• Aucun résultat trouvé

On the determination of number fields by L-functions

N/A
N/A
Protected

Academic year: 2021

Partager "On the determination of number fields by L-functions"

Copied!
4
0
0

Texte intégral

(1)

Florin NICOLAE

On the determination of number fields by L-functions Tome 28, no2 (2016), p. 431-433.

<http://jtnb.cedram.org/item?id=JTNB_2016__28_2_431_0>

© Société Arithmétique de Bordeaux, 2016, tous droits réservés. L’accès aux articles de la revue « Journal de Théorie des Nom-bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infrac-tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

(2)

Journal de Théorie des Nombres de Bordeaux 28 (2016), 431–433

On the determination of number fields by

L-functions

par Florin NICOLAE

Résumé. Nous montrons qu’une extension galoisienne du corps des nombres rationnels est déterminée par toute fonction L d’Artin corespondant à un caractère du groupe de Galois qui contient tous les caractères irréductibles.

Abstract. We prove that a Galois number field is determined by any Artin L-function corresponding to a character of the Galois group which contains all irreducible characters.

Let K/Q be a finite Galois extension with the Galois group G, χ1, . . . , χr

the irreducible characters of G with the dimensions d1 := χ1(1), . . . , dr :=

χr(1), and L(s, χ1, K/Q), . . . , L(s, χr, K/Q) the corresponding Artin

L-functions. The Dedekind zeta function ζK(s) is the Artin L-function

corre-sponding to the regular character RegG=Pr

j=1djχj:

ζK(s) = L(s, RegG, K/Q)

= L(s, χ1, K/Q)d1· . . . · L(s, χ

r, K/Q)dr.

It is known that ζK(s) determines the field K: if L/Q is a finite normal extension of Q such that

ζL(s) = ζK(s)

then

L = K.

Since dj > 0, the regular character RegG contains all irreducible characters

χj, j = 1, . . . , r. Starting from this observation, we prove that the field K

is determined by any Artin L-function corresponding to a character of the Galois group G which contains all irreducible characters.

Manuscrit reçu le 26 mars 2014, révisé le 16 juillet 2014, accepté le 18 septembre 2014.

Mathematics Subject Classification. 11R42. Mots-clefs. Galois number field, Artin L-function.

(3)

432 Florin Nicolae

Theorem 1. Let K/Q, L/Q be finite Galois extensions, G the Galois group

of K/Q, χ1, . . . , χr the irreducible characters of G, k1 > 0, . . . , kr> 0

inte-gers, χ =Pr

j=1kjχj, H the Galois group of L/Q, ϕ1, . . . , ϕtthe irreducible

characters of H, l1 > 0, . . . , lt> 0 integers, ϕ =Ptj=1ljϕj. If

L(s, χ, K/Q) = L(s, ϕ, L/Q) then

K = L.

Proof. Let M/Q be a finite Galois extension which contains both K and L. For j = 1, . . . , r let

˜

χj : Gal(M/Q) → C, ˜χj(σ) := χj(σGal(M/K)),

where we identify G with the factor group Gal(M/Q)/Gal(M/K). Then ˜χj

is an irreducible character of Gal(M/Q) and (1) Gal(M/K) = ∩rj=1Ker ( ˜χj),

where Ker ( ˜χj) is the kernel of the character ˜χj. For j = 1, . . . , t let

˜

ϕj : Gal(M/Q) → C, ˜ϕj(σ) := ϕj(σGal(M/L)),

where we identify H with the factor group Gal(M/Q)/Gal(M/L). Then ˜ϕj

is an irreducible character of Gal(M/Q) and (2) Gal(M/L) = ∩tj=1Ker ( ˜ϕj).

It is a fundamental property of Artin L-functions that

L(s, χj, K/Q) = L(s, ˜χj, M/Q), j = 1, . . . , r and that L(s, ϕj, L/Q) = L(s, ˜ϕj, M/Q), j = 1, . . . , t hence L(s, χ, K/Q) = r Y j=1 L(s, χj, K/Q)kj = r Y j=1 L(s, ˜χj, M/Q)kj, and L(s, ϕ, L/Q) = t Y j=1 L(s, ϕj, L/Q)lj = t Y j=1 L(s, ˜ϕj, M/Q)lj, therefore (3) r Y j=1 L(s, ˜χj, M/Q)kj = t Y j=1 L(s, ˜ϕj, L/Q)lj.

Artin proved that the L-functions corresponding to irreducible characters are multiplicatively independent ([1], Satz 5, P. 106). Thus, from the mul-tiplicative relation (3) we deduce that

(4)

Determination of number fields 433 Together with (1) and (2), this implies that

Gal(M/K) = Gal(M/L), so

K = L. 

References

[1] E. Artin, “Über eine neue Art vonL-Reihen”, Abh. Math. Sem. Univ. Hamburg 3 (1924), no. 1, p. 89-108.

Florin Nicolae

Technische Universität Berlin Institut für Mathematik Strasse des 17. Juni 136 D-10623 Berlin, Germany

and

Institute of Mathematics of the Romanian Academy P.O.BOX 1-764

RO-014700 Bucharest, Romania

E-mail: Florin.Nicolae@imar.ro URL: http://www.imar.ro/

Références

Documents relatifs

When a number is to be multiplied by itself repeatedly,  the result is a power    of this number.

We conclude about the existence of imaginary quadratic fields, p-rational for all p ≥ 2 (Angelakis–Stevenhagen on the concept of “minimal absolute abelian Galois group”) which

First, as Galois would make it clear in his letter to Chevalier, the “simplest decompositions are the ones of M. Gauss” by which the investigation of solvable transitive equations

It is expected that the result is not true with = 0 as soon as the degree of α is ≥ 3, which means that it is expected no real algebraic number of degree at least 3 is

We show that the integral functions in a highest Whittaker model of an irreducible integral Q -representation of a p-adic reductive connected group form an integral

Repeat the exer- cise in homology, for cor G×K H×K and tr G×K H×K (in homology, the hypothesis that G be finite can be supressed, but of course we need [G : H ] &lt; ∞ for the

Recall from [1, Theorem 14] that a good basis of G always exists, and from [1, Section 6.1] that a good basis and the parameters for the divisibility are computable.

We give the coefficients of the irreducible characters of the symmetric group that contribute to the number of cycles of a permutation, considered as a class function of