• Aucun résultat trouvé

A Reference heat source for solar collector thermal testing

N/A
N/A
Protected

Academic year: 2021

Partager "A Reference heat source for solar collector thermal testing"

Copied!
11
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A Reference heat source for solar collector thermal testing

Harrison, S. J.; Bernier, M. A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=7777b4f8-1b31-4db0-bf99-da1801f49ae8

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7777b4f8-1b31-4db0-bf99-da1801f49ae8

(2)

Ser

TH1

0 .

1258

National Research

Conseil national

c.

2

BIJ3G

I

#

Council Canada

de recherches Canada

A REFERENCE HEAT SOURCE FOR SOLAR COLLECTOR THERMAL TESTING

by S.J. Harrison and M.A. Bernier

ANALYZED

Presented

at

ASME Winter Annual Meeting

New Orleans, LA, December, 1984

Solar Energy Division

Pamphlet Paper No. 84-WAISol-2,

7p.

DBR Paper No. 1258

Division of Building Research

(3)

Des

c a p t e u r s s o l a i r e s 3 l i q u i d e o n t

G t G

soumis

3

d e s e s s a i s au

moyen d'une s o u r c e chaude de r 6 f 6 r e n c e (SCR)

3

comparaison

d i r e c t e .

Un

r a d i a t e u r G l e c t r i q u e e s t r e l i g e n

sGrie au

c a p t e u r .

TAe f l i l i d e c a l o p o r t e u r a b s o r b e d e 1 ' C n e r g i e 3 un t a u x

mesurG p a r

l a SCR,

e t

l e t a u x de c a p t a g e d ' g n e r g i e s o l a i r e e s t

d G f i n i p a r

l e p r o d u i t de l 1 6 n e r g i e absorbGe e t l e r a p p o r t e n t r e

l e s G c a r t s de t e m p g r a t u r e d a n s l e c a p t e u r e t l e r a d i a t e u r .

La

SCR

e t

l e s

s o n d e s d e t e m p g r a t u r e a s s o c i ' e e s peuvent Gtre v u e s

comme un i n d i c a t e u r t h e r m i q u e de d g b i t massique,

l e p r o d u i t du

clgbit massique

e t d e l a c h a l e u r s p z c i f i q u e d t a n t mesurg

d i r e c t e m e n t dans l a b o u c l e d ' e s s a i .

D e s

e s s a i s d ' g t a l o n n a g e o n t 6 t 6 men& s u r deux SCR

3

d i f f G r e n t s

d g b i t s

e t

aux t e m p g r a t u r e s normalement o b s e r v g e s dans un e s s a i

de c a p t e u r p l a n ( d e -lO°C

3

-95OC).

On a g t a b l i d a n s chaque

c a s l e s v a l e u r s de

r

3 s a v o i r l e ra,pport d e 1 ' Q n e r g i e

thermique (mesurge) t r a n s f G r 6 e p a r l a SCR a u c a l o p o r t e u r 3

l ' g n e r g i e G l e c t r i q u e consonunGe p a r l a SCR.

Les

r g s u l t a t s s o n t

pour l a SCR n O 1 :

nl-=99,61% ( & a r t - t y p e

de 0 , 2 2 ) ,

e t

pour l a

SCR n02:

n2=99,59% ( e c a r t - t y p e de 0 , 2 8 ) .

(4)

THEAHE

.

MECHAN

. .

.

. .

.

,t be responr rnga ot tho 5 ssion is p r l n . I r,,hl,..-.ll-n f ST.. N O W K W K , N . T . ed ih p a m s of Printed ii

publlcr in ASME Johr

Refem.,, ,,. ,=,,,,,, ,,~,.,,,,,,,,.

,,,;.

,,~,=..u,,,vl, , .,, b,ml,,L J ,,,t.,t. 09 given t o A: nhmlcat Oivlnlon, and the a

menrs or opt'

its Dlvtslons

re paper is p

,...*-. r..,,-..

u t h o w l , Pam trs are availat

nlons aovanc or Sections. nhlIshM rn i - A , + ..L^..,rl * M in tl l f E mal. M E . nths

A Reference Heat Source for Solar Collector

Thermal Testing

S.

J. HARRISON

and M.

A. BERNIER

Division of Building Research

National Research Council of Canada

Ottawa, Ontario,

K I A

OR6

ABSTRACT

Liquid-based s o l a r c o l l e c t o r s have been t e s t e d u s i n g a d i r e c t - c o m p a r i s o n r e f e r e n c e h e a t s o u r c e (RHS). An e l e c t r i c h e a t e r i s i n s t a l l e d i n s e r i e s w i t h t h e s o l a r c o l l e c t o r u n d e r t e s t . Energy i s added t o t h e h e a t t r a n s f e r f l u i d a t a measured r a t e by t h e RHS, a n d t h e r a t e of s o l a r e n e r g y c o l l e c t i o n i s d e t e r m i n e d a s t h e p r o d u c t of t h i s e n e r g y i n p u t and t h e r a t i o of t h e d i f f e r e n t i a l t e m p e r a t u r e s a c r o s s t h e c o l l e c t o r a n d t h e h e a t e r . The RHS and a s s o c i a t e d t e m p e r a t u r e s e n s o r s c a n b e t h o u g h t o f a s a t h e r m a l mass f l o w m e t e r where, i n e f f e c t , t h e p r o d u c t of mass f l o w and s p e c i f i c h e a t i s measured d i r e c t l y i n t h e t e s t l o o p .

C a l i b r a t i o n t e s t s were performed on two r e f e r e n c e h e a t s o u r c e s a t v a r i o u s f l o w r a t e s a n d a t t h e t e m p e r a t u r e s n o r m a l l y e n c o u n t e r e d i n f l a t p l a t e s o l a r c o l l e c t o r t e s t i n g (-10°C t o "95OC). V a l u e s o f

n,

t h e r a t i o of t h e measured RHS t h e r m a l power o u t p u t t o t h e f l u i d t o t h e RHS e l e c t r i c a l power i n p u t w e r e d e t e r m i n e d f o r e a c h c a s e . R e s u l t s i n d i c a t e t h a t f o r RHSI1,

n1

= 99.61% ( s t a n d a r d d e v i a t i o n of 0.22) and f o r RHS#2,

n 2

= 99.59% ( s t a n d a r d d e v i a t i o n of 0.28). NOMENCLATURE A = a p e r t u r e a r e a of c o l l e c t o r (m2) C = s p e c i f i c h e a t of h e a t t r a n s f e r f l u i d (J/ (kg .K) ) G' = t o t a l s o l a r i r r a d i a n c e o n t h e p l a n e o f t h e s o l a r c o l l e c t o r (w/m2) & = mass f l o w r a t e o f h e a t t r a n s f e r f l u i d ( k g / s ) PRHS = i n p u t power t o RHS (W) qc = r a t e of e n e r g y c o l l e c t i o n by t h e s o l a r c o l l e c t o r (W)

GRHS

= o u t p u t power of t h e RHS (W) Ta = t e m p e r a t u r e o f a m b i e n t a i r s u r r o u n d i n g t h e RHS (OC) Ti = t e m p e r a t u r e of f l u i d a t i n l e t t o h e a t e r i n t h e RHS (OC) To = t e m p e r a t u r e of f l u i d a t o u t l e t o f h e a t e r i n t h e RHS (OC) Tm = mean f l u i d t e m p e r a t u r e i n t h e RHS (OC)

n

= s o l a r c o l l e c t o r e f f i c i e n c y

nRHS

= t h e r m a l e f f i c i e n c y of t h e RHS Ap = p r e s s u r e d r o p between t e m p e r a t u r e w e l l s i n t h e RHS ( P a ) ATc = f l u i d t e m p e r a t u r e r i s e t h r o u g h s o l a r c o l l e c t o r (K) ATRHS = f l u i d t e m p e r a t u r e r i s e t h r o u g h r e f e r e n c e h e a t s o u r c e (K) T = measured t i m e i n t e r v a l ( s ) M = mass of f l u i d c o l l e c t e d d u r i n g t i m e i n t e r v a l 7 ( k g ) V = volume f l o w r a t e of h e a t t r a n s f e r f l u i d (m3/s) P = d e n s i t y of t h e h e a t t r a n s f e r f l u i d (kg/m3) S u b s c r i p t s c = r e l a t e d t o t h e c o l l e c t o r RHS = r e l a t e d t o t h e r e f e r e n c e h e a t s o u r c e 1. INTRODUCTION The t h e r m a l e f f i c i e n c y ( n ) of a s o l a r c o l l e c t o r , a s d e t e r m i n e d by t e s t i n g , i s g i v e n a s , where, q c = r a t e of e n e r g y c o l l e c t i o n by s o l a r c o l l e c t o r , = (fi*Cp -AT)c ASHRAE S t a n d a r d 93-77

[L]

o u t l i n e s a f o r m a l i z e d s o l a r c o l l e c t o r t e s t i n g p r o c e d u r e and s p e c i f i e s t h e a c c u r a c y r e q u i r e m e n t s of a l l t h e measured t e r m s . I n p a r t i c u l a r , f o r c o l l e c t o r s t h a t u s e l i q u i d a s t h e h e a t t r a n s f e r f l u i d , t h e a c c u r a c y of t h e mass f l o w r a t e measurement s h o u l d b e e q u a l t o o r b e t t e r t h a n f l % of t h e measured v a l u e . It i s normal p r o c e d u r e t o measure t h e v o l u m e t r i c f l o w r a t e and d e r i v e mass f l o w r a t e f r o m p u b l i s h e d v a l u e s of f l u i d d e n s i t y , ( i . e . ,

6

= V *p). L i q u i d f l o w m e t e r s c a p a b l e of a c h i e v i n g t h e a c c u r a c y r e q u i r e m e n t o f t h e s t a n d a r d a r e a v a i l a b l e

[2,2].

T u r b i n e f l o w m e t e r s a r e among t h e most p o p u l a r , b u t a s n o t e d by Reed

[i],

t h e i r a c c u r a c y i s s e n s i t i v e t o d i f f e r e n c e s i n f l o w p a t t e r n , g a s e n t r a i n m e n t i n t h e

(5)

h e a t t r a n s f e r l i q u i d and wear of t h e b e a r i n g s . The a c c u r a t e d e t e r m i n a t i o n of q c by t h i s method a l s o depends on a knowledge of t h e t h e r m a l and p h y s i c a l p r o p e r t i e s of t h e h e a t t r a n s f e r f l u i d , p r i m a r i l y t h e f l u i d d e n s i t y and s p e c i f i c h e a t , over a r a n g e of t e m p e r a t u r e s . The t e m p e r a t u r e d e p e n d e n c i e s o f t h e s e p r o p e r t i e s a r e o f t e n n o t w e l l known f o r t h e commonly u s e d h e a t t r a n s f e r f l u i d s s u c h a s t h e w a t e r g l y c o l m i x t u r e s . Recognizing t h e s e d i f f i c u l t i e s , i t was d e c i d e d t o u s e t h e r e f e r e n c e h e a t s o u r c e (RHS) method t o d e t e r m i n e t h e r a t e of e n e r g y c o l l e c t i o n of t h e t e s t s o l a r c o l l e c t o r i n t h e D i v i s i o n of B u i l d i n g Research S o l a r C o l l e c t o r T e s t F a c i l i t y

[L].

The r e f e r e n c e h e a t s o u r c e method, a l s o c a l l e d t h e c a l o r i f i c r a t i o t e c h n i q u e by Reed and A l l e n

[kl,

u t i l i z e s a n e l e c t r i c a l h e a t e r i n s t a l l e d i n s e r i e s w i t h t h e t e s t s o l a r c o l l e c t o r i n t h e c a l o r i m e t r y l o o p , a s shown i n F i g u r e 1. With t h e same mass f l o w r a t e t h r o u g h b o t h t e s t c o l l e c t o r and RHS, e l e c t r i c a l e n e r g y i s i n p u t t o t h e RHS a t a r a t e PRH

,

and t h e r e s u l t a n t f l u i d t e m p e r a t u r e r i s e (ATRHS) a n 8 t h e c o r r e s p o n d i n g f l u i d t e m p e r a t u r e r i s e t h r o u g h t h e t e s t c o l l e c t o r (ATc) a r e measured. The r a t e of e n e r g y c o l l e c t i o n by t h e s o l a r c o l l e c t o r ( q c ) i s g i v e n b y , ROOF

I

CONTROL VALVE REFERENCE V) HEAT SOURCE

I

19

1 I

TEMPERATURF Fig. 1. DBRINRCC s o l a r c o l l e c t o r t e s t l o o p u s i n g t h e r e f e r e n c e h e a t s o u r c e method The t h e r m a l t r a n s f e r e f f i c i e n c y of t h e r e f e r e n c e h e a t s o u r c e (nRHS) i s d e f i n e d : RHS t h e r m a l power o u t p u t - q ~ H s ( 3 )

"'

= RHS e l e c t r i c a l power i n p u t PRHS where, qRHS = r a t e of t h e r m a l e n e r g y o u t p u t t o h e a t t r a n s f e r f l u i d i n RHS = ( 6 . ~ ~ - AT)RHs

.

I n most s o l a r c o l l e c t o r t e s t s , t h e d i f f e r e n c e i n mean f l u i d t e m p e r a t u r e between t h e RHS and c o l l e c t o r can be k e p t s u f f i c i e n t l y s m a l l s o t h a t t h e d i f f e r e n c e i n f l u i d s p e c i f i c h e a t c a n b e n e g l e c t e d . Good d e s i g n of t h e RHS can a s s u r e t h a t

wS

a p p r o a c h e s 1. The r a t e of e n e r g y c o l l e c t i o n by t h e s o l a r c o l l e c t o r c a n , t h e r e f o r e , b e approximated by Thus, t h e RHS method p e r m i t s d e t e r m i n a t i o n of t h e e n e r g y c o l l e c t i o n by t h e t e s t c o l l e c t o r w i t h o u t d i r e c t l y measuring t h e f l u i d f l o w r a t e and w i t h o u t knowing t h e t h e r m o p h y s i c a l p r o p e r t i e s of t h e h e a t t r a n s f e r f l u i d . T h i s p a p e r d e s c r i b e s t h e p o t e n t i a l s o u r c e s of e r r o r w i t h t h i s method, and t h e s p e c i f i c d e s i g n and c a l i b r a t i o n of t h e RHS used i n t h e DBRINRCC S o l a r C o l l e c t o r T e s t F a c i l i t y . 2. SOURCES OF ERROR To e n s u r e t h a t a c c u r a t e r e s u l t s a r e o b t a i n e d when u s i n g a r e f e r e n c e h e a t s o u r c e , c o n s i d e r a t i o n must b e g i v e n t o b o t h i t s d e s i g n and i t s o p e r a t i o n . Heat l o s s e s from t h e r e f e r e n c e h e a t s o u r c e r e s u l t i n an o v e r p r e d i c t i o n of t h e RHS power i n p u t t o t h e f l u i d and, a s a r e s u l t , a n o v e r p r e d i c t i o n o f t h e c o l l e c t o r performance. These l o s s e s c a n b e minimized by i n s u l a t i n g t h e RHS a n d by u s i n g a t h e r m a l g u a r d ( d e s c r i b e d i n S e c t i o n 3 ) w i t h i n t h e RHS.

Temperature measurement e r r o r s c a n r e s u l t f r o m l o c a l b o i l i n g of t h e h e a t t r a n s f e r f l u i d on t h e RHS h e a t e r element. T h i s problem i s most l i k e l y t o o c c u r a t low d e g r e e s of s u b c o o l i n g * and low f l u i d f l o w r a t e s . Experiments h a v e been c o n d u c t e d

[ I ]

o n s u r f a c e b o i l i n g i n an a n n u l u s f l o w p a s s a g e s i m i l a r t o t h a t i n t h e DBRfNRCC RHS. The r e s u l t s of t h i s s t u d y c a n b e u s e d t o e s t i m a t e t h e minimum f l o w r a t e s and d e g r e e s of s u b c o o l i n g r e q u i r e d t o a v o i d s u r f a c e b o i l i n g . The maximum a l l o w a b l e h e a t e r power d e n s i t y i n c r e a s e s w i t h i n c r e a s i n g d e g r e e s of s u b c o o l i n g and w i t h i n c r e a s i n g h e a t e r - t o - f l u i d h e a t t r a n s f e r c o e f f i c i e n t . Thus t e m p e r a t u r e measurement e r r o r s due t o l o c a l b o i l i n g c a n

-

*

d e g r e e s of s u b c o o l i n g a r e r e f e r r e d t o h e r e a s t h e d i f f e r e n c e ( i n K) between t h e f l u i d a v e r a g e t e m p e r a t u r e i n t h e RHS and t h e s a t u r a t i o n t e m p e r a t u r e a t t h e o p e r a t i n g p r e s s u r e . For example i f t h e f l u i d i s w a t e r and t h e a v e r a g e t e m p e r a t u r e and p r e s s u r e i n t h e RHS a r e 90°C and 108.15 kPa r e s p e c t i v e l y (which c o r r e s p o n d s t o a s a t u r a t i o n temp. of 101.85OC) t h e n t h e f l u i d h a s 11.85 K of s u b c o o l i n g .

(6)

be a v o i d e d by c a r e f u l c o n s i d e r a t i o n of h e a t e r power d e n s i t y (power i n p u t ) , d e g r e e s of s u b c o o l i n g ( o p e r a t i n g t e m p e r a t u r e ) and h e a t t r a n s f e r c o e f f i c i e n t (f l o w r a t e ) .

E f f e c t i v e mixing d e v i c e s l o c a t e d ahead of t h e t e m p e r a t u r e w e l l s a r e a l s o e s s e n t i a l f o r good t e m p e r a t u r e measurement. These m i x e r s must r e m a i n e f f e c t i v e o v e r a w i d e r a n g e of f l o w r a t e s . As w e l l , f l u i d f r i c t i o n c a n i n c r e a s e t h e f l u i d t e m p e r a t u r e and c a u s e a n o v e r p r e d i c t i o n o f ATRHS; c o n s e q u e n t l y , t h e r e f e r e n c e h e a t e r s h o u l d b e d e s i g n e d t o minimize t h e p r e s s u r e d r o p between t h e t e m p e r a t u r e s e n s o r s . A major s o u r c e of e r r o r i n s o l a r c o l l e c t o r t e s t i n g i s non-steady t e s t i n g c o n d i t i o n s . The r e f e r e n c e h e a t s o u r c e i s s i m i l a r t o a c o l l e c t o r i n t h a t i t h a s t h e r m a l mass; t h u s i t c a n s t o r e and r e l e a s e energy d u r i n g ' t r a n s i e n t o p e r a t i o n . T h i s can r e s u l t i n an over- o r

,

u n d e r p r e d i c t i o n of c o l l e c t o r performance. For t h i s r e a s o n , t h e f l o w r a t e , i n l e t t e m p e r a t u r e , h e a t e r power, and s u b s e q u e n t t e m p e r a t u r e r i s e must b e h e l d c o n s t a n t d u r i n g e a c h t e s t p e r i o d . R e f e r e n c e

[L]

o u t l i n e s r e q u i r e m e n t s f o r s t e a d y s t a t e t e s t i n g of s o l a r c o l l e c t o r s : t h e s e same r e q u i r e m e n t s a p p l y t o t h e r e f e r e n c e h e a t s o u r c e . I To minimize t h e e r r o r r e s u l t i n g from t h e

I

assumption t h a t t h e f l u i d s p e c i f i c h e a t (C ) i s t h e

I

same i n t h e h e a t e r and t h e c o l l e c t o r , t h e g e a n f l u i d t e m p e r a t u r e i n t h e RHS must b e k e p t c l o s e t o t h a t i n t h e s o l a r c o l l e c t o r . With w a t e r a s t h e h e a t t r a n s f e r

1

f l u i d , t h i s e r r o r c a n u s u a l l y b e k e p t t o l e s s t h a n 0.25% f o r t h e t e m p e r a t u r e s n o r m a l l y e n c o u n t e r e d i n t e s t i n g . With g l y c o l s and o i l s , however, t h e v a l u e o f

C i s s t r o n g l y dependent on t e m p e r a t u r e . It i s ,

i

t g e r e f o r e , s u g g e s t e d t h a t w i t h t h e s e h e a t t r a n s f e r f l u i d s , t h e i n l e t t e m p e r a t u r e and t e m p e r a t u r e r i s e f o r b o t h t h e RHS and t h e t e s t c o l l e c t o r b e k e p t

a p p r o x i m a t e l y t h e same. T h i s can be accomplished by c o o l i n g t h e f l u i d between t h e RHS and t h e c o l l e c t o r , and by a d j u s t i n g t h e h e a t e r i n p u t t o make t h e

t e m p e r a t u r e r i s e n e a r l y e q u a l a c r o s s b o t h t h e RHS and t h e c o l l e c t o r . As shown by t h e example i n Table 1 , t h e e r r o r r e s u l t i n g from a l a r g e t e m p e r a t u r e d i f f e r e n t i a l between t h e RHS and t h e c o l l e c t o r i s q u i t e s i g n i f i c a n t ( ~ 2 % ) w i t h a g l y c o l / w a t e r m i x t u r e , b u t i n s i g n i f i c a n t ("0.1%) w i t h water. Although t h e example i s f o r a "worse c a s e " s i t u a t i o n , i t d o e s i n d i c a t e t h e need f o r a v o i d i n g l a r g e d i f f e r e n c e s i n t e m p e r a t u r e c o n d i t i o n s between RHS and c o l l e c t o r .

TABLE 1 EXAMPLE OF ERROR I N ASSUMING Cp,, = Cp, RHS C o l l e c t o r type: e v a c u a t e d t u b e , h i g h f l u i d r e s i d e n c e

t i m e

F l u i d : ( 5 0 % by volume e t h y l e n e g l y c o l / w a t e r m i x t u r e )

Theref o r e ,

For w a t e r , t h e c o r r e s p o n d i n g r a t i o would be:

To summarize: t h e RHS s h o u l d b e d e s i g n e d t o a c h i e v e t h e f o l l o w i n g :

1 ) n e g l i g i b l e o r d e f i n a b l e h e a t l o s s ,

2 ) low power d e n s i t y h e a t i n g e l e m e n t , and a h i g h h e a t t r a n s f e r c o e f f i c i e n t between t h e h e a t e r and t h e f l u i d t o a v o i d b o i l i n g , 3 ) good f l u i d m i x i n g u p s t r e a m of e a c h t e m p e r a t u r e measurement p o i n t t o e n s u r e a c c u r a t e f l u i d t e m p e r a t u r e measurements, 4 ) s m a l l p r e s s u r e d r o p between t e m p e r a t u r e w e l l s t o a v o i d f r i c t i o n a l h e a t i n g of t h e f l u i d . The d e s i r e d o p e r a t i n g c o n d i t i o n s f o r t h e RHS a r e : 1 ) s t e a d y o p e r a t i o n , i . e . , a c o n s t a n t f l o w r a t e , i n l e t t e m p e r a t u r e , and h e a t e r power i n p u t , 2 ) s u f f i c i e n t f l o w r a t e , o r low o u t l e t t e m p e r a t u r e , s o t h a t t h e f l u i d i n t h e RHS d o e s n o t b o i l , 3) t e m p e r a t u r e r i s e l a r g e enough t o minimize AT e r r o r s , 4 ) mean f l u i d t e m p e r a t u r e i n t h e RHS c l o s e t o t h a t i n t h e c o l l e c t o r t o minimize C e r r o r s . P

3. DESIGN OF THE DBR/NRCC REFERENCE HEAT SOURCE Because t h e DBRINRCC S o l a r C o l l e c t o r T e s t F a c i l i t y h a s t h e c a p a b i l i t y of t e s t i n g two c o l l e c t o r s

s i m u l t a n e o u s l y , i t h a s two s e p a r a t e c a l o r i m e t e r l o o p s , e a c h w i t h i t s own r e f e r e n c e h e a t s o u r c e . The two ( r e f e r r e d t o a s RHSiIl and RHSiI2) a r e i d e n t i c a l e x c e p t f o r minor d i f f e r e n c e s i n t h e t h e r m o p i l e d e s i g n . The r e f e r e n c e h e a t s o u r c e d e s i g n e d a t NRCC i s shown i n F i g u r e 2 . It c o n s i s t s of a 7 5 0 q a t t e l e c t r i c immersion h e a t e r e l e m e n t e n c l o s e d i n a s e c t i o n of c o p p e r p i p e . T h i s r e p r e s e n t s a maximm power d e n s i t y of a p p r o x i m a t e l y 49 kw/m2.

The RHS was d e s i g n e d t o b e compact t o f a c i l i t a t e t h e i n c o r p o r a t i o n of a t h e r m a l guard r i n g . The t h e r m a l g u a r d i s i n t e n d e d t o l i m i t t h e h e a t l o s s e s ( o r g a i n s ) between t h e i n t e r n a l components and t h e s u r r o u n d i n g s . G l a s s f i b r e i n s u l a t i o n i s u s e d t o i n s u l a t e t h e i n t e r n a l components from e a c h o t h e r and from t h e g u a r d r i n g . The t h e r m a l g u a r d c o n s i s t s of a c o i l e d c o p p e r t u b e s o l d e r e d t o a copper s h e e t . The f l u i d i s c i r c u l a t e d t h r o u g h t h e g u a r d b e f o r e e n t e r i n g t h e h e a t e r s e c t i o n o f t h e RHS. T h i s c o n f i g u r a t i o n s i g n i f i c a n t l y r e d u c e s t h e t e m p e r a t u r e d i f f e r e n c e and r e s u l t a n t h e a t l o s s between t h e h e a t e r ' s i n t e r n a l components and i t s immediate s u r r o u n d i n g s . The g u a r d r i n g t e m p e r a t u r e f o l l o w s t h e i n l e t f l u i d t e m p e r a t u r e w i t h o u t t h e need f o r a c o n t r o l l e r e v e n when t h e h e a t t r a n s f e r f l u i d i s c o o l e r t h a n t h e a i r a d j a c e n t t o t h e RHS. The e x t e r i o r of t h e t h e r m a l g u a r d r i n g i s i n s u l a t e d t o minimize h e a t l o s s e s and l i m i t t h e t e m p e r a t u r e g r a d i e n t a l o n g i t s f l o w l e n g t h . An a d v a n t a g e of t h e f l u i d g u a r d r i n g o v e r a n e l e c t r i c guard r i n g , i n a d d i t i o n t o i t s c a p a b i l i t y t o o p e r a t e below t h e a m b i e n t t e m p e r a t u r e , i s t h a t i t d o e s n o t r e q u i r e a c o n t r o l c i r c u i t which c o u l d i n t r o d u c e " n o i s e " i n t o t h e t e m p e r a t u r e measurement.

A mixing d e v i c e and a t e m p e r a t u r e measurement w e l l a r e l o c a t e d a t b o t h t h e i n l e t and t h e o u t l e t of t h e h e a t e r . To a c h i e v e h i g h r e s o l u t i o n and r e l i a b i l i t y , t y p e "T" ( c o p p e r c o n s t a n t a n ) d i f f e r e n t i a l t h e r m o p i l e s a r e u s e d t o measure t h e f l u i d t e m p e r a t u r e r i s e a c r o s s t h e h e a t e r e l e m e n t s . (RHSdk1 h a s 1 0 j u n c t i o n s and RHSdI2 h a s 8.) The t h e r m o p i l e s were c a l i b r a t e d by t h e D i v i s i o n of P h y s i c s o f t h e NRCC, i n t e r m s o f t h e I n t e r n a t i o n a l P r a c t i c a l Temperature S c a l e of 1968 (IPTS-68). The e l e c t r i c a l power i n p u t (PRHS) i s

measured w i t h a c a l i b r a t e d e l e c t r o n i c power t r a n s d u c e r (20.25% of f u l l s c a l e ) .

The f l u i d p i p e s l e a d i n g t o and f r o m t h e RHS a r e i n s u l a t e d t o l i m i t a x i a l t h e r m a l c o n d u c t i o n , a s a r e t h e w i r e s g o i n g t o and f r o m t h e t h e r m o p i l e and h e a t e r . The

(7)

T O P

V I E W

-.

, ,\ ,THERMAL GUARD RING

(COILED COPPER TUBE SOLDERED TO COPPER SHEET)

BLOWN GLASS FIBRE

-<=-'

1 . INSULATION

d

FLOWEXIT

+

t

FLOW ENTRANCE

TEMPERATURE WELL

THERMAL GUARD RING

HEATER

16 mrn DIA. x 300 mm LG 750 WATT

FLOW FROM GUARD

4.1 T e s t P r o c e d u r e

A s e r i e s of c a l i b r a t i o n t e s t s was ~ e r f o r m e d t o d e p t h of immersion of t h e t e m p e r a t u r e w e l l s i s

a p p r o x i m a t e l y 30 d i a m e t e r s , which e x c e e d s t h e recommendations of t h e ASHRAE S t a n d a r d 41.1-74: S e c t i o n on Temperature Measurements

[i].

A s mentioned e a r l i e r , a s t a b l e i n l e t t e m p e r a t u r e , good f l o w r a t e c o n t r o l and r e g u l a t i o n o f t h e power s u p p l i e d t o t h e RHS a r e a l l e s s e n t i a l t o s t e a d y - s t a t e o p e r a t i o n of t h e RHS. The DBRINRCC s o l a r c o l l e c t o r t e s t l o o p u s e s a p r e s s u r e - s e n s i t i v e c o n t r o l v a l v e t o m a i n t a i n t h e f l o w r a t e t o f0.1% of t h e s e t p o i n t . The s t a b i l i t y of t h e i n l e t t e m p e r a t u r e , u s i n g a w e l l - m i x e d t e m p e r a t u r e b a t h u p s t r e a m of t h e RHS, was 3.1 K d u r i n g a t e s t p e r i o d . H e a t e r power f l u c t u a t i o n s a r e reduced t o -f0.1% w i t h t h e u s e of a v o l t a g e r e g u l a t o r . d e t e r m i n e t h e e f f e c t on

nRHS,

o f ;

-

t e m p e r a t u r e r i s e t h r o u g h h e a t e r ,

-

t e m p e r a t u r e d i f f e r e n c e between h e a t e r f l u i d a n d s u r r o u n d i n g a i r ,

-

f l u i d f l o w r a t e . I n o r d e r t o p e r f o r m t h e c a l i b r a t i o n t e s t s , t h e upper p o r t i o n of t h e c o l l e c t o r t e s t f a c i l i t y was m o d i f i e d a s shown i n F i g u r e 3, w i t h a dump t a n k and a measuring s c a l e i n p l a c e of t h e s o l a r c o l l e c t o r . T h i s p e r m i t t e d a n i n d e p e n d e n t d e t e r m i n a t i o n of a v e r a g e mass f l o w r a t e , by measuring t h e t o t a l mass of f l u i d f l o w i n g t h r o u g h t h e r e f e r e n c e h e a t e r o v e r a p r e c i s e l y measured time i n t e r v a l . For t h e c a l i b r a t i o n t e s t s , t h e v a l u e of f l u i d s p e c i f i c h e a t (C ) was d e t e r m i n e d a t t h e mean P

(8)

TABLE 2 SAMPLE DATA FROM CALIBRATION TEST

RHS 11 1

Run Number 5 7

Average Temperature Measurements i n RHS

I n l e t f l u i d t e m p e r a t u r e (Ti) 44.70°C

O u t l e t f l u i d t e m p e r a t u r e (To) 53.08OC

-

1

Tm --• (Ti

+

To) 48.89OC

2

AT,, 8.39 K

Ambient t e m p e r a t u r e (Ta) 27.0°C

Tm- Ta 21.9 K

WELL-MIXED

TEMPERATURE BATH G r a v i m e t r i c Flow R a t e CONTROL

I VALVE

-

-

- - Net weight 9.26 kg

-

-

-

- -

-

Time p e r i o d 599.9 s Mass f l o w r a t e - Volume f l o w r a t e 0.016 k g / s 0.98 Llmin VI PUMP REFERENCE 3 a

I

1r Power

HEAT SOURCE

&

-

r l h d TEMPERATURE P~~~ 568.1 w a t t s CONTROL LOOP qRHS 566.6 w a t t s a T ~ ~ ~ nRHs 99.7% Fig. 3. C a l i b r a t i o n set-up A t h i g h f l u i d t e m p e r a t u r e s , e v a p o r a t i o n from t h e f l u i d t e m p e r a t u r e i n t h e h e a t e r , u s i n g v a l u e s t a k e n weighing t a n k i n t r o d u c e s a measurement e r r o r ,

from r e f e r e n c e

[?I.

e s p e c i a l l y a t low f l o w r a t e s when t h e weighing p e r i o d

A c a l i b r a t i o n t e s t was performed a s f o l l o w s . The i s long. To r e d u c e t h i s e r r o r due t o e v a p o r a t i o n

h e a t t r a n s f e r f l u i d was drawn from a w e l l - m i x e d l o s s e s , t h e f l u i d was cooled b e f o r e e n t e r i n g t h e

t e m p e r a t u r e c o n t r o l l e d b a t h , pumped through t h e h e a t e r , weighing tank and a 'Over was used O n t h e

cooled and t h e n r e t u r n e d t o t h e bath. Flowrate was tank.

m a i n t a i n e d c o n s t a n t w i t h a p r e s s u r e s e n s i t i v e c o n t r o l A s e r i e s of t e s t s were performed t o d e t e r m i n e t h e

v a l v e . The f l u i d t e m p e r a t u r e r i s e through t h e h e a t e r p r e s s u r e drop c h a r a c t e r i s t i c of t h e r e f e r e n c e h e a t

and t h e i n l e t f l u i d t e m p e r a t u r e were c o n t i n o u s l y s o u r c e , a s s i g n i f i c a n t f l u i d f r i c t i o n h e a t i n g c o u l d

monitored on a s t r i p c h a r t r e c o r d e r t o d e t e c t any i n t r o d u c e e r r o r s . The p r e s s u r e d r o p between t h e r m o p i l e

t r a n s i e n t o r abnormal c o n d i t i o n s , and t o i n d i c a t e when w e l l s was measured a t s e v e r a l f l o w r a t e s from 0.008 t o

s t e a d y c o n d i t i o n s were a c h i e v e d ( s e e F i g u r e 4 f o r an 0.125 k g / s .

example of t h e t e m p e r a t u r e c o n d i t i o n s d u r i n g a t e s t To d e t e r m i n e t h e t h e r m a l r e s p o n s e of t h e RHS t o

r u n ) . When s t e a d y c o n d i t i o n s were achieved, i.e. when variations in power the tests were

t h e i n l e t t e m p e r a t u r e d i d n o t v a r y by more t h a n 3 . 1 K performed a t v a r i o u s f l u i d f l o w r a t e s . For e a c h

and t h e t e m p e r a t u r e r i s e a c r o s s t h e RHS, by more t h a n f l o w r a t e t h e RHS was allowed t o s t a b i l i z e and t h e v a l u e

k0.05 K, f o r a p e r i o d g r e a t e r t h a n t h e t e s t t i m e of ATRHS measured. The h e a t e r power i n p u t t o t h e RHS

i n t e r v a l (approx. 3 t o 1 5 min.), t h e f l o w was d i v e r t e d was t h e n s w i t c h e d o f f , w h i l e t h e i n l e t f l u i d

t o a weighing s c a l e and an a v e r a g e mass flow t e m p e r a t u r e and mass f l o w r a t e were m a i n t a i n e d c o n s t a n t .

measurement o b t a i n e d . T a b l e 2 g i v e s t h e r e s u l t s of a The s u b s e q u e n t decay of t h e v a l u e of ATRHS was r e c o r d e d

t y p i c a l t e s t run. u n t i l i t was e f f e c t i v e l y z e r o .

4.2 T e s t R e s u l t s

F i g u r e s 5a and 5b show c a l i b r a t i o n r e s u l t s f o r two

END i d e n t i c a l RHS's w i t h w a t e r a s t h e h e a t t r a n s f e r f l u i d .

The t h e r m a l e f f i c i e n c y (%HS) i s p l o t t e d a g a i n s t t h e

d i f f e r e n c e between t h e mean f l u i d t e m p e r a t u r e i n t h e RHS and t h e s u r r o u n d i n g ambient a i r t e m p e r a t u r e

(Tm

-

Ta) f o r d i f f e r e n t f l o w r a t e s . The magnitude of I

t h e v e r t i c a l b a r s r e p r e s e n t s t h e u n c e r t a i n t y a s s o c i a t e d

w i t h each d a t a p o i n t (Appendix A). For a f l o w r a t e

between 0.008 k g / s and 0.050 k g / s (0.5 t o 3 L/min.), t h e v a l u e s of measured RHS e f f i c i e n c y a r e s l i g h t l y l e s s t h a n 100% f o r t h e normal r a n g e of t e s t t e m p e r a t u r e s . I f a " l e a s t s q u a r e s " c u r v e f i t i s a p p l i e d t o t h e d a t a , t h e v a l u e of e f f i c i e n c y i s s e e n t o d e c r e a s e v e r y s l i g h t l y w i t h i n c r e a s i n g v a l u e s of (T,

-

T ). START I f t h e dependence of qRHS on (T,

-

T,B

i s n e g l e c t e d , t h e v a l u e of t h e r m a l e f f i c i e n c y (nRHS) o b t a i n e d f o r RHStl i s 99.61% w i t h a s t a n d a r d d e v i a t i o n

Pig. 4. V a r i a t i o n of t h e t e m p e r a t u r e c o n d i t i o n s d u r i n g Of 0'22 and f o r RHS#Zs %HS = 99'59% with a standard

a t y p i c a l t e s t r u n d e v i a t i o n of 0.28. Thus t h e requirement f o r 1%

(9)

,

102 I I I I I 1 1 1 I

.-..

RHS No. 1 o 1 Umin o 2 Umin

+

3 Umin

1

Fig. 5. C a l i b r a t i o n r e s u l t s f o r RHSill ( a ) and RHSl2 ( b )

accuracy on t h e measurement of mass f l o w r a t e o v e r t h e t e s t r a n g e a s r e q u i r e d by ASHRAE

[L]

i s surpassed. F i g u r e 6 p r e s e n t s t h e same d a t a ( f o r

RHS82

o n l y ) p l o t t e d a g a i n s t t h e t e m p e r a t u r e r i s e through t h e h e a t e r (ATRHs). A c u r v e f i t t o t h e d a t a shows t h a t t h e e f f i c i e n c y i s e s s e n t i a l l y independent of t h e t e m p e r a t u r e r i s e through t h e RHS. Although t h e l o s s e s from t h e RHS s h o u l d b e z e r o when Tm = Ta ( i . e . , qRH = l o o % ) , t h e r e s u l t s i n F i g u r e 5a and 5b show t g a t t h i s i s n o t t h e c a s e . The r e s i d u a l e r r o r shown c o u l d be t h e r e s u l t of a s y s t e m a t i c e r r o r i n h e r e n t i n t h e d e s i g n of t h e RHS. It could a l s o be due t o t h e t a b u l a t e d v a l u e s of C u s e d i n P t h i s c a l i b r a t i o n , which may n o t a d e q u a t e l y a c c o u n t f o r any d i s s o l v e d a i r o r m i n e r a l s p r e s e n t i n t h e t e s t f l u i d . F i g u r e 7 shows t h e p r e s s u r e d r o p c h a r a c t e r i s t i c of t h e RHS w i t h w a t e r a s t h e h e a t t r a n s f e r f l u i d . With a flow of 0.10 k g / s , a f l o w r a t e h i g h e r t h a n t h a t n o r m a l l y encountered i n s o l a r c o l l e c t o r t e s t i n g , t h e p r e s s u r e d r o p between w e l l s was a p p r o x i m a t e l y 350 Pa, which c o r r e s p o n d s t o a p p r o x i m a t e l y 0.035 w a t t s of f r i c t i o n a l h e a t i n g . T h i s amount i s two o r d e r s of magnitude

"

100.5 RHS No. 2 7) = 99.62

-

7.466 x ( a T R H S ) Z Y U 9 9 . 5 LL Y w

.

H E A T E R T E M P E R A T U R E R I S E .

AT^^^,

K Fig. 6. Thermal e f f i c i e n c y v s t e m p e r a t u r e r i s e (RHS#Z) F L O W R A T E , k g l s Fig. 7. P r e s s u r e d r o p between t h e r m o p i l e w e l l s i n RHS TIME I N T E R V A L ,

r ,

s

I

Fig. 8. Thermal r e s p o n s e of RHS t o a s t e p change i n h e a t e r power l e v e l s m a l l e r t h a n t h e a p p a r e n t h e a t l o s s from t h e RHS and i s , t h e r e f o r e , n e g l i g i b l e . The t r a n s i e n t r e s p o n s e o f t h e r e f e r e n c e h e a t s o u r c e was determined by s h u t t i n g t h e h e a t e r o f f d u r i n g s t e a d y - s t a t e o p e r a t i o n and r e c o r d i n g t h e t i m e d e c a y of t h e d i f f e r e n t i a l t e m p e r a t u r e measurement. R e s u l t s a r e shown i n F i g u r e 8 a s v a l u e s of t e m p e r a t u r e r i s e ATRHS a t time i n t e r v a l 7, (normalized t o ATms a t 7 = 0) v s 7. The r e s u l t s i n d i c a t e t h a t t h e r e s p o n s e t i m e of t h e RHS i s dependent on t h e f l u i d f l o w r a t e . The r e s p o n s e of ATRHS t o a s t e p v a r i a t i o n i n h e a t e r power

i s e f f e c t i v e l y e x p o n e n t i a l , preceded by a s m a l l t i m e l a g which i n c r e a s e s a t lower f l o w r a t e s . To avoid e r r o r s i n t r o d u c e d by t h e t h e r m a l i n e r t i a of t h e RHS, t h e d e v i c e s h o u l d be o p e r a t e d under s t e a d y s t a t e c o n d i t i o n s .

5. CONCLUSIONS I

A major advantage of t h e RHS i s i t s c a p a b i l i t y t o measure t h e p r o d u c t of mass f l o w and s p e c i f i c h e a t d i r e c t l y i n t h e t e s t l o o p d u r i n g c o l l e c t o r t e s t i n g . T h i s a v o i d s e r r o r s t h a t c o u l d b e i n t r o d u c e d t h r o u g h t h e u s e of mechanical f l o w m e t e r s , which r e q u i r e an a c c u r a t e knowledge of t h e t e m p e r a t u r e dependence o f t h e t h e r m a l and p h y s i c a l p r o p e r t i e s of t h e h e a t t r a n s f e r f l u i d b e i n g used. To a c h i e v e s a t i s f a c t o r y r e s u l t s w i t h a n RHS, however, c a r e must be e x e r c i s e d i n i t s d e s i g n and s t e a d y - s t a t e o p e r a t i o n i s e s s e n t i a l ; a s t a b l e i n l e t t e m p e r a t u r e , good f l o w r a t e c o n t r o l and r e g u l a t i o n o f t h e power s u p p l i e d t o t h e h e a t e r , a r e r e q u i r e d .

(10)

C a l i b r a t i o n t e s t s w e r e performed on t h e NRCC r e f e r e n c e h e a t s o u r c e o v e r a r a n g e of f l o w r a t e s and i n l e t t e m p e r a t u r e s n o r m a l l y e n c o u n t e r e d d u r i n g t h e t e s t i n g of l i q u i d c o o l e d s o l a r c o l l e c t o r s , ( i . e . ,

&

from 0.008 k g / s t o 0.05 k g / s and Ti from t o 95OC). When u s i n g t h e RHS o u t s i d e t h e s e o p e r a t i n g c o n d i t i o n s , c a u t i o n must b e e x e r c i s e d . At low f l o w r a t e s (c0.008 k g / s ) , l o c a l i z e d b o i l i n g may i n t r o d u c e e r r o r s i f t h e h e a t e r power d e n s i t y i s n o t reduced a s w e l l . O p e r a t i o n a t f l o w r a t e s g r e a t e r t h a n 0.05 k g / s r e d u c e s t h e t e m p e r a t u r e r i s e a c r o s s t h e RHS, i n c r e a s i n g t e m p e r a t u r e measurement u n c e r t a i n t y . R e s u l t s i n d i c a t e t h a t t h e p r e s e n t RHS e x c e e d s t h e ASHRAE t e s t method r e q u i r e m e n t

[L]

of 1% a c c u r a c y i n t h e d e t e r m i n a t i o n of mass f l o w r a t e . ACKNOWLEDGEMENT The a u t h o r s wish t o e x p r e s s t h e i r a p p r e c i a t i o n t o L.P. Chabot f o r h i s a s s i s t a n c e . T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of Canada, and i s p u b l i s h e d w i t h t h e a p p r o v a l of t h e D i r e c t o r of t h e D i v i s i o n . REFERENCES

Methods of T e s t i n g t o Determine t h e Thermal

P e r f o r m a n c e of S o l a r C o l l e c t o r s . American S o c i e t y f o r H e a t i n g , R e f r i g e r a t i n g and Air-Conditioning E n g i n e e r s , ASHRAE S t a n d a r d 93-77, 1977.

H a l l , J . , Choosing a Flow Monitoring Device, I n s t r u m e n t s and C o n t r o l Systems, J u n e 1981, p. 51-59.

P l a c h e , K.O., C o r i o L i s / G y r o s c o p i c Flow Meter, Mechanical E n g i n e e r i n g , March 1979, p. 36-41. Reed, K.A., I n s t r u m e n t a t i o n f o r t h e r m a l performance measurements: s t r i v i n g f o r measurement a s s u r a n c e i n s o l a r c o l l e c t o r t e s t i n g , ASME S o l a r Energy Conference, Albuquerque 1982, p. 337-340. H a r r i s o n , S.J. and S a s a k i , J.R., S t u d i e s on S o l a r C o l l e c t o r Performance a t NRC, Renewable A l t e r n a t i v e s , P r o c e e d i n g s of t h e F o u r t h Annual Conference of t h e S o l a r Energy S o c i e t y of Canada, August 1978, London, O n t a r i o , Canada.

Reed, K.A. and A l l e n , J.W., S o l a r Thermal C o l l e c t o r T e s t i n g : C a l o r i f i c R a t i o Technique, S o l a r

D i v e r s i f i c a t i o n , P r o c e e d i n g s of t h e I n t e r n a t i o n a l Energy S o c i e t y , I n c . , August 1978, Denver, CO, USA.

McAdams, W.H., e t a l . , H e a t T r a n s f e r a t High R a t e s t o Water With S u r f a c e B o i l i n g , I n d u s t r i a l and E n g i n e e r i n g C h e m i s t r y , September 1949, p. 1945. S t a n d a r d Measurement Guide: S e c t i o n on t e m p e r a t u r e measurements, American S o c i e t y f o r Heating,

R e f r i g e r a t i n g and Air-Conditioning E n g i n e e r s , ASHRAE S t a n d a r d 41.1-74, 1974.

Weast, R.C., ed.. Handbook of Chemistry and P h y s i c s , Forty-Ninth E d i t i o n , The Chemical Rubber Co., C l e v e l a n d , OH, 1968.

K l i n e , S.J. and McClintock, F.A., D e s c r i b i n g U n c e r t a i n t i e s i n Single-Sample Experiments, Mechanical E n g i n e e r i n g , J a n u a r y 1953.

APPENDIX A A n a l y s i s o f t h e Random Measurement U n c e r t a i n t y on nRHS

The u n c e r t a i n t y a s s o c i a t e d w i t h nRHS c a n b e e v a l u a t e d u s i n g t h e p r o p a g a t i o n of random u n c e r t a i n t y t e c h n i q u e s

[El.

U s i n g e q u a t i o n ( 3 ) we have:

The mass f l o w r a t e (ni) i s d e t e r m i n e d by w e i g h i n g a mass of f l u i d (M) f l o w i n g t h r o u g h t h e RHS o v e r a p r e c i s e l y measured time i n t e r v a l ( T ) s o Eq. ( 5 ) becomes,

Performing an a n a l y s i s a s d e s c r i b e d i n Ref. 1 0 t h e u n c e r t a i n t y i n t h e d e p e n d e n t v a r i a b l e (W llauc ~ k a n b e e x p r e s s e d i n t e r m s of t h e u n c e r t a i n t i e s in""e"ach of t h e i n d e p e n d e n t v a r i a b l e s (WM, W T , Wcp, VAT, WPRHS). where, WM = i O . O l k g W~ P +0.1% of C P

WAT

= a . 0 2 K

W,

= 3 3 . 1 s

%Ras

= fl.9 w a t t s ( i . e . , 0.25% of 750 w a t t s ) I n s e r t i n g t h e v a l u e s i n Eq. ( 7 ) , we have:

+

(+)

3

~ R H S RHS By s u b s t i t u t i ? ~ t h e c o r r e s p o n d i n g v a l u e s of M, AT and W"RH~ T , v a l u e s of - a r e o b t a i n e d . Using t h e r e s u l t s

W s

g i v e n i n T a b l e 2, f o r example, t h e c o r r e s p o n d i n g u n c e r t a i n t y i n t h e d e t e r m i n a t i o n of nRHS, is: Values c o r r e s p o n d i n g t o e a c h d a t a p o i n t a r e r e p r e s e n t e d by e r r o r b a r s i n F i g u r e s 5a and 5b.

(11)

T h i s p a p e r ,

w h i l e b e i n g d i s t r i b u t e d i n

r e p r i n t form by t h e D i v i s i o n of B u i l d i n g

R e s e a r c h ,

remains t h e c o p y r i g h t of

t h e

o r i g i n a l p u b l i s h e r .

It

s h o u l d n o t be

reproduced i n whole o r i n p a r t w i t h o u t t h e

p e r m i s s i o n of t h e p u b l i s h e r .

A

l i s t

of a l l p u b l i c a t i o n s a v a i l a b l e from

t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of

B u i l d i n g R e s e a r c h ,

N a t i o n a l

R e s e a r c h

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

KIA OR6.

Figure

TABLE  2  SAMPLE  DATA  FROM  CALIBRATION  TEST
Fig.  8.  Thermal  r e s p o n s e   of  RHS  t o   a   s t e p   change  i n   I

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers