin. FEMS Microbiol Lett 2007; 268:44-50.

50. Pethe K, Bifani P, Drobecq H, et al. Mycobacterial heparin-binding hemagglutinin and laminin-binding protein share antigenic methyllysines that confer resistance to proteolysis. Proc Natl Acad Sci U S A 2002; 99:0759-0764.

5. Delogu G, Bua A, Pusceddu C, et al.

Expression and purification of recombinant methylated HBHA in Mycobacterium smegmatis. FEMS Microbiol Lett 2004;

239:33-39.

52. Masungi C, Temmerman S, Van Vooren JP, et al. Differential T and B cell responses against Mycobacterium tuberculosis heparin-binding hemagglutinin adhesin in infected healthy individuals and patients with tuberculosis. J Infect Dis 2002;

85:53-520.

53. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 993; 78:2249-2254.

54. Temmerman S, Pethe K, Parra M, et al.

Methylation-dependent T cell immunity to Mycobacterium tuberculosis heparin-binding hemagglutinin. Nat Med 2004;

0:935-94.

55. Biet F, Angela de Melo Marques M, Grayon M, et al. Mycobacterium smegmatis produces an HBHA homologue which is not involved in epithelial adherence.

Microbes Infect 2007; 9:75-82.

56. Sorensen AL, Nagai S, Houen G, Andersen P, Andersen AB. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun 995; 63:70-77.

57. Berthet FX, Rasmussen PB, Rosenkrands I, Andersen P, Gicquel B. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-0). Microbiology 998; 44 ( Pt ):395-3203.

58. Doherty TM, Demissie A, Olobo J, et al.

Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J Clin Microbiol 2002; 40:704-706.

59. Mazurek GH, LoBue PA, Daley CL, et al.

Comparison of a whole-blood interferon gamma assay with tuberculin skin testing for detecting latent Mycobacterium tuberculosis infection. Jama 200;

286:740-747.

60. Pai M, Riley LW, Colford JM, Jr. Interferon-gamma assays in the immunodiagnosis of tuberculosis: a systematic review. Lancet Infect Dis 2004; 4:76-776.

6. Langermans JA, Doherty TM, Vervenne RA, et al. Protection of macaques against Mycobacterium tuberculosis infection by a subunit vaccine based on a fusion protein of antigen 85B and ESAT-6. Vaccine 2005;

23:2740-2750.

62. Wiker HG, Harboe M. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol

Rev 992; 56:648-66.

63. Kremer L, Maughan WN, Wilson RA, Dover LG, Besra GS. The M. tuberculosis antigen 85 complex and mycolyltransferase activity. Lett Appl Microbiol 2002; 34:233-237.

64. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 997;

276:420-422.

65. Huygen K, Van Vooren JP, Turneer M, Bosmans R, Dierckx P, De Bruyn J. Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand J Immunol 988; 27:87-94.

66. Strohmeier GR, Fenton MJ. Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect 999; :709-77.

67. Doherty TM, Arditi M. TB, or not TB: that is the question -- does TLR signaling hold the answer? J Clin Invest 2004; 4:699-703.

68. Dao DN, Kremer L, Guerardel Y, et al.

Mycobacterium tuberculosis lipomannan induces apoptosis and interleukin-2 production in macrophages. Infect Immun 2004; 72:2067-2074.

69. Quesniaux V, Fremond C, Jacobs M, et al.

Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 2004; 6:946-959.

70. Lee BY, Hefta SA, Brennan PJ.

Characterization of the major membrane protein of virulent Mycobacterium tuberculosis. Infect Immun 992; 60:2066-2074.

7. Cunningham AF, Spreadbury CL.

Mycobacterial stationary phase induced by low oxygen tension: cell wall thickening and localization of the 6-kilodalton alpha-crystallin homolog. J Bacteriol 998;

80:80-808.

72. Hu Y, Movahedzadeh F, Stoker NG, Coates AR. Deletion of the Mycobacterium tuberculosis alpha-crystallin-like hspX gene causes increased bacterial growth in

vivo. Infect Immun 2006; 74:86-868.

73. Demissie A, Leyten EM, Abebe M, et al. Recognition of stage-specific mycobacterial antigens differentiates between acute and latent infections with Mycobacterium tuberculosis. Clin Vaccine Immunol 2006; 3:79-86.

74. Garay SM. Pulmonary Tuberculosis. In:

Rom W, Garray S, eds. Tuberculosis.

Second edition ed: Lippincott Williams &

Wilkins, 2004; 345-394.

75. Menzies R, Doherty TM. Diagnosis of latent tuberculosis infection. In: Reichman L, Hershfield E, eds. Tuberculosis : a comprehensive international approach.

3rd edition ed, 2006; 25-25.

76. FARES. Recommandations concernant le dépistage ciblé et le traitement de l’infection tuberculeuse latente. In.

Bruxelles: Fondation contre les Affections Respiratoires et pour l’Education à la Santé, 2003; -25.

77. Leyten EM, Arend SM, Prins C, Cobelens FG, Ottenhoff TH, van Dissel JT.

Discrepancy between Mycobacterium tuberculosis-Specific Gamma Interferon Release Assays Using Short and Prolonged In Vitro Incubation. Clin Vaccine Immunol 2007; 4:880-885.

78. Ewer K, Millington KA, Deeks JJ, Alvarez L, Bryant G, Lalvani A. Dynamic antigen-specific T-cell responses after point-source exposure to Mycobacterium tuberculosis.

Am J Respir Crit Care Med 2006; 74:83-839.

79. Martin C, Vincent V, Denis F. Diagnostic bactériologiques des infections à mycobactéries. In: Denis F, Perrone C, eds. Mycobacterium tuberculosis et Mycobactéries atypiques: Elsevier, 2004;

39-87.

80. Reuter H, Burgess L, van Vuuren W, Doubell A. Diagnosing tuberculous pericarditis. Qjm 2006; 99:827-839.

8. Valdes L, San Jose E, Alvarez D, et al.

Diagnosis of tuberculous pleurisy using the biologic parameters adenosine deaminase, lysozyme, and interferon gamma. Chest 993; 03:458-465.

82. Dinnes J, Deeks J, Kunst H, et al. A systematic review of rapid diagnostic tests

for the detection of tuberculosis infection.

Health Technol Assess 2007; :-96.

83. Mazurek GH, Weis SE, Moonan PK, et al.

Prospective comparison of the tuberculin skin test and 2 whole-blood interferon-gamma release assays in persons with suspected tuberculosis. Clin Infect Dis 2007; 45:837-845.

84. Barry SM, Lipman MC, Bannister B, Johnson MA, Janossy G. Purified protein derivative-activated type cytokine-producing CD4+ T lymphocytes in the lung:

a characteristic feature of active pulmonary and nonpulmonary tuberculosis. J Infect Dis 2003; 87:243-250.

85. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest 2004;

4:790-799.

86. Brill KJ, Li Q, Larkin R, et al. Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infect Immun 200; 69:755-765.

87. Junqueira-Kipnis AP, Kipnis A, Jamieson A, et al. NK cells respond to pulmonary infection with Mycobacterium tuberculosis, but play a minimal role in protection. J Immunol 2003; 7:6039-6045.

88. Yoneda T, Ellner JJ. CD4(+) T cell and natural killer cell-dependent killing of Mycobacterium tuberculosis by human monocytes. Am J Respir Crit Care Med 998; 58:395-403.

89. Zhang R, Zheng X, Li B, Wei H, Tian Z. Human NK cells positively regulate gammadelta T cells in response to Mycobacterium tuberculosis. J Immunol 2006; 76:260-266.

90. Feng CG, Kaviratne M, Rothfuchs AG, et al.

NK cell-derived IFN-gamma differentially regulates innate resistance and neutrophil response in T cell-deficient hosts infected with Mycobacterium tuberculosis. J Immunol 2006; 77:7086-7093.

9. Alter G, Altfeld M. NK cell function in HIV- infection. Curr Mol Med 2006; 6:62-629.

92. Antony VB, Sahn SA, Harada RN, Repine JE. Lung repair and granuloma formation.

Tubercle bacilli stimulated neutrophils release chemotactic factors for monocytes.

Chest 983; 83:95S-96S.

93. Antony VB, Sahn SA, Antony AC, Repine JE. Bacillus Calmette-Guerin-stimulated neutrophils release chemotaxins for monocytes in rabbit pleural spaces and in vitro. J Clin Invest 985; 76:54-52.

94. Sadek MI, Sada E, Toossi Z, Schwander SK, Rich EA. Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 998; 9:53-52.

95. Seiler P, Aichele P, Raupach B, Odermatt B, Steinhoff U, Kaufmann SH. Rapid neutrophil response controls fast-replicating intracellular bacteria but not slow-replicating Mycobacterium tuberculosis. J Infect Dis 2000; 8:67-680.

96. Pedrosa J, Saunders BM, Appelberg R, Orme IM, Silva MT, Cooper AM. Neutrophils play a protective nonphagocytic role in systemic Mycobacterium tuberculosis infection of mice. Infect Immun 2000; Mycobacterium tuberculosis. J Infect Dis 998; 78:27-37.

98. Perskvist N, Long M, Stendahl O, Zheng L. Mycobacterium tuberculosis promotes apoptosis in human neutrophils by activating caspase-3 and altering expression of Bax/Bcl-xL via an oxygen-dependent pathway. J Immunol 2002;

68:6358-6365.

99. Bonecini-Almeida MG, Chitale S, Boutsikakis I, et al. Induction of in vitro human macrophage anti-Mycobacterium tuberculosis activity: requirement for IFN-gamma and primed lymphocytes. J Immunol 998; 60:4490-4499.

00. Denis M. Interferon-gamma-treated murine macrophages inhibit growth of tubercle bacilli via the generation of reactive nitrogen intermediates. Cell Immunol 99; 32:50-57.

0. Nicholson S, Bonecini-Almeida Mda

G, Lapa e Silva JR, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 996; 83:2293-2302.

02. Nathan CF, Ehrt S. Nitric oxyde in tuberculosis. In: Rom W, Garray S, eds.

Tuberculosis. Second edition ed: Lippincott Williams & Wilkins, 2004; 25-236.

03. Rooyakkers AW, Stokes RW. Absence of complement receptor 3 results in reduced binding and ingestion of Mycobacterium tuberculosis but has no significant effect on the induction of reactive oxygen and nitrogen intermediates or on the survival of the bacteria in resident and interferon-gamma activated macrophages. Microb Pathog 2005; 39:57-67.

04. Chan J, Fan XD, Hunter SW, Brennan PJ, Bloom BR. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect Immun 99;

59:755-76.

05. Kusner DJ. Mechanisms of mycobacterial persistence in tuberculosis. Clin Immunol 2005; 4:239-247.

06. Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of R2, resulting in inactivation of TNF-alpha. J Immunol 998; 6:2636-264.

07. Chensue SW, Kunkel SL. Cytokines and chemokines in granulomatous inflammation. In: Boros D, ed.

Granulomatous Infections and Inflammations : Cellular and Molecular Mechanisms: ASM Press, 2003; -28.

08. O’Sullivan BJ, Thomas HE, Pai S, et al. beta breaks tolerance through expansion of CD25+ effector T cells. J Immunol 2006;

76:7278-7287.

09. Keane J, Gershon S, Wise RP, et al.

Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 200; 345:098-04.

0. Haider AS, Cardinale IR, Whynot JA, Krueger JG. Effects of etanercept are distinct from infliximab in modulating proinflammatory genes in activated human

leukocytes. J Investig Dermatol Symp Proc 2007; 2:9-5.

. Price NM, Gilman RH, Uddin J, Recavarren S, Friedland JS. Unopposed matrix metalloproteinase-9 expression in human tuberculous granuloma and the role of TNF-alpha-dependent monocyte networks. J Immunol 2003; 7:5579-5586.

2. Kipnis A, Basaraba RJ, Orme IM, Cooper AM. Role of chemokine ligand 2 in the protective response to early murine pulmonary tuberculosis. Immunology 2003; 09:547-55.

3. Flores-Villanueva PO, Ruiz-Morales JA, Song CH, et al. A functional promoter polymorphism in monocyte chemoattractant protein- is associated with increased susceptibility to pulmonary tuberculosis. J Exp Med 2005; 202:649-658.

4. Mohammed KA, Nasreen N, Ward MJ, Mubarak KK, Rodriguez-Panadero F, Antony VB. Mycobacterium-mediated chemokine expression in pleural mesothelial cells: role of C-C chemokines in tuberculous pleurisy. J Infect Dis 998;

78:450-456.

5. Banchereau J, Briere F, Caux C, et al.

Immunobiology of dendritic cells. Annu Rev Immunol 2000; 8:767-8.

6. Bodnar KA, Serbina NV, Flynn JL. Fate of Mycobacterium tuberculosis within murine dendritic cells. Infect Immun 200; 69:800-809.

7. Fortsch D, Rollinghoff M, Stenger S. IL-0 converts human dendritic cells into macrophage-like cells with increased antibacterial activity against virulent Mycobacterium tuberculosis. J Immunol 2000; 65:978-987.

9. Peters W, Scott HM, Chambers HF, Flynn JL, Charo IF, Ernst JD. Chemokine receptor 2 serves an early and essential role in resistance to Mycobacterium tuberculosis.

Proc Natl Acad Sci U S A 200; 98:7958-7963.

20. Bhatt K, Hickman SP, Salgame P. Cutting edge: a new approach to modeling early lung immunity in murine tuberculosis. J Immunol 2004; 72:2748-275.

2. Stenger S, Niazi KR, Modlin RL. Down-regulation of CD on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 998; 6:3582-3588.

22. Hanekom WA, Mendillo M, Manca C, et al. Mycobacterium tuberculosis inhibits maturation of human monocyte-derived dendritic cells in vitro. J Infect Dis 2003; al. Mycobacterium tuberculosis CDC55 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. J Immunol 999; 62:6740-6746.

25. Manca C, Tsenova L, Bergtold A, et al.

Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by Mycobacterium tuberculosis. In: Cole ST, ed. Tuberculosis and the Tubercle Bacillus.

Washington DC: ASM Press, 2005; 45-46.

27. Nelson DJ, Holt PG. Defective regional immunity in the respiratory tract of neonates is attributable to hyporesponsiveness of local dendritic cells to activation signals. J Immunol 995; 55:357-3524.

28. Tschernig T, Debertin AS, Paulsen F, Kleemann WJ, Pabst R. Dendritic cells in the mucosa of the human trachea are not regularly found in the first year of life.

Thorax 200; 56:427-43.

29. Oei E, Kalb T, Beuria P, et al. Accessory cell function of airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:

L38-33.

30. Glatman-Freedman A, Casadevall A.

Role of antibody-mediated immunity in host defense against Mycobacterium tuberculosis. In: Cole ST, ed. Tuberculosis and the Tubercle Bacillus. Washington DC: ASM Press, 2005; 497-53.

3. Schlesinger LS, Bellinger-Kawahara CG, Payne NR, Horwitz MA. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol 990; 44:277-2780.

32. Hetland G, Wiker HG. Antigen 85C on Mycobacterium bovis, BCG and M.

tuberculosis promotes monocyte-CR3-mediated uptake of microbeads coated with mycobacterial products. Immunology 994; 82:445-449.

33. Mueller-Ortiz SL, Wanger AR, Norris SJ.

Mycobacterial protein HbhA binds human complement component C3. Infect Immun 200; 69:750-75.

34. Daniel DS, Dai G, Singh CR, et al. The reduced bactericidal function of complement C5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes. J Immunol 2006; 77:4688-4698.

35. Chackerian AA, Perera TV, Behar SM.

Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect Immun 200; 69:2666-2674.

36. Scanga CA, Mohan VP, Yu K, et al. Depletion of CD4(+) T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med 2000; 92:347-358.

37. Ulrichs T, Kaufmann SH. Cell-mediated immune response. In: Rom W, Garray S, eds. Tuberculosis. Second edition ed:

Lippincott Williams & Wilkins, 2004; 25-262.

38. Cooper AM, Magram J, Ferrante J, Orme IM. Interleukin 2 (IL-2) is crucial to the development of protective immunity in mice intravenously infected with mycobacterium tuberculosis. J Exp Med 997; 86:39-45.

39. Feng CG, Jankovic D, Kullberg M, et al.

Maintenance of pulmonary Th effector function in chronic tuberculosis requires persistent IL-2 production. J Immunol 2005; 74:485-492.

40. Holscher C, Atkinson RA, Arendse B, et al. A protective and agonistic function of IL-2p40 in mycobacterial infection. J Immunol 200; 67:6957-6966.

4. Stobie L, Gurunathan S, Prussin C, et al.

The role of antigen and IL-2 in sustaining Th memory cells in vivo: IL-2 is required to maintain memory/effector Th cells sufficient to mediate protection to an infectious parasite challenge. Proc Natl Acad Sci U S A 2000; 97:8427-8432.

42. Jouanguy E, Altare F, Lamhamedi S, et al.

42. Jouanguy E, Altare F, Lamhamedi S, et al.

Dans le document Je dédie ma thèse à mon épouse, (Page 138-159)