• Aucun résultat trouvé

Inter-Zone convective heat transfer in buildings : a review

N/A
N/A
Protected

Academic year: 2021

Partager "Inter-Zone convective heat transfer in buildings : a review"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASME Heat Transfer Division, 41, pp. 45-52, 1985

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Inter-Zone convective heat transfer in buildings : a review

Barakat, S. A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=98729860-50e1-4474-8e81-a378936deee0

https://publications-cnrc.canada.ca/fra/voir/objet/?id=98729860-50e1-4474-8e81-a378936deee0

(2)

Ser

TH1

I43LA

N21d

National Research

Conseil national

o .

1323

I+

Council canada

de

recherchn Canada

c.

2

lfLDG

Division of

Division des

- - -

Building Research

recherches en btitiment

Inter-Zone Convective Heat Transfer

in Buildings: A Review

by S.A. Barakat

Reprinted from

Heat Transfer in Buildings and Structures-HTD-Vol. 41

p. 45 -52

ASME-AIChE National Heat Transfer Conference

Denver, CO, August 4

-

7,1985

(DBR Paper No. 1323)

Price $2.00

NRCC 24953

(3)

On examine les travaux de recherche sur le transfert de chaleur

de convection inter-zone dans les batiments et on traite des

paramztres dont depend ce processus.

On prdsente une

comparaison limit6e entre les taux de transfert de la chaleur

calculds 3 partir de correlations existantes et ceux obtenus

dans une installation d'essai

en grandeur r6elle.

On a

identifi6 certains secteurs qui ngcessitent plus de recherche.

(4)

INTER-ZONE CONVECTIVE HEAT TRANSFER I N BUILDINGS: A REVIEW

S.A. Barakat

Division of Building Research National Research Council of Canada

Ottawa, Ontario. Canada

ABSTRACT R e s e a r c h work on i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r i n b u i l d i n g s is reviewed and t h e p a r a m e t e r s t h a t g o v e r n t h i s p r o c e s s a r e d i s c u s s e d . A l i m i t e d comparison between t h e h e a t t r a n s f e r r a t e s c a l c u l a t e d by e x i s t i n g c o r r e l a t i o n s and t h o s e o b t a i n e d i n a f u l l - s c a l e t e s t f a c i l i t y i s p r e s e n t e d . A number of r e s e a r c h a r e a s where more work i s needed a r e i d e n t i f i e d . NOMENCLATURE A p e r t u r e r a t i o (=D/H) Exponent of GrD i n E q u a t i o n ( 1 9 ) Room w i d t h S p e c i f i c h e a t of f l u i d C o e f f i c i e n t d e f i n e d i n E q u a t i o n ( 1 ) Opening h e i g h t H y d r a u l i c d i a m e t e r of doorway A c c e l e r a t i o n due t o g r a v i t y Heat t r a n s f e r c o e f f i c i e n t Room h e i g h t Thermal c o n d u c t i v i t y of f l u i d E n c l o s u r e l e n g t h ( d i s t a n c e between h o t and c o l d s u r f a c e s ) T o t a l h e a t t r a n s f e r r a t e t h r o u g h opening Power consumption i n c o l d room

Power consumption i n h o t room

R a d i a t i v e h e a t t r a n s f e r component t h r o u g h opening T h i c k n e s s of p a r t i t i o n Temperature Cold s u r f a c e ( o r room) t e m p e r a t u r e Hot s u r f a c e ( o r room) t e m p e r a t u r e Outdoor t e m p e r a t u r e Temperature d i f f e r e n c e

Temperature d i f f e r e n c e between t o p and bottom h a l v e s of t h e o p e n i n g Average t e m p e r a t u r e d i f f e r e n c e between z o n e s Loss c o e f f i c i e n t of c o l d room L o s s c o e f f i c i e n t of h o t room Width of o p e n i n g Dynamic v i s c o s i t y v K i n e m a t i c v i s c o s i t y P

-

F l u i d d e n s i t y P Average two-zone d e n s i t y o Stefan-Boltzmann c o n s t a n t D i m e n s i o n l e s s g r o u p s GrD Grashof number [ = g ~ p ~ 3 / p ~ 2 ] NuD N u s s e l t number [= hD/kl P r P r a n d t l number [ = c,v/kl ReD Reynolds number [= zVbD/vI INTRODUCTION

I n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r , o r t h e h e a t t r a n s f e r between zones ( o r rooms) i n a b u i l d i n g , c o u l d o c c u r s o l e l y due t o a t e m p e r a t u r e d i f f e r e n c e between t h e zones ( n a t u r a l c o n v e c t i o n ) , o r due t o t h e movement of a i r by m e c h a n i c a l means ( f o r c e d c o n v e c t i o n ) o r a c o m b i n a t i o n of b o t h . F o r c e d , c o n v e c t i o n c o u l d be g e n e r a t e d by i n t e n t i o n a l l y - u s e d c i r c u l a t i o n f a n s o r by a n u n b a l a n c e i n t h e a i r s u p p l y o r v e n t i l a t i o n system. Because of t h e f u n d a m e n t a l r o l e t h a t i n t e r - z o n e c o n v e c t i o n p l a y s i n b o t h c o n v e n t i o n a l and p a s s i v e s o l a r b u i l d i n g s , i t h a s r e c e n t l y r e c e i v e d i n c r e a s i n g a t t e n t i o n from t h e b u i l d i n g r e s e a r c h community. Convection i s r e s p o n s i b l e ( a l o n g w i t h t h e r m a l r a d i a t i o n ) f o r t h e d i s t r i b u t i o n of h e a t w i t h i n t h e o c c u p i e d s p a c e and between s p a c e s i n a multi-zone b u i l d i n g . T h i s h e l p s i n a c h i e v i n g a more u n i f o r m t e m p e r a t u r e d i s t r i b u t i o n i n a b u i l d i n g and r e d u c e s e x c e s s i v e o v e r h e a t i n g i n t h e s o u t h zone of a d i r e c t - g a i n b u i l d i n g .

Recent r e s e a r c h r e s u l t s have emphasized t h e i m p o r t a n c e of t h e i n t e r - z o n e c o n v e c t i o n p r o c e s s i n a b u i l d i n g and d e m o n s t r a t e d t h e need f o r a c c u r a t e a c c o u n t i n g of c o n v e c t i o n i n any a t t e m p t t o p r e d i c t t h e b u i l d i n g t h e r m a l performance. P r e v i o u s work h a s a l s o p o i n t e d o u t t h e s i g n i f i c a n t magnitude o f n a t u r a l c o n v e c t i o n a c r o s s d o o r o p e n i n g s . F o r example, h e a t f l o w r a t e s of more t h a n 1200 w a t t s h a v e b e e n f o u n d t o o c c u r t h r o u g h a 0.9x2.05 m doorway a s a r e s u l t of a

4

K t e m p e r a t u r e d i f f e r e n c e between t h e s p a c e s o n e i t h e r s i d e of t h e door. l o C o n v e c t i o n t h r o u g h s i n g l e doorways

(5)

was a l s o found t o b e t h e major mecnanism f o r

d i s t r i b u t i n g h e a t from a s u n s p a c e t o t h e p a r e n t house. I n t e r - z o n e c o n v e c t i o n i s a l s o a n i m p o r t a n t f a c t o r a f f e c t i n g smoke movement and c o n t r o l i n b u i l d i n g s a s w e l l a s t h e t r a n s f e r of p o l l u t a n t s between s p a c e s . O t h e r a p p l i c a t i o n s r e l a t e t o t h e g e n e r a l movement of a i r w i t h i n a b u i l d i n g c r e a t i n g d r a u g h t s , l o s s of h e a t a t doorways of b u i l d i n g s where heavy p e d e s t r i a n t r a f f i c e x i s t s , and h e a t g a i n t h r o u g h t h e doorways of c o l d s t o r a g e rooms. The i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r p r o c e s s is h i g h l y dependent on b o t h t h e g e o m e t r i c c o n f i g u r a t i o n of t h e s t r u c t u r e ( o p e n i n g h e i g h t and w i d t h , c e i l i n g h e i g h t , e t c . ) and on t h e boundary c o n d i t i o n s t h a t a r e e n c o u n t e r e d i n t h e s t r u c t u r e ( s u r f a c e t e m p e r a t u r e s and h e a t f l u x e s ) . T h i s p a p e r p r e s e n t s a d e t a i l e d r e v i e w of p r e v i o u s work on i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r , p a r t i c u l a r l y a s r e l a t e d t o b u i l d i n g s , and d i s c u s s e s t h e p a r a m e t e r s t h a t g o v e r n t h i s p r o c e s s . I n t h e f o l l o w i n g p r e s e n t a t i o n some changes a r e made i n t h e t e r m i n o l o g y used by t h e o r i g i n a l a u t h o r s t o i n c r e a s e c l a r i t y and p e r m i t comparisons. For example, s u b s c r i p t s a r e added t o t h e N u s s e l t , G r a s h o f , and R a y l e i g h d i m e n s i o n l e s s numbers t o i n d i c a t e t h e c h a r a c t e r i s t i c l e n g t h u s e d i n t h e i r c a l c u l a t i o n . That is and RaD = GrD x P r F o r e x p l a n a t i o n s of a l l o t h e r t e r m s , t h e r e a d e r i s r e f e r r e d t o t h e Nomenclature.

REVIEW OF PREVIOUS WORK

Almost a l l p r e v i o u s p a p e r s on i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r have f o c u s s e d on n a t u r a l c o n v e c t i o n o n l y i n s i m p l e and complex, o r d i v i d e d , e n c l o s u r e s ( s e e F i g u r e 1 ) . O s t r a c h l and C a t t o n Z p r e s e n t e d two comprehensive r e v i e w s of n a t u r a l c o n v e c t i o n i n s i m p l e e n c l o s u r e s . T h i s c a s e , however, i s o u t s i d e t h e s c o p e of t h i s p a p e r and w i l l n o t be d i s c u s s e d f u r t h e r .

A number of s t u d i e s have been performed f o r e n c l o s u r e s of d i f f e r e n t a s p e c t r a t i o s

(HIL),

w i t h b a f f l e s o r p a r t i t i o n s mounted i n t h e c a v i t y t o s t u d y t h e i r e f f e c t on r e d u c i n g t h e c o n v e c t i v e t r a n s f e r . F o r example, P r o b e r t and ward3 found t h a t t h e i n s e r t i o n of c o m p a r a t i v e l y s h o r t end-mounted v e r t i c a l b a f f l e s ( a t f l o o r and c e i l i n g ) r e d u c e s t h e t o t a l s t e a d y s t a t e h e a t t r a n s f e r a c r o s s t h e e n c l o s u r e ( i n c l u d i n g t h e r a d i a t i v e component) by 20 t o 30%.

C t x

F i g u r e 1. E n c l o s u r e c o n f i g u r a t i o n I n a Mach-Zender i n t e r f e r o m e t r i c s t u d y , J a n i k o w s k i e t a 1 4 confirmed t h e above f i n d i n g i n a r e c t a n g u l a r e n c l o s u r e of h i g h a s p e c t r a t i o . They a l s o i n d i c a t e d t h a t t h e f r e e c o n v e c t i v e h e a t t r a n s f e r d e c r e a s e s a s t h e b a f f l e h e i h t i s i n c r e a s e d ( o p e n i n g h e i g h t d e c r e a s e d ) . Emeryf r e p o r t e d t h a t i f v e r t i c a l b a f f l e s a r e i n s e r t e d c e n t r a l l y ( i . e . l e a v i n g o p e n i n g s n e a r t h e f l o o r and c e i l i n g of t h e e n c l o s u r e ) , t h e i r p r e s e n c e d o e s not produce any s i g n i f i c a n t change i n c o n v e c t i v e h e a t t r a n s f e r from t h e u n b a f f l e d c o n d i t i o n . T h i s c a n b e e x p e c t e d s i n c e t h i s b a f f l e arrangement d o e s n o t a l t e r t h e buoyancy-induced f l o w which o c c u r s m a i n l y c l o s e t o t h e s u r f a c e s . Chang e t a 1 6 u n d e r t o o k a f i n i t e d i f f e r e n c e s t u d y of n a t u r a l c o n v e c t i o n i n 2-D e n c l o s u r e s , having a n a s p e c t r a t i o of 1 , w i t h a v e r t i c a l p a r t i t i o n mounted o n e i t h e r t h e c e i l i n g o r t h e f l o o r . The v e r t i c a l w a l l s , p a r a l l e l t o t h e p a r t i t i o n , were m a i n t a i n e d a t d i f f e r e n t u n i f o r m and c o n s t a n t t e m p e r a t u r e s w h i l e t h e r e s t of t h e s u r f a c e s were a d i a b a t i c . , They showed t h a t t h e e f f e c t of i n c r e a s i n g t h e p a r t i t i o n h e i g h t ( r e d u c i n g t h e opening h e i g h t ) , of i n c r e a s i n g t h e p a r t i t i o n t h i c k n e s s , and of moving t h e p a r t i t i o n away from t h e c e n t r e of t h e e n c l o s u r e i s t o r e d u c e t h e h e a t t r a n s f e r between t h e two s i d e s of t h e e n c l o s u r e . Changes i n p a r t i t i o n h e i g h t had t h e most s i g n i f i c a n t e f f e c t . T h e i r c o n c l u s i o n s o n t h e e f f e c t of t h e p a r t i t i o n t h i c k n e s s was based on r e s u l t s f o r a n o p e n i n g h a l f t h e e n c l o s u r e h e i g h t o n l y . No c o r r e l a t i o n was g i v e n f o r t h e h e a t t r a n s f e r r a t e s . I n r e l a t i o n t o b u i l d i n g s , t h e f i r s t e x t e n s i v e s t u d y of n a t u r a l c o n v e c t i o n t h r o u g h o p e n i n g s i n p a r t i t i o n s was c a r r i e d o u t by Brown and S o l v a s o n i n 1 9 6 2 . ~ They have t h e o r e t i c a l l y d e s c r i b e d t h e p r o c e s s i n t e r m s of t h e N u s s e l t number, NuD, t h e Grashof number, G r D , and t h e P r a n d t l number, P r , i n t h e form

where t h e c o e f f i c i e n t C i s i n t h e r a n g e 0.2 t o 0.33. The development of E q u a t i o n ( 1 ) i s g i v e n i n

R e f e r e n c e ( 7 ) .

Brown and S o l v a s a n performed t h e i r e x p e r i m e n t s f o r

t h e c a s e of air f l o w between two l a r g e test chambers ( e a c h was 2.44 m s q u a r e and 1.2 m l o n g ) t h r o u g h s i n g l e r e c t a n g u l a r o p e n i n g s a t t h e c e n t r e of t h e p a r t i t i o n between t h e chambers. Opening s i z e s of 7 . 6 ~ 7 . 6 , 15.2x15.2, 1 5 . 2 ~ 3 0 . 5 , 2 2 . 9 ~ 2 2 . 9 , and 3 0 . 5 ~ 3 0 . 5 cm were examined f o r a i r t e m p e r a t u r e d i f f e r e n c e s from 8.3 t o 47.2

K.

Various r a t i o s of p a r t i t i o n t h i c k n e s s t o o p e n i n g h e i g h t , t / D , were a l s o t e s t e d o v e r t h e r a n g e 0.19 t o 0.75. The a i r t e m p e r a t u r e d i f f e r e n c e between t h e warm and c o l d s i d e s was u s e d t o d e t e r m i n e t h e Nu

and G r numbers. The a i r t e m p e r a t u r e was measured a s t h e a v e r a g e on a v e r t i c a l g r i d ( f l o o r t o c e i l i n g ) l o c a t e d 38 and 20 cm away from t h e p a r t i t i o n w a l l o n t h e warm and c o l d s i d e s , r e s p e c t i v e l y , and 61 cm from t h e c e n t r e of t h e o p e n i n g p a r a l l e l t o t h e w a l l . The o p e n i n g h e i g h t , D, was u s e d a s t h e c h a r a c t e r i s t i c l e n g t h . T h e i r e x p e r i m e n t a l r e s u l t s i n d i c a t e d t h a t t h e e x p o n e n t of t h e Grashof number i n E q u a t i o n (1) i s s l i g h t l y g r e a t e r t h a n 0.5. The r e s u l t s a l s o i n d i c a t e d a dependance of t h e h e a t t r a n s f e r r a t e ( o r Nu) on t / D . At l o 7

<

G r D

<

l o 8 , v e r y l i t t l e i n f l u e n c e of t / D was n o t e d f o r t h e r a n g e t / D = 0.19 t o 0.38, however f o r G r D

<

l o 7 and t / D = 0.38 t o 0.75, t h e e f f e c t of t / D was s i g n i f i c a n t . I n a n o t h e r p u b l i c a t i o n , Brown e t a18 p r e s e n t e d e q u a t i o n s and c h a r t s t o c a l c u l a t e h e a t and m o i s t u r e t r a n s f e r due t o n a t u r a l c o n v e c t i o n t h r o u g h o p e n i n g s i n v e r t i c a l and h o r i z o n t a l p a r t i t i o n s s e p a r a t i n g s p a c e s a t

(6)

d i f f e r e n t c o n d i t i o n s . F o r v e r t i c a l p a r t i t i o n s t h e f o l l o w i n g c o r r e l a t i o n s were g i v e n : f o r l o 6

<

G r D

<

l o 8 and 0.19

<

t / D

<

0.75, and f o r G r D

,

10'. ~ r o w n ~ a l s o examined t h e c a s e of o p e n i n g s i n a h o r i z o n t a l p a r t i t i o n when t h e c o l d e r a i r i s a t t h e t o p . I n a d d i t i o n , Brown and s o l v a s o n 7 performed l i m i t e d e x p e r i m e n t s t o examine t h e e f f e c t of f o r c e d a i r f l o w i n g h o r i z o n t a l l y p a r a l l e l t o t h e v e r t i c a l p a r t i t i o n o n t h e n a t u r a l c o n v e c t i o n r a t e s . Such f o r c e d c o n v e c t i o n was found t o h a v e a n e f f e c t ( i n c r e a s e o r d e c r e a s e ) on t h e n e t i n t e r c h a n g e a c r o s s t h e opening depending on t h e f o r c e d a i r v e l o c i t y . No c o r r e l a t i o n was g i v e n f o r t h e s e c a s e s . I n 1971, shawl0 r e p o r t e d on a s t u d y of h e a t t r a n s f e r by n a t u r a l c o n v e c t i o n and combined n a t u r a l and f o r c e d c o n v e c t i o n t h r o u g h l a r g e r e c t a n g u l a r o p e n i n g s i n a v e r t i c a l p a r t i t i o n . S i n c e h i s work a d d r e s s e d t h e problem of c o n t a m i n a n t exchange between h o s p i t a l rooms, t h e e x p e r i m e n t s were a c t u a l l y performed i n a h o s p i t a l and measured a i r exchange between a n i s o l a t i o n room and a v e s t i b u l e . The rooms were v e n t i l a t e d by a c e n t r a l s y s t e m w i t h a i r s u p p l y and e x t r a c t i o n o p e n i n g s i n e a c h room. For n a t u r a l c o n v e c t i o n , e a c h room had b a l a n c e d a i r s u p p l y and e x t r a c t volumes. For combined n a t u r a l and f o r c e d c o n v e c t i o n , t h e c o l d room had a i r s u p p l y o n l y .

The doorway opening between t h e rooms was 2.05 m

h i g h and ranged from 0.1 t o 0.9 m wide. The t e m p e r a t u r e d i f f e r e n c e between t h e rooms was v a r i e d from 0 t o 12 K, and t / D was c o n s t a n t a t 0.05. The measured t e m p e r a t u r e d i f f e r e n c e between t h e t o p and bottom of t h e opening was u s e d t o c a l c u l a t e Nu and G r , and t h e o p e n i n g h e i g h t was u s e d a s t h e c h a r a c t e r i s t i c l e n g t h a l t h o u g h t h e e f f e c t o f t h i s l a t t e r v a r i a b l e was n o t s t u d i e d . F o r t h e n a t u r a l c o n v e c t i o n c a s e and 10'

<

GrD

<

1011, Shaw r e p o r t e d t h a t t h e c o e f f i c i e n t C of E q u a t i o n ( 1 ) i s a f u n c t i o n of t h e magnitude of t h e t e m p e r a t u r e d i f f e r e n c e , AT, and t h e r e f o r e c a l l e d i t t h e c o e f f i c i e n t of t e m p e r a t u r e . Between a t e m p e r a t u r e d i f f e r e n c e AT of

4

and 10 K, C had a v a l u e of 0.22 and i n c r e a s e d f o r AT below 4 K. T h i s i n c r e a s e was

a t t r i b u t e d t o t h e a i r v e l o c i t y o r t u r b u l e n c e w i t h i n t h e v e n t i l a t e d rooms, which was found by measurement t o be of t h e same o r d e r of magnitude a s t h e v e l o c i t y t h r o u g h t h e opening. F o r AT above 10 K, C was o b s e r v e d t o r i s e v e r y s l o w l y . Some of t h e r e s u l t s were a f f e c t e d by p r o x i m i t y of two doorways c a u s i n g a n i n t e r a c t i o n between t h e a i r f l o w t h r o u g h them when f u l l y opened.

F o r t h e c a s e of combined n a t u r a l and f o r c e d c o n v e c t i o n , e x c e s s a i r was s u p p l i e d t o t h e i s o l a t i o n room ( c o l d s i d e ) t o c o u n t e r a c t t h e a i r motion by n a t u r a l c o n v e c t i o n . For t h i s c a s e , Shaw e x p r e s s e d t h e N u e s e l t number a s a f u n c t i o n of a d i m e n s i o n l e s s g r o u p , Sw, t h a t i n c l u d e d b o t h t h e Reynolds and Grashof numbers. Shaw's t h e o r e t i c a l development i s p r e s e n t e d i n R e f e r e n c e (10). The f i n a l e x p r e s s i o n was g i v e n a s ~e~~

D

'

where

Sw = G r ~

~2

2WD and D = h y d r a u l i c d i a m e t e r of t h e opening =

-

h W

+

D I t c a n be noted t h a t t h e t e r m D ~ / would d i s a p p e a r D ~ ~ i f t h e same c h a r a c t e r i s t i c l e n g t h , D, was u s e d i n b o t h Re and G r .

The c o e f f i c i e n t C' i n E q u a t i o n ( 4 ) was found t o be a p r o d u c t of t h e c o e f f i c i e n t C ( o f t h e n a t u r a l

c o n v e c t i o n c a s e ) and a f o r c e d v e l o c i t y c o e f f i c i e n t C V which i s a f u n c t i o n of t h e f o r c e d a i r f l o w .

I n a l a t e r s t u d y , Shaw and whytel l i n d i c a t e d t h a t t h e t e m p e r a t u r e d i f f e r e n c e t h a t l e d t o t h e most a c c u r a t e c o r r e l a t i o n of h e a t f l o w was t h e d i f f e r e n c e between t h e mean t e m p e r a t u r e of t h e a i r f l o w i n g o u t o f t h e warm room and t h a t f l o w i n g i n t o t h e warm room measured on a g r i d a t t h e opening. Next b e s t was t h e t e m p e r a t u r e d i f f e r e n c e between t h e t o p and bottom of t h e opening. S i n c e t h e s e were n o t r e a d i l y a v a i l a b l e i n p r a c t i c e , t h e t h i r d c h o i c e was p i c k e d , which was t h e d i f f e r e n c e between t h e room a i r t e m p e r a t u r e s a t t h e c e n t r e of e a c h room a t a l e v e l h a l f t h e d o o r ' s h e i g h t . The c h o i c e of a d i f f e r e n t t e m p e r a t u r e d i f f e r e n c e from t h a t u s e d i n t h e p r e v i o u s s t u d y l e d t o a change i n t h e c a l c u l a t e d v a l u e of t h e c o e f f i c i e n t C. That i s , a C v a l u e of 0.27 was found ( i n s t e a d of 0.22) f o r AT between 1 and 10 K. To i n d i c a t e t h e s i g n i f i c a n c e of n a t u r a l c o n v e c t i o n , Shaw and Whyte p o i n t e d o u t t h a t a t e m p e r a t u r e d i f f e r e n c e of 4 K r e s u l t s i n a n a i r t r a n s f e r r a t e , e a c h way t h r o u g h a 0.9x2.05 m doorway, of 0.25 m3/s ( i . e . a h e a t t r a n s f e r r a t e o v e r

1200 w a t t s ) .

I n 1979, Wray and weber12 and Weber e t a l l 3 r e p o r t e d t h e r e s u l t s of a n i n t e r - z o n e c o n v e c t i o n s i m i l a r i t y s t u d y . The e x p e r i m e n t s were performed i n a s m a l l two-zone scaled-down e n c l o s u r e (L = 71 cm, H = 30 cm, B = 4 3 cm) w i t h Freon a s t h e working f l u i d . The t e m p e r a t u r e d i f f e r e n c e between zones was m a i n t a i n e d by k e e p i n g t h e o p p o s i t e end w a l l s a t d i f f e r e n t

t e m p e r a t u r e s ( o n e w a l l was h e a t e d and t h e o t h e r c o o l e d ) . They p r e s e n t e d t h e i r r e s u l t s i n t h e form

where NuH and GrH a r e c a l c u l a t e u s i n g t h e e n c l o s u r e h e i g h t , H, a s a c h a r a c t e r i s t i c l e n g t h ( a n d n o t t h e d o o r h e i g h t a s i n p r e v i o u s s t u d i e s ) . As a r e s u l t t h e v a l u e of K was found t o be a f u n c t i o n of t h e r a t i o of t h e d o o r t o c e i l i n g h e i g h t s ( o r a p e r t u r e r a t + o Ap = D/H), w i t h v a l u e s of 0.19 and 0.29 f o r Ap of 0.82 and 1.0 r e s p e c t i v e l y . (These v a l u e s were r e p o r t e d e r r o n e o u s l y i n t h e o r i g i n a l p a p e r a s 1.9 and 2.9; t h e new v a l u e s a r e c a l c u l a t e d from t h e p r e s e n t e d d a t a . ) The t e m p e r a t u r e d i f f e r e n c e used t o d e v e l o p E q u a t i o n ( 5 ) was t a k e n a s t h e d i f f e r e n c e between t h e a v e r a g e h o t and c o l d s i d e t e m p e r a t u r e s measured by a v e r t i c a l g r i d of movable thermocouples i n s i d e t h e s p a c e . I f E q u a t i o n ( 5 ) i s changed t o t h e form of E q u a t i o n ( I ) , t h a t i s t h e n c o e f f i c i e n t C would have t h e v a l u e of 0.29 a n d 0.41 f o r A of 0.82 and 1.0, r e s p e c t i v e l y .

I n a

!allow-up

s t u d y , Weber and b a r n e y 1 4

c o n c l u d e d t h a t t h e o p e n i n g h e i g h t i s more s u i t a b l e a s a c h a r a c t e r i s t i c l e n g t h . When combined w i t h an

a p p r o p r i a t e t e m p e r a t u r e d i f f e r e n c e , a n e x p r e s s i o n of t h e form of E q u a t i o n ( 1 ) . i n d e p e n d e n t of t h e room and doorway g e o m e t r i e s , c a n b e found.

Two t e m p e r a t u r e d i f f e r e n c e s were used. The f i r s t , ATa, was d e f i n e d a s t h e d i f f e r e n c e between t h e a v e r a g e t e m p e r a t u r e of t h e t o p and bottom h a l v e s of t h e doorway. The s e c o n d , ATr, i s t h e d i f f e r e n c e between a volume-weighted a v e r a g e t e m p e r a t u r e c a l c u l a t e d from

(7)

v e r t i c a l l y s p a c e d t h e r m o c o u p l e s l o c a t e d t o t h e s i d e of t h e opening n e a r t h e p a r t i t i o n w a l l .

1 n a d d i t i o n t o t h e model r e s u l t s , Weber and f o r a c o n d u c t i n g p a r t i t i o n , and Kearnev u s e d t h e r e s u l t s o b t a i n e d from two f u l l - s c a l e

t e s t s i o d e t e r m i n e t h e c o e f f i c i e n t and t h e exponent of E q u a t i o n ( 1 ) u n d e r v a r i a t i o n s of h e a t s o u r c e and h e a t s i n k c o n f i g u r a t i o n s .

They c o r r e l a t e d t h e i r r e s u l t s i n t h e form f o r a non-conducting p a r t i t i o n . The a p p e a r a n c e of A, i n t h e e q u a t i o n and a

(7)

d i f f e r e n t v a l u e of t h e ~L exponent ( i . e . G r and P r

NuD/Pr = 0.26 G r D o s 5 AT = ATa e x p o n e n t s ) from t h a t i n E q u a t i o n ( 1 ) r e f l e c t t h e p a r t i c u l a r d e f i n i t i o n of AT and t h e c h a r a c t e r i s t i c and l e n e t h and t h e u s e of l i q u i d s w i t h h i g h P r a n d t l number.

-

-

( P r e f f e c t was n o t c o n s i d e r e d i n p r e v i o u s s t u d i e s u s i n g ( 8 a i r . )

Some d i f f e r e n c e s o b s e r v e d between t h e c o r r e l a t i o n of t h e l a b o r a t o r y r e s u l t s and t h e f u l l - s c a l e r e s u l t s were a t t r i b u t e d t o d i f f e r e n t c o n v e c t i o n p a t t e r n s t h a t might have developed due t o d i f f e r e n c e s i n

c o n f i g u r a t i o n and boundary c o n d i t i o n s .

E q u a t i o n ( 8 ) was s u b s e q u e n t l y u s e d by ~ a l c o m b l ~ and Balcomb and yamaguchi16 t o produce a f o r m u l a t h a t c a n b e u s e d a s a d e s i g n a i d f o r d e t e r m i n i n g t h e n e c e s s a r y d o o r s i z e f o r p a r t i c u l a r i n t e r - z o n e and i n s i d e - o u t s i d e t e m p e r a t u r e d i f f e r e n c e s u n d e r s t e a d y s t a t e c o n d i t i o n s . That i s From d e t a i l e d s i m u l a t i o n s of a d i r e c t - g a i n h o u s e , Balcomb concluded t h a t AT p r e d i c t e d by E q u a t i o n

(9)

i s q u i t e c l o s e t o t h e a v e r a g e room-to-room AT f o r c a s e s of m o d e r a t e t e m p e r a t u r e swings i n t h e s o u t h zone ( a b o u t 4 K). However, t h e e q u a t i o n t e n d s t o o v e r p r e d i c t t h e a v e r a g e AT f o r l a r g e t e m p e r a t u r e swings. R e c e n t l y , e x t e n s i v e work i n t h e g e n e r a l a r e a of c o n v e c t i v e h e a t t r a n s f e r i n b u i l d i n g s was r e p o r t e d by i n v e s t i g a t o r s a t t h e Lawrence B e r k e l e y L a b o r a t o r y . T h e i r work r e l e v a n t t o i n t e r - z o n e c o n v e c t i o n i s summarized below. I n 1979, G a d g i l 1 7 d e v e l o p e d a n u m e r i c a l code f o r modeling n a t u r a l c o n v e c t i o n i n r e c t a n g u l a r e n c l o s u r e s a t R a y l e i g h numbers, RaL, u p t o 1 0 l 0 . He p r e s e n t e d a l i m i t e d comparison between t h e n u m e r i c a l s o l u t i o n and a c t u a l measurements produced by ~ u b e r ~ l ~ f o r t h e c a s e of c o n v e c t i o n from a h e a t e d f l o o r .

Bauman e t a 1 l 9 performed n a t u r a l c o n v e c t i o n e x p e r i m e n t s i n a s m a l l model (L = 31 cm, H = 17 cm, B = 84 cm) s i m i l a r i n c o n f i g u r a t i o n t o t h e one u s e d by Weber. The model was, however, b u i l t t o a p p r o x i m a t e 2-dimensional f l o w and u t i l i z e s w a t e r t o a c h i e v e h i g h Ra. T h e i r l i m i t e d d a t a on t h e two-zone c o n f i g u r a t i o n i n d i c a t e d t h e e x p e c t e d b e h a v i o u r of d e c r e a s i n g

c o n v e c t i v e h e a t t r a n s f e r r a t e s w i t h d e c r e a s i n g opening h e i g h t . I n t h e i r p r e s e n t a t i o n t h e e n c l o s u r e l e n g t h , L, and t h e t e m p e r a t u r e d i f f e r e n c e between t h e h o t and c o l d s u r f a c e s were u s e d i n c a l c u l a t i n g t h e Nu and Ra. The c h o i c e of L a s a c h a r a c t e r i s t i c l e n g t h was n o t d i s c u s s e d . The h e i g h t of t h e v e r t i c a l h o t and c o l d s u r f a c e s would b e e x p e c t e d t o be t h e dimension most r e l e v a n t t o t h e buoyancy-induced f l o w i n t h i s e n c l o s u r e geometry. N a n s t e e l and G r e i f Z O c a r r i e d o u t e x p e r i m e n t s i n a s m a l l 2-D e n c l o s u r e ( s i m i l a r t o t h e one d e s c r i b e d above) w i t h w a t e r ( 3

<

P r

<

4.3) a t R a y l e i g h numbers o v e r t h e range 2.3x101°

<

Ra

<

1 . l x l O l l ( e n c l o s u r e l e n g t h ) and a p e r t u r e r a t i o s A

-

D/H) of 1 , 314, 112, P -

and 114. Two p a r t i t i o n w a l l m a t e r i a l s were u s e d , t h e r m a l l y c o n d u c t i n g and non-conducting. Flow v i s u a l i z a t i o n s were a l s o performed. The r e s u l t s were c o r r e l a t e d u s i n g t h e f o l l o w i n g r e l a t i o n s h i p s : The f l o w v i s u a l i z a t i o n e x p e r i m e n t s r e v e a l e d t h e e x i s t e n c e of t h r e e r e l a t i v e l y d i s t i n c t r e g i o n s a t RaL a p p r o x i m a t i n g 1 0 l l . As shown i n F i g u r e 2 , t h e y a r e : a n i n a c t i v e c o r e r e g i o n ; a r e g i o n of weak c i r c u l a t i o n i n t h e u p p e r c o r n e r on t h e warm s i d e of t h e p a r t i t i o n ; and a p e r i p h e r a l boundary l a y e r flow. The p r e s e n c e of t h e p a r t i t i o n was found t o markedly s u p p r e s s t h e l a m i n a r - t u r b u l e n t t r a n s i t i o n on t h e e n c l o s u r e v e r t i c a l s u r f a c e s t o t h e e x t e n t t h a t t u r b u l e n t f l o w d i d n o t e x i s t anywhere w i t h i n t h e e n c l o s u r e f o r RaL up t o 1011. The a u t h o r s p o i n t e d o u t t h e d i f f e r e n c e between t h e exponent of A i n E q u a t i o n ( 1 0 ) and t h a t f o u n d f o r d a t a produced i n a P s i m i l a r s t u d y by DuxburyZ1 f o r e n c l o s u r e s w i t h c o n d u c t i n g p a r t i t i o n s . F o r t h e l a t t e r , a n e x p o n e n t of 0.41 was o b t a i n e d f o r a i r a t RaL i n t h e r a n g e of l o 6 and A = 518. N a n s t e e l and G r e i f q u e s t i o n e d t h e Duxgury f i n d i n g b e c a u s e of e r r o r s t h a t might h a v e o c c u r r e d i n h i s r e s u l t s due t o t h e l a r g e h e a t l o s s from h i s t e s t c e l l ( 1 5 t o 40%). I n a n e x t e n s i o n t o t h e i r work, N a n s t e e l and

rei if^^

c a r r i e d o u t s i m i l a r e x p e r i m e n t s u s i n g s i l i c o n o i l (620

<

P r

<

920) o v e r t h e range 1 . 5 5 ~ 1 0 ~

<

RaL

<

5 . 8 6 ~ 1 0 ~ and u s i n g a low c o n d u c t i v i t y p a r t i t i o n . The f o l l o w i n g c o r r e l a t i o n was developed:

The d i f f e r e n c e between t h e a p e r t u r e r a t i o dependence i n E q u a t i o n s ( 1 1 ) and ( 1 2 ) was a t t r i b u t e d p a r t i a l l y t o t h e d i f f e r e n c e i n P r a n d t l number b u t m a i n l y t o t h e d i f f e r e n c e s i n t h e c o n d u c t a n c e of t h e p a r t i t i o n . They o b s e r v e d a r e d u c t i o n i n r e c i r c u l a t i o n s t r e n g t h i n t h e upper warm q u a d r a n t of t h e e n c l o s u r e a s t h e p a r t i t i o n c o n d u c t a n c e d e c r e a s e d c a u s i n g reduced c o n v e c t i o n a d j a c e n t t o t h e u p p e r p a r t of t h e h o t w a l l . They c o n c l u d e d t h a t i n s u l a t i n g p a r t i t i o n s r e p r e s e n t a n A K CLOCKWISE C I R C U L A T I O N F i g u r e 2. Flow a t t e r n o b s e r v e d by N a n s t e e l and GreifJlo f o r 1 0 l 0

<

RaL

<

1011

(8)

i n c r e a s e d r e s i s t a n c e t o t h e h e a t t r a n s f e r between t h e h o t and c o l d z o n e s w i t h a g r e a t e r r e s u l t i n g s e n s i t i v i t y t o t h e a p e r t u r e r a t i o .

I n a f u r t h e r development, N a n s t e e l and

c re if^^

examined t h e l o c a t i o n of t h e p a r t i t i o n on t h e

i n t e r - z o n e h e a t t r a n s f e r . They a l s o e x t e n d e d t h e work t o cover 3-dimensional c a s e s by d i v i d i n g t h e e n c l o s u r e i n t o two zones u s i n g a v e r t i c a l p a r t i t i o n w i t h a s i n g l e opening a t t h e c e n t r e . The o p e n i n g w i d t h was

m a i n t a i n e d c o n s t a n t a t 0.093 of t h e e n c l o s u r e wi-Tth, w h i l e t h e h e i g h t was v a r i e d between 114, 112, 314, and 1 of t h e e n c l o s u r e h e i h t . Measurements were c a r r i e d o v e r t h e r a n g e 2 . 4 ~ 1 0 1 1

<

RaL

<

1 . 1 ~ 1 0 ~ ~ u s i n g w a t e r (3.0

<

P r

<

4.3). N a n s t e e l and G r e i f found t h a t t h e b a s i c f l o w p a t t e r n o b s e r v e d i n t h e c e n t r a l l y - d i v i d e d 2-D e n c l o s u r e p e r s i s t s f o r o t h e r p a r t i t i o n l o c a t i o n s i n t h e r a n g e examined ( p a r t i t i o n l o c a t i o n s , x/L, between 0.25 and 0.75). S i m i l a r l y , t h e t e m p e r a t u r e f i e l d remained q u a l i t a t i v e l y t h e same. The i n t e r - z o n e h e a t t r a n s f e r was shown t o depend o n l y s l i g h t l y on t h e p a r t i t i o n l o c a t i o n .

The f l o w p a t t e r n i n t h e 3-D e n c l o s u r e ( w i t h D

<

H), however, was found t o be very d i f f e r e n t from t h a t i n t h e 2-D c a s e . F o r t h e 3-D c o n f i g u r a t i o n , t h e f l o w a t t h e e n c l o s u r e mid p l a n e , W/2, r e s e m b l e d t h e f l o w i n t h e 2-D c a s e o n l y when D/H = 1 ( n o s o f f i t ) . The p r e s e n c e of a s o f f i t had a s u b s t a n t i a l e f f e c t i n t h e 3-D c a s e , c a u s i n g r e g i o n s of l o c a l i z e d t u r b u l e n c e , i n s t a b i l i t y , boundary l a y e r s e p a r a t i o n and r e a t t a c h e m e n t , and a h i g h d e g r e e of R a y l e i g h number dependence. The h e a t t r a n s f e r r a t e was c o r r e l a t e d u s i n g t h e e q u a t i o n L i t t l e d i f f e r e n c e was o b s e r v e d i n t h e h e a t t r a n s f e r between t h e 2-D r e s u l t s from t h e i r e a r l i e r work ( E q u a t i o n ( 1 I ) ) , and t h e 3-D r e s u l t s ( E q u a t i o n ( 1 3 ) ) f o r t h e same opening h e i g h t . T h i s o b s e r v a t i o n i s s u r p r i s i n g b e c a u s e of t h e s u b s t a n t . i a 1 d i f f e r e n c e s between t h e two f l o w a t t e r n s .

I n a r e p o r t by Bauman e t a12' summarizing r e c e n t LBL work, t h e a u t h o r s u s e d a method s i m i l a r t o t h a t d e v e l o p e d by C h u r c h i l l and ~ s at o a d j u s t t h e h e a t ~ i ~ ~ t r a n s f e r e q u a t i o n s t o c o n d i t i o n s i n a i r ( P r = 0 . 7 ) . They a l s o r e f o r m a t t e d t h e r e s u l t s and p r e s e n t e d them i n t e r m s of GrH and NuH. The i n t e r - z o n e h e a t t r a n s f e r c o e f f i c i e n t , h, i n W/m K was g i v e n a s f o r t h e 2-D c a s e , where H i s i n m e t r e s and AT i s i n K e l v i n , and f o r t h e 3-D c a s e . I n b o t h c a s e s AT was b a s e d on t h e s u r f a c e t e m p e r a t u r e s of t h e v e r t i c a l end w a l l s ( h o t and c o l d ) and c a l c u l a t e d a s The a u t h o r s i n d i c a t e d t t , f o r s i m p l i c i t y , a n a d d i t i o n a l f a c t o r of ( ~ / H ) o ' ~ ' , c a l c u l a t e d f o r H = 2.74 m, was a b s o r b e d i n t o t h e c o n s t a n t s of E q u a t i o n s ( 1 4 ) and ( 1 5 ) . T h i s c a u s e s a s m a l l e r r o r ( l e s s t h a n 5 % ) when t h e s e e q u a t i o n s a r e a p p l i e d f o r room h e i g h t s between 2 and 4 m. Taking t h i s f a c t o r i n t o c o n s i d e r a t i o n , t h e c o r r e l a t i o n ( i n d i m e n s i o n l e s s form and f o r a i r ) t a k e s t h e form

where t h e e x p o n e n t ' a ' h a s t h e v a l u e of 0.47 and 0.25 f o r 2-D and 3-D c a s e s , r e s p e c t i v e l y . It s h o u l d b e noted t h a t E q u a t i o n s ( 1 4 ) and ( 1 5 ) e x h i b i t a d i f f e r e n t f u n c t i o n a l dependence of h on t h e t e m p e r a t u r e d i f f e r e n . ? compared t o E q u a t i o n s ( 3 ) . ( 7 ) and ( 8 ) . T h i s i s du- t o t h e u s e of s u r f a c e t e m p e r a t u r e s (and n o t room a i r t e m p e r a t u r e s ) i n d e v e l o p i n g t h e co!.-elation. While t h e s u r f a c e t e m p e r a t u r e s may be e a s i e r t o measure e x p e r i m e n t a l l y , t h e y a r e n o t w e l l d e f i n e d o r a v a i l a b l e i n most r e a l s i t u a t i o n s . Room a i r t e m p e r a t u r e , however, i s more p r a c t i c a l t o u s e f o r d e s i g n a s w e l l a s e n e r g y a n a l y s i s p u r p o s e s . For t h i s r e a s o n , c o r r e l a t i o n s s u c h a s t h o s e of E q u a t i o n s (14) and (15) may n o t be d i r e c t l y u s e f u l .

I n a most r e c e n t development yamaguchiP6

e x p e r i m e n t a l l y examined t h e e f f e c t s of a p e r t u r e h e i g h t , w i d t h and v e r t i c a l p o s i t i o n on t h e i n t e r - z o n e n a t u r a l c o n v e c t i v e h e a t t r a n s f e r . He u s e d a o n e - f i f t h s i m i l i t u d e model of a two-room b u i l d i n g , f i l l e d w i t h F r e o n , s i m i l a r t o t h a t u s e d by weber.14 F o r t h e s e v e n d i f f e r e n t a p e r t u r e c o n f i g u r a t i o n s u s e d , t h e r e s u l t i n g h e a t t r a n s f e r c o r r e l a t i o n was found t o be g e n e r a l l y c o n s i s t a n t w i t h p r e v i o u s work by Brown and ~ o l v a s o n ' and by Weber and ~ e a r n e ~ . l 4 The c o e f f i c i e n t of E q u a t i o n ( 1 ) was r e p o r t e d t o r a n g e between 0.l.9 and 0.21 depending on t h e a p e r t u r e c o n f i g u r a t i o n . The a v e r a g e t e m p e r a t u r e s 15 cm away from t h e v e r t i c a l h o t and c o l d s u r f a c e s were used t o produce t h e c o r r e l a t i o n . Yarnaguchi r e p o r t e d , however, t h a t t h e r e s u l t s were much a f f e c t e d by t h e d e f i n i t i o n of t h e t e m p e r a t u r e

d i f f e r e n c e .

Summary of P r e v i o u s R e s u l t s

The work d e s c r i b e d above on i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r i s summarized i n T a b l e 1. The main c o n c l u s i o n s a r e :

1. It i s a p p a r e n t , b o t h from t h e o r y and e x p e r i m e n t s , t h a t t h e h e a t t r a n s f e r a c r o s s o p e n i n g s i n p a r t i t i o n s between two zones a t d i f f e r e n t

t e m p e r a t u r e s c a n be e x p r e s s e d by a c o r r e l a t i o n of t h e g e n e r a l form

Nu = c o n s t .

~r~

p r C ( 1 7 ) 2. The e x p e r i m e n t a l r e s u l t s i n d i c a t e t h a t , f o r

i n t e r - z o n e c o n v e c t i o n i n b u i l d i n g s (where a i r i s t h e t r a n s f e r medium) and when t h e o p e n i n g h e i g h t , D , i s used a s t h e c h a r a c t e r i s t i c l e n g t h i n b o t h Nu and G r , t h e dependence of t h e h e a t t r a n s f e r c o e f f i c i e n t on A d i s a p p e a r s and E q u a t i o n ( 1 7 ) r e d u c e s t o P

3. The v a l u e of t h e c o e f f i c i e n t C and t h e exponent b depend on t h e c h o i c e of t h e t e m p e r a t u r e d i f f e r e n c e . When AT i s t a k e n a s t h e d i f f e r e n c e between t h e a v e r a g e room a i r t e m p e r a t u r e s , C i s i n t h e range 0.22 t o 0.33 and t h e exponent b i s a b o u t 0.5. There was a l s o some i n d i c a t i o n t h a t t h e v a l u e of C may b e a f u n c t i o n of t h e magnitude of AT.

4. A l l p r e v i o u s r e s u l t s i n d i c a t e l i t t l e e f f e c t of opening w i d t h on t h e h e a t t r a n s f e r c o e f f i c i e n t . Even w i t h t h e l a r g e d i f f e r e n c e s o b s e r v e d i n f l o w p a t t e r n s between t h e 2-D and 3-D c a s e s ( a f u l l w i d t h o p e n i n g and a s t a n d a r d doorway, r e s p e c t i v e l y ) t h e r e were s u r p r i s i n g l y small o b s e r v e d d i f f e r e n c e s i n h e a t t r a n s f e r c o e f f i c i e n t s .

(9)

TABLE 1 Summary of I n t e r - Z o n e N a t u r a l C o n v e c t i v e Heat T r a n s f e r i n B u i l d i n g s 5. T h e r e i s an i n d i c a t i o n t h a t p a r t i t i o n t h i c k n e s s h a s some e f f e c t on t h e h e a t t r a n s f e r c o e f f i c i e n t f o r s m a l l opening s i z e s a s g i v e n by E q u a t i o n s ( 2 ) and ( 3 ) . No e x p e r i m e n t a l e v i d e n c e e x i s t s t o c o n f i r m s u c h c o r r e l a t i o n s f o r l a r g e r ( d o o r s i z e ) openings. 6. There i s some i n d i c a t i o n t h a t t h e n a t u r a l c o n v e c t i v e h e a t t r a n s f e r c o e f f i c i e n t i s a f f e c t e d by t h e p a r t i t i o n conductance. T h i s e f f e c t , however, was o b s e r v e d f o r 2-D c a s e s w i t h h i g h P r a n d t l number f l u i d s and was n o t t e s t e d f o r o t h e r c a s e s w i t h p a r a m e t e r r a n g e s s i m i l a r t o t h o s e i n r e a l b u i l d i n g s . 7. P r e s e n t i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r c o r r e l a t i o n s a r e l i m i t e d t o t h e boundary c o n d i t i o n u s e d i n t h e e x p e r i m e n t s and a r e n o t t e s t e d f o r o t h e r boundary c o n d i t i o n s . There is a l a r g e number of boundary c o n d i t i o n s and b u i l d i n g c o n f i g u r a t i o n s p o t e n t i a l l y of i n t e r e s t ; f o r example, a two-zone c o n f i g u r a t i o n w i t h a warm f l o o r i n one of t h e zones, a c o n d i t i o n t h a t o c c u r s i n d i r e c t g a i n b u i l d i n g s . I n g e n e r a l , t h e e x t e n t t o which e x i s t i n g c o r r e l a t i o n s c a n be a p p l i e d t o o t h e r c o n f i g u r a t i o n s i s unknown.

8. Most of t h e r e c e n t e x p e r i m e n t s were performed i n s m a l l - s c a l e t e s t e n c l o s u r e s u t i l i z i n g f l u i d s o t h e r t h a n a i r a n d , i n some c a s e s , w i t h o u t f u l l hydrodynamic s i m i l a r i t y . F u r t h e r , l i t t l e c o n f i r m a t i o n of t h e h e a t t r a n s f e r c o r r e l a t i o n s was produced u s i n g d a t a from f u l l - s c a l e b u i l d i n g s u n d e r v a r i o u s boundary c o n d i t i o n s .

9. Very few s t u d i e s examined i n t e r - z o n e h e a t t r a n s f e r u n d e r combined n a t u r a l and f o r c e d c o n v e c t i o n s i t u a t i o n s . Forced c o n v e c t i o n i n a b u i l d i n g c o u l d be g e n e r a t e d by f o r c e d v e n t i l a t i o n o r u n b a l a n c e s i n t h e f o r c e d a i r h e a t i n g and v e n t i l a t i o n s y s t e m s . L i m i t e d Comparison Between N a t u r a l C o n v e c t i o n C o r r e l a t i o n s The i n t e r - z o n e h e a t f l o w c a l c u l a t e d u s i n g p r e v i o u s - - - - ~- - -c o r r e l a t i o n s i n t h e form of E q u a t i o n ( 1 8 ) a r e -compared t o e a c h o t h e r a s w e l l a s t o t h e r e s u l t s of a t e s t o b t a i n e d i n a f u l l - s i z e b u i l d i n g . The c o r r e l a t i o n d e v e l o p e d by N a n s t e e l ( E q u a t i o n ( 1 5 ) ) i s e x c l u d e d s i n c e i t i s b a s e d on s u r f a c e t e m p e r a t u r e d i f f e r e n c e s and d o e s n o t r e l a t e t o t h e c o n f i g u r a t i o n examined. E x p e r i m e n t a l r e s u l t s were o b t a i n e d i n a two-zone t e s t u n i t of t h e p a s s i v e s o l a r t e s t f a c i l i t y a t t h e D i v i s i o n o f . B u i l d i n R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of C a n a d a . ~ ~ The u n i t c o n s i s t s of two rooms 3 . 0 5 ~ 4 . 5 8 ~ 2 . 4 4 m e a c h , c o n n e c t e d by a 0 . 8 ~ 2 . 0 3 m doorway i n t h e i n s u l a t e d p a r t i t i o n s e p a r a t i n g t h e rooms. S i n c e t h e h e a t l o s s c h a r a c t e r i s t i c s of t h e s e rooms were d e t e r m i n e d p r e v i o u s l y , 2 8 i t i s p o s s i b l e , by p e r f o r m i n g a s t e a d y - s t a t e h e a t b a l a n c e f o r e a c h room, t o c a l c u l a t e t h e amount of h e a t t r a n s f e r r e d t h r o u g h t h e doorway by c o n v e c t i o n and r a d i a t i o n a s

(10)

where q h and q c a r e t h e h e a t i n g power consumption i n t h e warm and c o l d rooms, r e s p e c t i v e l y , and To i s t h e o u t d o o r t e m p e r a t u r e .

The c o n v e c t i v e h e a t f l o w r a t e c a n t h e n be

c a l c u l a t e d by s u b t r a c t i n g t h e r a d i a t i v e component, qr. Assuming t h a t b o t h room c a v i t i e s behave l i k e b l a c k b o d i e s , t h e r a d i a t i o n h e a t t r a n s f e r t h r o u g h t h e doorway i s c a l c u l a t e d a s

To a p p r o x i m a t e a s t e a d y - s t a t e c o n d i t i o n , a p e r i o d of 6 h o u r s was chosen d u r i n g a n i g h t when t h e o u t d o o r t e m p e r a t u r e remained f a i r l y c o n s t a n t a t a b o u t O . S 0 C . A l l windows were s h a d e d b e f o r e and d u r i n g t h e t e s t p e r i o d t o e l i m i n a t e t h e dynamic e f f e c t a s s o c i a t e d w i t h t h e s t o r a g e of eolar e n e r g y i n t h e room. Rooms were k e p t a t 21.6-C and 20.1'6 (50.1

K).

M u l t i - p o i n t a v e r a g i n g t h e r m o p i l e s , w i t h s e n s o r s p l a c e d a t room mid-height, were u s e d f o r t e m p e r a t u r e c o n t r o l a n d measurement. Under t h e c o n d i t i o n s d e s c r i b e d above, t h e t o t a l h e a t f l o w r a t e t h r o u g h t h e doorway ( c a l c u l a t e d f r o m E q u a t i o n ( 1 9 ) ) was 322 w a t t s ('10 W), of which 14 w a t t s was e s t i m a t e d t o b e due t o r a d i a t i o n . The c o n v e c t i v e h e a t t r a n s f e r r a t e o b t a i n e d from measurements i s compared w i t h t h a t p r e d i c t e d by c o r r e l a t i o n s i n T a b l e 2. Values i n t h e t a b l e c o r r e s p o n d t o G r D = 1 . 9 ~ 1 0 ~ and P r = 0.7. Although v e r y l i m i t e d , t h e comparison i n d i c a t e s t h a t c o r r e l a t i o n s i n t h e form of E q u a t i o n ( 1 ) would p r e d i c t t h e i n t e r - z o n e n a t u r a l c o n v e c t i v e h e a t t r a n s f e r r a t e p r o v i d e d t h a t t h e t e m p e r a t u r e d i f f e r e n c e i s p r o p e r l y d e f i n e d and t h e c o r r e s p o n d i n g c o e f f i c i e n t C i s d e t e r m i n e d . I t s h o u l d be n o t e d t h a t the t e m p e r a t u r e d i f f e r e n c e used t o a r r i v e a t t h e e x p e r i m e n t a l v a l u e was t h e d i f f e r e n c e between t h e a v e r a g e r i d - h e i g h t room a i r t e m p e r a t u r e s . T h i s does not c o r r e s p o n d t o a n y of t h e t e m p e r a t u r e d i f f e r e n c e s used i n t h e c o r r e l a t i o n s . FUTURE RESEARCH REQUIREMENTS

A d d i t i o n a l r e s e a r c h

is

needed b e f o r e r e l i a b l e c o n v e c t i o n c o r r e l a t i o n s and d e s i g n g u i d e l i n e s c a n b e made a v a i l a b l e t o t h e b u i l d i n g d e s i g n e r o r energy a n a l y s t . T h i s work s h o u l d c o v e r : 1. Examination o f t h e a p p l i c a b i l i t y o f r e c e n t l y developed c o r r e l a t i o n s t o f u l l - s c a l e c o n d i t i o n s

i n

a c t u a l buildings. A l s o m o d i f y i n g t h e c o r r s l a t i o n e , i f needed, t o accommodate t e m p e r a t u r e d i f f e r e n c e s t h e t can be r e a d i l y measured o r c a l c u l a t e d and a r e t h e r e f o r e of p r a c t i c a l s i g n i f f c a n c e t o d e s i g n e r s .

C o r r e l a t i o n

N a t u r a l c o n v e c t i v e r a t e , w a t t s Brown e t a l , E q u a t i o n ( 3 ) 318

Shaw and Whyte, E q u a t i o n ( 1 8 ) (C = 0.27, b = 0.5) J e b e r and Kearney, E q u a t i o n ( 8 ) (C = 0.3, b = 0.5) Sxperimental v a l u e 308 TABLE 2 Comparison of N a t u r a l C o n v e c t i v e Heat T r a n s f e r R a t e s

2 . Examination of a wide v a r i e t y of two-zone

c o n f i g u r a t i o n s and boundary c o n d i t i o n s t o t e s t t h e g e n e r a l i t y of t h e c o r r e l a t i o n s o r d e v e l o p more g e n e r a l c o r r e l a t i o n s f o r zone c o u p l i n g . 3. S t u d y of i n t e r - z o n e c o n v e c t i o n u n d e r combined n a t u r a l and f o r c e d c o n v e c t i o n s i t u a t i o n s . F o r example, t h e i n t e r a c t i o n between n a t u r a l c o n v e c t i o n , due t o t e m p e r a t u r e d i f f e r e n c e s between s p a c e s , and f o r c e d v e n t i l a t i o n o r a i r d i s t r i b u t i o n i n t h e b u i l d i n g . 4. Examination of t h e e f f e c t of p a r t i t i o n t h i c k n e s s and conductance on i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r w i t h l a r g e o p e n i n g s i z e s f o r c a s e s w h e r e t h e y may have s i g n i f i c a n t impact; f o r example, n a t u r a l c o n v e c t i o n between a s u n s p a c e and t h e p a r e n t b u i l d i n g t h r o u g h m u l t i p l e openings. 5. Study of t h e e f f e c t of t h e P r a n d t l number on t h e h e a t t r a n s f e r c o e f f i c i e n t t o e n a b l e f u t u r e u s e of s m a l l e x p e r i m e n t a l models u n d e r s i m i l a r c o n d i t i o n s . 6. I m p l e m e n t a t i o n of d e v e l o p e d c o r r e l a t i o n s i n e n e r g y a n a l y s i s programs and a s s e s s i n g t h e a b i l i t y of t h e improved models t o p r e d i c t e n e r g y consumption and i n d o o r t e m p e r a t u r e s i n multi-zone b u i l d i n g s . SUMMARY A review of p r e v i o u s r e s e a r c h work on i n t e r - z o n e c o n v e c t i v e h e a t t r a n s f e r i s p r e s e n t e d . The p u r e n a t u r a l c o n v e c t i o n c a s e h a s r e c e i v e d t h e most a t t e n t i o n compared t o o t h e r c a s e s of n a t u r a l c o n v e c t i o n combined w i t h f o r c e d a i r movement between t h e s p a c e s . P r e v i o u s work h a s p o i n t e d o u t t h e s i g n i f i c a n t magnitude of t h e n a t u r a l c o n v e c t i v e h e a t f l o w t h r o u g h i n t e r - z o n e o p e n i n g s . I t i n d i c a t e d t h a t f o r t h i s c a s e , t h e h e a t t r a n s f e r c a n be c o r r e l a t e d by a n e q u a t i o n of t h e f o r m

where b i s a p p r o x i m a t e l y 0.5 and C l i e s between 0.22 and 0.33 depending on t h e t e m p e r a t u r e d i f f e r e n c e u s e d f o r t h e c o r r e l a t i o n . Work i s s t i l l needed t o d e f i n e t h e most a p p r o p r i a t e t e m p e r a t u r e d i f f e r e n c e and t o d e t e r m i n e t h e a s s o c i a t e d v a l u e o f t h e c o e f f i c i e n t C. A need f o r a d d i t i o n a l work i s i d e n t i f i e d t o d e v e l o p h e a t t r a n s f e r c o r r e l a t i o n s f o r o t h e r multi-zone c o n f i g u r a t i o n s and boundary c o n d i t i o n s , a s w e l l a s f o r c o n d i t i o n s of mixed n a t u r a l and f o r c e d c o n v e c t i o n . The r e s e a r c h s h o u l d l e a d t o methods and c o r r e l a t i o n s t h a t c a n b e u s e d by t h e b u i l d i n g d e s i g n e r and e n e r g y a n a l y s t t o e n a b l e them t o t a k e t h i s s i g n i f i c a n t h e a t t r a n s f e r component i n t o a c c o u n t . ACKNOWLEDGEMENTS T h i s p a p e r i s a c o n t r i b u t i o n from t h e D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l Canada. REFERENCES 1. O s t r a c h , S., " N a t u r a l Convection i n E n c l o s u r e s " , Advances i n Heat T r a n s f e r , Vol. 8 , pp. 161-227, Academic P r e s s , New York, 1972.

2. C a t t o n , I., " N a t u r a l C o n v e c t i o n i n E n c l o s u r e s " , Proc. 6 t h I n t . Heat T r a n s f e r Conf., T o r o n t o , Vol. 6, pp. 13-31, 1978.

3. P r o b e r t , S.D. and 3 . Ward, "Improvements i n t h e Thermal R e s i s t a n c e of V e r t i c a l A i r - F i l l e d E n c l o s e d

(11)

C a v i t i e s " , Proc. 5 t h I n t . Heat T r a n s f e r Conf., Tokyo, Vol. 3 , pp. 124-128, 1974.

4. J a n i k o w i s k i , H.E., J. Ward and S.D. R o b e r t , " F r e e Convection i n V e r t i c a l A i r - F i l l e d R e c t a n g u l a r E n c l o s u r e s w i t h B a f f l e s " , Proc. 6 t h I n t . Heat T r a n s f e r Conf., T o r o n t o , Vol. 2, pp. 257-263, 1978.

5. Emery, A.F., " E x p l o r a t o r y S t u d i e s of F r e e Convection Heat T r a n s f e r Through a n Enclosed V e r t i c a l L i q u i d L a y e r w i t h a V e r t i c a l B a f f l e " , J. Heat T r a n s f e r , Vol. 91, pp. 163-164, 1969.

6. Chang, L.C., J.R. Lloyd, and K.T. Yang, "A F i n i t e D i f f e r e n c e Study of N a t u r a l C o n v e c t i o n i n Complex E n c l o s u r e s " , Proc. 7 t h I n t . Heat T r a n s f e r Conf., Munich, Vol. 2, pp. 183-188, 1982.

7. Brown, W.G and K.R. S o l v a s o n , " N a t u r a l C o n v e c t i o n Through R e c t a n g u l a r Openings i n P a r t i t i o n s , P a r t I: V e r t i c a l P a r t i t i o n s " , I n t . J. Heat Mass T r a n s f e r , Vol. 5 , pp. 859-868, 1962.

8. Brown, W.G., A.G. Wilson and K.R. S o l v a s o n , "Heat and M o i s t u r e Flow t h r o u g h Openings by

C o n v e c t i o n " , ASHRAE J o u r n a l , Vol. 5, No. 9 , pp. 49-54, 1963.

9. Brown, W.G, " N a t u r a l C o n v e c t i o n Through R e c t a n g u l a r Openings i n P a r t i t i o n s , P a r t 11:

H o r i z o n t a l P a r t i t i o n s " , I n t . J. Heat Mass T r a n s f e r , Vol. 5 , pp. 869-881, 1962.

10. Shaw. B.H., "Heat and Mass T r a n s f e r by N a t u r a l Convection and Combined N a t u r a l and Forced A i r Flow t h r o u g h L a r g e R e c t a n g u l a r Openings i n a V e r t i c a l P a r t i t i o n " , Proc. I n t . Mech. Eng. Conf. on Heat and Mass T r a n s f e r by Combined Forced and N a t u r a l C o n v e c t i o n , M a n c h e s t e r , Vol. 8 1 9 , pp. 31-39, 1972.

11. Shaw, B.H. and W. Whyte, "Air Movement

t h r o u g h Doorways: The I n f l u e n c e of Temperature and i t s C o n t r o l by Forced A i r Flow", Bldg. Serv. Engrg.,

Vol. 42, pp. 210-218, 1974.

12. Wray, W.O. and D.D. Weber, "LASL S i m i l a r i t y S t u d i e s : P a r t I Hot ZoneICold Zone: A Q u a n t i t a t i v e S t u d y of N a t u r a l Heat D i s t r i b u t i o n Mechanisms i n P a s s i v e S o l a r B u i l d i n g s " , Proc. 4 t h Nat. P a s s i v e S o l a r Conf., Kansas C i t y , Vol. 4 , pp. 226-230, 1979.

13. Weber, D.D., W.O. Wray and R. Kearney, "LASL S i m i l a r i t y S t u d i e s : P a r t I1 S i m i l i t u d e Modeling of I n t e r - Z o n e Heat T r a n s f e r by N a t u r a l Convection", P r o c . 4 t h Nat. P a s s i v e S o l a r Conf.. Kansas C i t y , Vol. 4 , pp. 231-234, 1979.

14. Weber, D.D. and R. Kearney, " N a t u r a l

C o n v e c t i o n Heat T r a n s f e r t h r o u g h a n A p e r t u r e i n P a s s i v e S o l a r Heated B u i l d i n g s " , Proc. 5 t h Nat. P a s s i v e S o l a r Conf., Amherst, MA, pp. 1037-1041, 1980.

15. Balcomb, J.D., "Heat S t o r a g e and D i s t r i b u t i o n i n P a s s i v e S o l a r B u i l d i n g s " , Los Alamos N a t i o n a l L a b o r a t o r y Report LA-9694-MS, 1983.

16. Balcomb, J.D. and K. Yamaguchi, "Heat D i s t r i b u t i o n by N a t u r a l Convection", Proc. 8 t h Nat. P a s s i v e S o l a r Conf., S a n t a Fe, New Mexico, 1983.

17. G a d g i l , A., "On C o n v e c t i v e Heat T r a n s f e r i n B u i l d i n g Energy A n a l y s i s " , Ph.D T h e s i s , Dept. of P h y s i c s , U n i v e r s i t y of C a l i f o r n i a B e r k e l e y , ( a l s o i s s u e d a s Lawrence B e r k e l e y L a b o r a t o r y Report LBL-10900), 1979. 18. Ruberg, K., "Heat D i s t r i b u t i o n by N a t u r a l Convection: A Modeling P r o c e d u r e f o r E n c l o s e d S p a c e s " , M.Sc. T h e s i s , Dept. of A r c h i t e c t u r e , M a s s a c h u s e t t s I n s t i t u t e of Technology, Cambridge, MA, 1978.

19. Bauman, F., A. G a d g i l , R. Kammerud and R. G r e i f . "Buoyancy Driven C o n v e c t i o n i n a R e c t a n g u l a r E n c l o s u r e : E x p e r i m e n t a l R e s u l t s and Numerical

C a l c u l a t i o n s " , ASME P a p e r No. 80-HT-66, T r a n s f e r Conf., O r l a n d o ,

FL,

1980. ( A l s o i s s u e d a s LBL Report

LBL-10257 ).

20. N a n s t e e l , M.W. and R. G r e i f , " N a t u r a l Convection i n Undivided and P a r t i a l l y Divided

R e c t a n g u l a r E n c l o s u r e s " , T r a n s . ASME J. Heat T r a n s f e r , Vol. 103, pp. 623-629, 1981. 21. Duxbury, D., "An I n t e r f e r o m e t r i c S t u d y of N a t u r a l C o n v e c t i o n i n E n c l o s e d P l a n e A i r L a y e r w i t h Complete and P a r t i a l C e n t r a l V e r t i c a l D i v i s i o n s " , Ph.D. T h e s i s , U n i v e r s i t y of S u l f o r d , UK, 1979. 22. N a n s t e e l , M.W. and R. G r e i f , " N a t u r a l

C o n v e c t i o n Heat T r a n s f e r i n Complex E n c l o s u r e s a t Large P r a n d t l Numbers", T r a n s . ASME J. Heat T r a n s f e r ,

Vol. 105, pp. 912-915, 1983.

23. N a n s t e e l , M.W. and.R. G r e i f , "An

I n v e s t i g a t i o n of N a t u r a l C o n v e c t i o n i n E n c l o s u r e s w i t h Two- and Three-Dimensional P a r t i t i o n s " , I n t . J. H e a t Mass T r a n s f e r , Vol. 27, No. 4, pp. 561-571, 1984.

24. Bauman, F., A. G a d g i l , R. Kammerud, E. Altmayer and M.W. N a n s t e e l , "Convection Heat T r a n s f e r i n B u i l d i n g s : Recent R e s e a r c h R e s u l t s " , ASHRAE T r a n s . , Vol. 8 9 , 1983.

25. C h u r c h i l l , S.W. and R. U s a g i , "A G e n e r a l E x p r e s s i o n f o r t h e C o r r e l a t i o n o f R a t e s o f T r a n s f e r and O t h e r Phenomena", AICHE'Journal, Vol. 1 8 ,

pp. 1211-1128, 1972.

26. Yamaguchi, Y., " E x p e r i m e n t a l S t u d y of N a t u r a l Convection Heat T r a n s f e r Through a n A p e r t u r e i n P a s s i v e S o l a r Heated B u i l d i n g s " , Proc. 9 t h Nat. P a s s i v e S o l a r Conf., Columbus, Ohio, 1984.

27. B a r a k a t , S.A., "NRCC P a s s i v e S o l a r T e s t F a c i l i t y : D e s c r i p t i o n and Data R e d u c t i o n " , B u i l d i n g R e s e a r c h Note No. 214, D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l o f Canada, Ottawa, 1984. 28. B a r a k a t , S.A., "NRCC P a s s i v e S o l a r T e s t F a c i l i t y : Performance of D i r e c t Gain U n i t s " , B u i l d i n g R e s e a r c h Note No. 215, D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of Canada, Ottawa, 1984. reprinted from

Heat Transfer in Buildings and Structures

-

HTD-Vol. 41 Editor: P. J. Bishop

(Book No. G00298) published by

THE AMERICAN SOCIETY O F MECHANICAL ENGINEERS 345 East 47th Street, New York, NY 10017

(12)

T h i s p a p e r ,

w h i l e b e i n g d i s t r i b u t e d i n

r e p r i n t form by t h e D i v i s i o n of B u i l d i n g

R e s e a r c h ,

remains t h e c o p y r i g h t

of

t h e

o r i g i n a l p u b l i s h e r .

It

s h o u l d n o t be

r e p r o d u c e d i n whole o r i n p a r t w i t h o u t t h e

p e r m i s s i o n of t h e p u b l i s h e r .

A

l i s t

of a l l p u b l i c a t i o n s a v a i l a b l e from

t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o

t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of

B u i l d i n g

R e s e a r c h ,

N a t i o n a l

R e s e a r c h

C o u n c i l

of

C a n a d a ,

O t t a w a ,

O n t a r i o ,

KIA

0R6.

C e

document

est d i s t r i b u e s o u s forme de

t i r e - 3 - p a r t

par l a D i v i s i o n d e s r e c h e r c h e s

e n b a t i m e n t .

Les d r o i t s d e r e p r o d u c t i o n

s o n t t o u t e f o i s l a propriCtC de l ' b d i t e u r

o r i g i n a l .

Ce

d o c u m e n t n e p e u t

? t r e

r e p r o d u i t en t o t a l i t 6 ou en p a r t i e s a n s

l e

consentement de l ' e d i t e u r .

Une l i s t e d e s p u b l i c a t i o n s de l a D i v i s i o n

p e u t G t r e o b t e n u e en 6 c r i v a n t

3

l a S e c t i o n

d e s p u b l i c a t i o n s , D i v i s i o n d e s r e c h e r c h e s

e n b a t i m e n t , C o n s e i l n a t i o n a l d e r e c h e r c h e s

Canada, Ottawa, O n t a r i o , KIA

OR6.

Figure

TABLE  1   Summary  of  I n t e r - Z o n e   N a t u r a l   C o n v e c t i v e   Heat  T r a n s f e r   i n  B u i l d i n g s   5

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers