• Aucun résultat trouvé

Applied thermodynamics in nuclear industry modelling of precipitation processes

N/A
N/A
Protected

Academic year: 2021

Partager "Applied thermodynamics in nuclear industry modelling of precipitation processes"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: cea-02338737

https://hal-cea.archives-ouvertes.fr/cea-02338737

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Applied thermodynamics in nuclear industry modelling

of precipitation processes

M. Bertrand, S. Lalleman, L.-Z. Mojica-Rodriguez, C. Sorel, P. Moisy, F.

Auger, E. Plasari, H. Muhr

To cite this version:

M. Bertrand, S. Lalleman, L.-Z. Mojica-Rodriguez, C. Sorel, P. Moisy, et al.. Applied thermody-namics in nuclear industry modelling of precipitation processes: Taking account for ideality deviation in neodymium oxalate and uranium peroxide precipitation. ESAT 2018, Jun 2018, Prague, Czech Republic. �cea-02338737�

(2)

Applied thermodynamics in nuclear

industry: modelling of precipitation

processes

Taking account for ideality deviation in

neodymium oxalate and uranium peroxide

precipitation

| PAGE 1

ESAT 2018, June 2018, Prague

Murielle Bertrand (CEA Marcoule)

Sophie Lalleman, Luz-Adriana Mojica-Rodriguez,

Christian Sorel, Philippe Moisy (CEA Marcoule)

Frédéric Auger (Areva Mines)

(3)

PRECIPITATION PROCESS MODELLING

Precipitation Modelling :

Coupling Chemistry/Turbulence

 

) ( , ) , ( ) , ( ) , ( 1 L N R V t L Q t L Q L t L G t t L V V i i o           

Population balance

CFD simulation

Kinetics

Thermodynamics

10µm

1µm

(4)

Calculation of Supersaturation

3

 Objective:

Calculation of the driving force = supersaturation S during the precipitation process

In concentrated solutions involving salts and ions of high valence

 Coefficient activity models:

Physico-chemical approaches

Pitzer equations

Empirical approaches

Bromley method or

SIT specific interaction theory

          

ν ν 1 ν eq , X ν eq , M ν X ν M z z z z

a

a

a

a

S

O

.xH

X

M

X

ν

M

ν

ν ν 2 O H -z z 2     



Good compromise

J

:

Easy-to-use / accuracy for process modelling

and CFD simulations

Inconvenient

L

Heavy implementation + many parameters to

be adjusted

(5)

 2 examples of applications in nuclear industry:

Actinide / lanthanide oxalate precipitation

very low solubility

 widely used in the Ln and An separation, analytical chemistry and

treatment of high-level liquid wastes - in nitric acid medium

Uranium peroxide precipitation

Applications

From uranium ore U < 1%

to yellow cake U ~ 75 % Uranium ore processing

Crushing grinding

Leaching U extraction Precipitation

(6)

2

-Neodymium oxalate

precipitation

The Bromley method

1. Context of the study

2. Neodymium oxalate

Bromley method

Determination of the individual

contributions

3. Uranium peroxide

Specific interaction theory

Determination of the specific

interaction coefficients

4. Conclusions

10µm

(7)

 Bromley method for multicomponent systems

Based on the contributions B

M1X1

of every electrolytes present in solution

 Neodymium individual contributions

Tabulated by Bromley in 1973

After  New experimental binary data published

later for neodymium nitrate and chloride

 The Bromley model not in good agreement

 Determination of new values for neodymium

contributions (B

+

+

) using tow salts:

Neodymium nitrate + Neodymium chloride

Bromley model

   

B

B

B

1 1X M 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 1 2 3 4 5 6

Ionic strength [mol kg-1]

A c ti v it y c o e ff ic ie n t [-]

Exp. data (Rard and Miller, 1979)

Davies and Jones' model (Söhnel and Garside, 1992) Bromley's model (Bromley, 1973)

   

3 3 3 3 3 3) Nd NO Nd NO Nd(NO

B

B

δ

δ

B

   

Cl Nd Cl Nd NdCl

B

B

δ

δ

B

3 3 3

(8)

Very good agreement between exp. data and the Bromley model combined with

the contributions of HNO

3

and HCl

New contributions of Nd

3+

in the Bromley model

7

[1] Rard J.A. and Miller D.G, 1979. J. Chem. Eng. Data 24, 348-353 [2] Spedding et al., 1976. J. chem. Eng. Data 21, 341-360.

1

st

STEP: Validation of the Bromley individual contributions for NO

3-

and Cl

-from experimental data of HNO

3

and HCl

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 1 2 3 4 5 6

Ionic strength [mol kg-1]

A c ti v it y c o e ff ic ie n t [-]

Experimental data (Charrin, 1999)

Bromley model with B = 0.0776 (Bromley, 1973)

HNO

3

0 0.5 1 1.5 2 2.5 3 3.5 4 0 1 2 3 4 5 6

Ionic strength [mol kg-1]

A c ti v it y c o e ff ic ie n t [-]

Experimental data (Hamer and Wu, 1972) Bromley model with B = 0.1433 (Bromley, 1973)

(9)

New contributions of Nd

3+

in the Bromley model

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 1 2 3 4 5 6

Ionic strength [mol kg-1]

A c ti v it y c o e ff ic ie n t [-]

Exp. data (Rard and Miller, 1979)

Bromley's model with the new B value (Bromley, 1973)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 1 2 3 4 5 6

Ionic strength [mol kg-1]

A c ti v it y c o e ff ic ie n t [-]

Exp. data (Spedding et al., 1976)

Bromley's model with the new B value (Bromley, 1973)

Very good agreement between exp. data and the Bromley model with the new

contributions of Nd(NO

3

)

3

et NdCl

3

Nd(NO

3

)

3

=>

NdCl

3

=>

2

nd

STEP: Determination of the salt contributions and adjustment of the

Bromley contributions for Nd

3+

0511

.

0

B

3 3) Nd(NO

B

NdCl3

0

.

0855

163

.

0

and

0.0321

B

B

0.0321

0.035

and

0

.

0.27

163

(10)

Application of the Bromley model to ternary

mixtures

9

 These new contributions  application to ternary solutions

Nd(NO

3

)

3

/HNO

3

/H

2

O

 Measurements of water activity a

W

in ternary mixtures

Using the concept of simple solutions and Mikulin equation*:

a

W

 activity coefficients 𝛾

𝑁𝑑(𝑁𝑂3)𝑚𝑖𝑥𝑡𝑢𝑟𝑒

 Comparison with the values given by the Bromley method

Variable-impedance hygrometer

AW Center

TM

(Novasina)

0 0,05 0,1 0,15 0,2 0,25 0,3 2 3 4 5 6 7 8 9 n eo d ym iu m act iv ity co ef fici en t [-]

Ionic strength [mol.kg-1)

Comparison experiments / Bromley model

Bromley model Experimental

J

I < 6 mol.kg

-1

Deviation within 9%

L

I > 6 mol.kg

-1

 Deviation 

* Charrin et al., 1999. Radiochim. Acta 86, 143-149.

(11)

3

-Uranium Peroxide

precipitation

SIT

1. Context of the study

2. Neodymium oxalate

Bromley method

Determination of the individual

contributions

3. Uranium peroxide

Specific interaction theory

Determination of the specific

interaction coefficients

4. Conclusions

1µm

(12)

 Precipitation in sulphuric media

UO

2

SO

4

/ H

2

SO

4

/ Na

2

SO

4

/ H

2

O

2

/ H

2

O

Bromley method not adapted: sulphuric acid partially dissociated

+ no data for hydrogen peroxide

 Specific Interaction Theory* **

Based on specific interaction coefficients between ions of opposite charge

 1

st

step: Validation of the specific interaction coefficients of ions: SO

42-

, HSO

4-

and H

+

Comparison between experimental pH

and pH calculated using SIT

in ternary systems H

2

SO

4

- Na

2

SO

4

- H

2

O

Specific Interaction Theory SIT

11 eq O eq UO O UO

a

a

a

a

S

, , 22 2 2 2 2 2 2    

𝑈𝑂

22+

+ 𝑂

22−

+ 4𝐻

2

𝑂 ↔ 𝑈𝑂

2

(𝑂

2

) ∙ 4𝐻

2

𝑂

*T. Vercouter, B. Amekraz, C. Moulin, E. Giffaut and P. Vitorge, Inorg. Chem., 2005, 44, 7570–7581Bromley L.A., 1973. AIChE J. 19, 313-320 **R. M. Cigala, F. Crea, C. De Stefano, G. Lando, D. Milea and S. Sammartano, Geochim. Cosmochim. Acta, 2012, 87, 1–20

Specific interaction coefficient

j j j i, 2 i i

ε(i,

j)m

I

b

1

I

a

z

logγ

Very good agreement between

experimental pH and SIT

(13)

Determination of specific interaction coefficients

 2

nd

step: determination of the specific interaction coefficients of other ions

from experimental data of uranium peroxide solubility (ICP-AES and ICP-MS)

And by application of the SIT hypothesis:

Commutative function

(i,j) = (j,i)

Independent from I

(i,j) = 0 for ions of same charge

For unknown coefficients  analogies between ions of same charge

ε (kg.mol

-1

)

UO

22+

Na

+

H

+

SO

42-

0,12

-0,12

± 0,06

-0,18

0

0,046

HSO

4-

0,46 ± 0,03 → 0,46

-0,01

± 0,02

-0,03

-0,01 ± 0,02

→ -0,01

UO

2

(SO

4

)

22-

0,12

-0,12

± 0,06

-0,18

-0,12 ± 0,06 → -0,12

UO

2

(SO

4

)

34-

0,24

-0,06

-0,24

- blue:

from the literature

- green

: by analogy

- red:

optimised values from

experimental data

(14)

Determination of specific interaction coefficients

13 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03 1E-02 1E-01

[U] exp (mol/L)

[U ] c a lc ( m o l/ L )

 Comparison between experimental and calculated solubilities over a wide range of operating

conditions

Good agreement

higher deviations at low sulphate concentrations 

very low solubilities  high analytical uncertainties

(15)

Conclusion and outlooks

These methods can be applied to many other systems provided

- the binary data of 2 salts are known for the Bromley model

- solubility measurements can be performed for SIT

 For precipitation process modelling  development of thermodynamic models to

calculate the supersaturation taking into account the nonideality of the solutions

 On the basis of simple empirical methods

 Advantage  easy to use and accurate

 Application  Experiments

New individual contributions of the neodymium ion for the Bromley model

New specific interaction coefficients for SIT

(16)

Scientific team

15

French Atomic Energy Commission

Marcoule facility

Nuclear fuel reprocessing and waste processing

AREVA Mines

Bessines site

Uranium extraction

Reaction and Process Engineering Laboratory

CNRS, University of Lorraine

F. Auger

Pf H. Muhr

Pf E. Plasari

Dr Luz Mojica-Rodriguez

Dr M. Bertrand

(17)

| PAGE 16

CEA | 10 AVRIL 2012

Thank you for

your attention !

Références

Documents relatifs

Unite´ de recherche INRIA Lorraine, Technopoˆle de Nancy-Brabois, Campus scientifique, 615 rue du Jardin Botanique, BP 101, 54600 VILLERS LE` S NANCY Unite´ de recherche INRIA

Unit´e de recherche INRIA Lorraine, Technopˆole de Nancy-Brabois, Campus scientifique, ` NANCY 615 rue du Jardin Botanique, BP 101, 54600 VILLERS LES Unit´e de recherche INRIA

Unité de recherche INRIA Rocquencourt Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex France Unité de recherche INRIA Lorraine : LORIA, Technopôle de

Par exemple, filtrage de Telnet pour interdire les connexions distantes, ou filtrage d’UDP pour interdire les applications des vendeurs audio-vidéo offrant un mode UDP par

Dans la deuxième partie, nous étudions l’évolution et la stabilité du problème au cours du temps.. Enfin dans une dernière partie, nous simulons le problème numériquement

(The communication does not need to be done directly with TCP/IP communications. A set of classes have been written in Java, and a set of functions written in C to

Ce dossier pourrait néanmoins s’enrichir encore assez longuement jusqu’au XVIII e siècle, tant en exemples de ce type de romans qu’en critiques semblables à celles de

At high-northern latitudes, both molecules were locally enriched by a factor of 7 to 9 in a limited zone comprised between 1 and 0.1 mbar and from 50 ◦ N to the pole. Because of