On the determination of number fields by L-functions

Download (0)

Full text

(1)

Florin NICOLAE

On the determination of number fields by L-functions Tome 28, no2 (2016), p. 431-433.

<http://jtnb.cedram.org/item?id=JTNB_2016__28_2_431_0>

© Société Arithmétique de Bordeaux, 2016, tous droits réservés. L’accès aux articles de la revue « Journal de Théorie des Nom-bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infrac-tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

(2)

Journal de Théorie des Nombres de Bordeaux 28 (2016), 431–433

On the determination of number fields by

L-functions

par Florin NICOLAE

Résumé. Nous montrons qu’une extension galoisienne du corps des nombres rationnels est déterminée par toute fonction L d’Artin corespondant à un caractère du groupe de Galois qui contient tous les caractères irréductibles.

Abstract. We prove that a Galois number field is determined by any Artin L-function corresponding to a character of the Galois group which contains all irreducible characters.

Let K/Q be a finite Galois extension with the Galois group G, χ1, . . . , χr

the irreducible characters of G with the dimensions d1 := χ1(1), . . . , dr :=

χr(1), and L(s, χ1, K/Q), . . . , L(s, χr, K/Q) the corresponding Artin

L-functions. The Dedekind zeta function ζK(s) is the Artin L-function

corre-sponding to the regular character RegG=Pr

j=1djχj:

ζK(s) = L(s, RegG, K/Q)

= L(s, χ1, K/Q)d1· . . . · L(s, χ

r, K/Q)dr.

It is known that ζK(s) determines the field K: if L/Q is a finite normal extension of Q such that

ζL(s) = ζK(s)

then

L = K.

Since dj > 0, the regular character RegG contains all irreducible characters

χj, j = 1, . . . , r. Starting from this observation, we prove that the field K

is determined by any Artin L-function corresponding to a character of the Galois group G which contains all irreducible characters.

Manuscrit reçu le 26 mars 2014, révisé le 16 juillet 2014, accepté le 18 septembre 2014.

Mathematics Subject Classification. 11R42. Mots-clefs. Galois number field, Artin L-function.

(3)

432 Florin Nicolae

Theorem 1. Let K/Q, L/Q be finite Galois extensions, G the Galois group

of K/Q, χ1, . . . , χr the irreducible characters of G, k1 > 0, . . . , kr> 0

inte-gers, χ =Pr

j=1kjχj, H the Galois group of L/Q, ϕ1, . . . , ϕtthe irreducible

characters of H, l1 > 0, . . . , lt> 0 integers, ϕ =Ptj=1ljϕj. If

L(s, χ, K/Q) = L(s, ϕ, L/Q) then

K = L.

Proof. Let M/Q be a finite Galois extension which contains both K and L. For j = 1, . . . , r let

˜

χj : Gal(M/Q) → C, ˜χj(σ) := χj(σGal(M/K)),

where we identify G with the factor group Gal(M/Q)/Gal(M/K). Then ˜χj

is an irreducible character of Gal(M/Q) and (1) Gal(M/K) = ∩rj=1Ker ( ˜χj),

where Ker ( ˜χj) is the kernel of the character ˜χj. For j = 1, . . . , t let

˜

ϕj : Gal(M/Q) → C, ˜ϕj(σ) := ϕj(σGal(M/L)),

where we identify H with the factor group Gal(M/Q)/Gal(M/L). Then ˜ϕj

is an irreducible character of Gal(M/Q) and (2) Gal(M/L) = ∩tj=1Ker ( ˜ϕj).

It is a fundamental property of Artin L-functions that

L(s, χj, K/Q) = L(s, ˜χj, M/Q), j = 1, . . . , r and that L(s, ϕj, L/Q) = L(s, ˜ϕj, M/Q), j = 1, . . . , t hence L(s, χ, K/Q) = r Y j=1 L(s, χj, K/Q)kj = r Y j=1 L(s, ˜χj, M/Q)kj, and L(s, ϕ, L/Q) = t Y j=1 L(s, ϕj, L/Q)lj = t Y j=1 L(s, ˜ϕj, M/Q)lj, therefore (3) r Y j=1 L(s, ˜χj, M/Q)kj = t Y j=1 L(s, ˜ϕj, L/Q)lj.

Artin proved that the L-functions corresponding to irreducible characters are multiplicatively independent ([1], Satz 5, P. 106). Thus, from the mul-tiplicative relation (3) we deduce that

(4)

Determination of number fields 433 Together with (1) and (2), this implies that

Gal(M/K) = Gal(M/L), so

K = L. 

References

[1] E. Artin, “Über eine neue Art vonL-Reihen”, Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, p. 89-108.

Florin Nicolae

Technische Universität Berlin Institut für Mathematik Strasse des 17. Juni 136 D-10623 Berlin, Germany

and

Institute of Mathematics of the Romanian Academy P.O.BOX 1-764

RO-014700 Bucharest, Romania

E-mail: Florin.Nicolae@imar.ro URL: http://www.imar.ro/

Figure

Updating...

References