• Aucun résultat trouvé

Functional properties of marginal starches from South-East Asia

N/A
N/A
Protected

Academic year: 2021

Partager "Functional properties of marginal starches from South-East Asia"

Copied!
52
0
0

Texte intégral

(1)

1

Functional properties of marginal

starches from South-East Asia

Thierry Tran

+

, Juan Bautista Sanz

Hernández, Béatrice

Bellassee, Guillaume Da, Hong Luong

Nga, Dominique

Dufour, Sunee

Chotineeranat, Kuakoon

Piyachomkwan, Le

Thanh

Mai, Klanarong

Sriroth

60. Starch Convention -

Detmold

22-23 April 2009

+Corresponding author:

Cassava and Starch Technology Research Unit (CSTRU/BIOTEC), Kasetsart University, Bangkok 10900, Thailand

(2)

2

Thierry Tran1, Juan Bautista Sanz Hernández1, Béatrice Bellassee1,

Guillaume Da2,3, Hong Luong Nga2, Dominique Dufour4,5, Sunee

Chotineeranat1, Kuakoon Piyachomkwan1, Le Thanh Mai2, Klanarong

Sriroth1

1 Cassava and Starch Technology Research Unit (CSTRU/BIOTEC),

Kasetsart University, Jatujak, Bangkok 10900, Thailand

2 Hanoi University of Technology (HUT), IBFT, Hanoi, Vietnam

3 ENSBANA (EA4181), 1 esplanade Erasme, 21000 Dijon, France

4 Centre de Coopération Internationale en Recherche Agronomique

pour le Développement (CIRAD), 73 rue Jean-Francois Breton, TA

B-95/16, 34398 Montpellier Cedex 5, France

5 Centro Internacional de Agricultura Tropical (CIAT), Apdo Aéreo

6713, Cali, Colombia

(3)

3

Quality control of cassava starch production in

Thailand

Diversification of application for cassava starch:

-

Physical and chemical modifications

-

Bioethanol

-

Bio-plastics

Valorization

of by-products: Fibers

Work on other starches

Cassava and Starch Technology

Research Unit (CSTRU)

(4)

4

Roots and tubers represent a highly diverse source of starch

but many crops remain underutilized for agro-industries, with

production only at small scale for local use.

Few studies are available with a systematic characterization

of the different types of starch in South-East Asia. This study

undertakes to explore physicochemical and functional

characteristics of several of these starches, using the same

set of analytical techniques and experimental conditions.

Rationale: Identify specific properties, particularly in model

food systems, to demonstrate

starch potential as food

ingredients and encourage the development of economic

activities related to production and use. Focus on food

applications because these starches are more expensive to

produce than cassava or corn, so applications need to be

high value added to cover the cost of production.

(5)

5

Canna (x2)

Mungbean (x2)

Sago

Kudzu

Taro (x2)

Yam bean

Sweet

potato

Potato

Cassava

(x3) + Rice

& Maize

(6)

6

Kudzu

Tropical starches: Roots

and Tubers

(1)

Cassava

Sweet

potato

Potato

Taro

Yam Bean

Canna

(7)

7

Sago

Mung

Bean

Rice

Maize

(8)

8

Starch

source and composition

Starch source Origin Lipid (%) Nitrogen (%) Ash (%)

Manihot esculenta (Cassava) Vietnam 0.45 0.014 0.02

Canna edulis ker (Canna) Vietnam 0.31 0.014 0.23

Vigna radiata (Mungbean) Vietnam 0.38 0.021 0.06

Colocasia esculenta (Taro) Thailand 0.20 0.020 0.11

Pachyrhizus erosus (Yam Bean) Thailand 0.16 0.013 0.03

Metroxylon sagu (Sago) Thailand 0.17 0.021 0.32

Pueraria lobata (Kudzu) Vietnam 0.39 0.023 0.10

Ipomoea batatas (Sweet Potato) Vietnam 0.40 0.022 0.11

Solanum tuberosum (Potato) Vietnam 0.25 - 0.44

Starch extraction at lab scale (HUT / IPH in Vietnam; KU / CSTRU in Thailand)

Washing, peeling, cutting, crashing, filtering, collecting precipitate, air drying.

(9)

9

Amylose content (Blue

value method)

%AM = [BV(starch) - BV(ap)] / [BV(am) - BV(ap)] x 100

BV = Blue Value = Absorbance at 680nm (Takeda et al., 1983).

Range

10-40%

40 39 34 30 26 22 23 21 20 20 18 10 9 0 10 20 30 40 Taro Viet (1012) Taro Thai Yam bean Thai Kudzu purified Cassava purified Sweet potato Viet Swamp taro Viet (1015) Cassava Thai Sago Thai Canna purified Mungbean Viet Mungbean China Mungbean Thai

(10)

10

Morphological

properties

(SEM)

Kudzu

Cassava

Sweet

potato

Taro (x7500)

Yam Bean

Canna

Mungbean

Sago

x500 x1000 x2000 Compare with Jane et al., 1994

(11)

11

Morphological properties (1)

Light microscopy Granule size distribution (Laser diffraction)

1 10 100 1000 3000 10μm Canna Potato 10μm Sago 10μm 1 10 100 1000 3000 0 0 5 10 0 0 0 5 10 15 1 10 100 1000 3000 0 5 10 15 20 Volume (%) (μm) Volume (%) Volume (%) (μm) (μm) 51 43 32

(12)

12

Morphological properties (2)

Light microscopy Granule size distribution (Laser diffraction)

0 0 5 10 Volume (%) (μm) Volume (%) Volume (%) (μm) (μm) 1 10 100 1000 3000 0 0 5 10 15 20 Mung bean 10μm Sweet potato 10μm 1 10 100 1000 3000 0 0 5 10 15 20 1 10 100 1000 3000 0 0 5 10 15 20 Cassava 10μm 20 17 15

(13)

13

Morphological properties (3)

Light microscopy Granule size distribution (Laser diffraction)

Volume (%) (μm) Volume (%) Volume (%) (μm) (μm) Maïze 10μm 0 0 1 10 100 1000 3000 0 5 10 15 Yam bean 10μm 0 0 1 10 100 1000 3000 0 5 10 15 Kudzu 10μm 1 10 100 1000 3000 0 0 0 5 10 15 15 9 8

(14)

14

Light microscopy Granule size distribution (Laser diffraction)

Volume (%) (μm) 1 10 100 1000 3000 0 0 5 10 15 20

Morphological properties (4)

Taro 10μm Starch source D[4,3] (μm) d(0.5) (μm) Canna 55.5 50.9 Potato 42.6 40.3 Sago 32.0 30.5 Mungbean 20.0 19.2 Sweet Potato 16.7 15.8 Cassava 16.3 15.7 Maize 15.1 14.4 Starch source D[4,3] (μm) d(0.5) (μm) Yam Bean 9.4 9.0 Kudzu 8.1 7.7 Rice 5.6 5.2 Taro 2.6 2.5

Most R&T starches are simple granules

Granules’ shapes: oval, spherical, polygonal,

irregularly shape

(15)

15

Average

granule size

3 4 6 8 9 13 14 15 15 16 17 20 32 43 51 51 55 0 10 20 30 40 50 60 Taro Thai Taro Viet Rice Kudzu purified Yam bean Thai Cassava bleached Cassava non-bleached Maize Cassava Thai Cassava purified Sweet potato Viet Mungbean Viet Sago Thai Potato Viet Canna purified Canna bleached Canna non-bleached

(16)

16

X-rays

File: Mau Yan bean-Thai.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 15 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° File: Mau Taro-Thai.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 14 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi File: Mau Sago-Thai.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 9 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: File: Mau Nungbean-Thai.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° File: Mau Chinese.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 2 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0 File: Mau Cassava-Thai.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.8 s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° -

Li n ( C ps ) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 2-Theta - Scale 2 10 20 30

File: Mau Dong rieng.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 9 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi File: Mau khoai lang.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi File: Mau khoai mon.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: File: Mau Khoai so.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 15 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: File: Mau San day.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0 File: Mau San.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 35.000 ° - Step: 0.020 ° - Step time: 0.5 s - Temp.: 25 °C (Room) - Time Started: 8 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Phi: 0.00

Li n ( C ps) 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 2-Theta - Scale 2 10 20 30

Yam bean Thai – A

Taro Thai – A

Sago Thai – A

Mungbean Thai – C

Cassava Thai –A

Canna Viet – B

Sweet potato Viet – A

Swamp taro Viet –A

Taro Viet – A Kudzu Viet – B Cassava Viet –A Mungbean China – C Buléon et al., 1998 A-type: Peaks at 15, 17, 18, 23° B-type: Peaks at 5, (13), 16, 22, 24° Different studies, different types of crystallinity (Zobel, 1988; Hung et al., 2005).

(17)

17

A-

and B-type retrogradation domains

Source: Dr I. Farhat, Nottingham University (UK) A polymorph 0 10 20 30 40 50 60 70 0 10 20 30 40 50 Water content (%) T emperatu re (°C) B polymorph A polymorph 0 10 20 30 40 50 60 70 0 10 20 30 40 50 Water content (%) T emperatu re (°C) B polymorph

(18)

18 0 0 100 200 300 400 500 600 700 800 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 0 Temp erature (°C) Vi sc os it y (cP) Time (s) Potato 0 0 100 200 300 400 500 600 700 800 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 0 Temp erature (°C) Vi sc os it y (cP) Time (s) Potato 0 1000 2000 3000 4000 5000 6000 7000

Cassava Canna Sweet potato Kudzu

Vi sc os it y (cP) Time (s) Temperatur e (°C ) 0 1000 2000 3000 4000 5000 6000 7000 Vi sc os ity (cP ) 0

Sago Mung bean(Thailand)

0 20 40 60 80 100 120 Temperatur e (°C ) Mung bean (Vietnam) 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 Kudzu 0 1000 2000 3000 4000 5000 6000 70000 Yam Bean (Thailand) Viscosity (cP) 0 10 20 30 40 50 60 70 80 90 100 Taro (Thailand) Temperatur e (°C ) Time (s) 70000 120 0 1000 2000 3000 4000 5000 6000 7000

Cassava Canna Sweet potato Kudzu

Vi sc os it y (cP) Time (s) Temperatur e (°C ) 0 1000 2000 3000 4000 5000 6000 7000 Vi sc os ity (cP ) 0

Sago Mung bean(Thailand)

0 20 40 60 80 100 120 Temperatur e (°C ) Mung bean (Vietnam) 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 Kudzu 0 1000 2000 3000 4000 5000 6000 70000 Yam Bean (Thailand) Viscosity (cP) 0 10 20 30 40 50 60 70 80 90 100 Taro (Thailand) Temperatur e (°C ) Time (s) 70000 120 0 Rice(Thailand) 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 Tem p eratu re C ) Maïzena (Thailand) 120 0 Rice(Thailand) 0 100 200 300 400 500 600 700 800 0 20 40 60 80 100 120 Tem p eratu re C ) Maïzena (Thailand) 120 0 100 200 300 400 500 600 700 800 100 120 C ) Time (s) 0 100 200 300 400 500 600 700 800 100 120 C ) Time (s)

RVA profiles

Kudzu Canna Cassava Sweetpotato Potato Taro Yam Bean

Sago Mung Bean

(19)

19 83 82 80 79 78 78 77 76 76 76 75 73 72 72 71 71 70 70 67 60 65 70 75 80 85 Potato Viet Cassava purified Cassava non-bleached Sweet potato Rice Mungbean Viet Cassava Thai Cassava bleached Canna non-bleached Canna purified Canna bleached Kudzu purified Yam bean Thai Mungbean Thai Swamp taro Viet Sago Thai Maize Taro Viet Taro Thai Pasting temperature (°C) 9857 6452 6073 5564 4675 5392 4425 4196 4039 3830 3775 3671 3422 3417 3198 3185 2388 2378 1592 0 2000 4000 6000 8000 10000 Rice Maize Taro Thai Swamp taro Viet Cassava non-bleached Taro Viet Yam bean Thai Canna non-bleached Kudzu purified Cassava Thai Cassava bleached Cassava purified Mungbean Thai Sago Thai Mungbean Viet Canna bleached Sweet potato Canna purified Potato Viet Peak viscosity (cP) 75 69 60 56 54 56 54 54 53 52 48 47 45 41 39 28 27 22 11 0 20 40 60 80 Rice Maize Kudzu purified Mungbean Thai Swamp taro Viet Taro Thai Canna purified Mungbean Viet Canna non-bleached Sweet potato Yam bean Thai Sago Thai Canna bleached Taro Viet Cassava Thai Cassava non-bleached Cassava purified Potato Viet Cassava bleached Breakdown/Peak viscosity (%) 1167 1668 1879 2118 2248 2315 2340 2345 2853 2867 2900 3120 3363 3467 3615 3616 4108 4293 6431 0 1000 2000 3000 4000 5000 6000 7000 Cassava bleached Rice Cassava non-bleached Taro Thai Cassava Thai Taro Viet Yam bean Thai Maize Swamp taro Viet Cassava purified Sago Thai Canna non-bleached Sweet potato Canna bleached Kudzu purified Potato Viet Mungbean Viet Canna purified Mungbean Thai Final viscosity (cP)

(20)

20 0 1000 2000 3000 4000 5000 6000 0 100 200 300 400 500 600 700 800 900 Time (s) Viscosity (cP) 0 10 20 30 40 50 60 70 80 90 100 Temperatur e (°C) Mungbean

Shear

resistance

Stir

at

960rpm during

the

95

°C phase of

the

profile

(Mestres et al, 1997).

160rpm 960rpm 160rpm 95°C Normal Shear

(21)

21

Shear

resistance

Shear

resistance

= FV(shear) / FV(normal)

0.93 0.91 0.82 0.78 0.75 0.75 0.75 0.74 0.74 0.73 0.73 0.72 0.70 0.68 0.66 0.61 0.56 0.53 0.49 0.4 0.5 0.6 0.7 0.8 0.9 1 Canna non-bleached Canna bleached Mungbean Thai Kudzu purified Canna purified Mungbean Viet Taro Viet Potato Viet Yam bean Thai Cassava purified Sago Thai Swamp taro Viet Sweet potato Cassava bleached Taro Thai Cassava Thai Cassava non-bleached Maize Rice Shear resistance

(22)

22

Swelling power (SP) and solubility (SLB)

0.1 g of starch in 25 mL of distilled water. Heating and stirring (160rpm) by RVA

for 30 min at 70°C. Centrifugation at 2000 rpm => collection and weighing of

supernatant + precipitate (Mestres et al, 2005)

0 10 20 30 40 50 60 Kudzu Taro Sweet potato Rice Sago Mungbean Maizena Canna Yam bean Potato Cassava Solubility (%db) 0 5 10 15 20 25 30 35 40 Rice Taro Yam Kudzu Maizena Mungbean Sago Thai Sweet potato Canna Potato Cassava Swelling power (%)

(23)

23

Gelatinization

& retrogradation (DSC)

Gelatinization

in excess

water

(25% starch).

(24)

24

Gelatinization

& retrogradation (DSC)

Gelatinization

range: 56-77

°C; 9-19 J/g.

Retrogradation

range: 39-51

°C; 4-10 J/g.

35 40 45 50 55 60 65 70 75 80 0 2 4 6 8 10 12 14 16 18 20 Enthalpy (J/g) T emp erat u re (° C) G-Onset (ºC) R-Onset (ºC) Rice Mungbean Viet Maize Sweet potato Kudzu Cassava pur. Cassava non-bleach Potato Viet Cassava bleach Cassava Thai

Yam bean Thai

Cannas Sago Thai Taro Thai Taro Viet Cassava pur. Cassava bleach

Cassava non-bleach Kudzu

Taro Viet Mungbean Viet Cassava

Thai Rice Maize Canna bleach

Canna non-bleach Sago Thai

Potato Yam bean Thai Canna pur.

Taro Thai Sweet potato

(25)

25

Retrogradation

tendency

% Retrog. = ΔH(Retrogradation) / ΔH(Gelatinization)

88 66 75 66 66 62 64 61 57 53 51 47 46 45 43 37 35 27 25 0 20 40 60 80 100 Cassava bleached Cassava non-bleached Cassava purified Cassava Thai Kudzu purified Canna purified Canna bleached Yam Viet Canna non-bleached Potato Viet Sago Thai Taro Thai Mungbean Thai Taro Viet Yam Bean Thai Mungbean Viet Sweet potato Maize (Aldrich) Rice (Aldrich)

(26)

26

Gel clarity

• Method: Transmittance at 650nm of 1% starch pastes (Craig et al., 1989)

• Taros may not be fully gelatinized

4 8 14 16 16 17 18 18 20 32 37 38 40 0 10 20 30 40 50 Swamp taro (1015) Taro Thai Mungbean Thai Mungbean Viet Kudzu purified Yam bean Thai Sweet potato Taro Viet (1012) Mungbean China Cassava purified Sago Thai Cassava Thai Canna purified Gel transmittance (%) T-30mins (%) T-5mins (%)

(27)

27

Gel texture

Starch gels (10.3%) prepared by RVA

and

stored

at

4°C for 13 days.

Dimensions:

Diameter

36mm

Height

20.5mm

(28)

28

Gel texture

Compression: 2mm/s

Target strain: 50% of initial height (~10mm) 3 replications per gel

0 1 2 3 4 0 1 2 3 4 5 6 7 Time (s) Force (kg) Canna purified Sago Yam bean Rice Peak force Strain at break

Record:

-

Peak force (kg)

-

Deformation at

peak force (mm)

Normalized to:

-

Compression

strength (kg/m2)

-

Strain at break

(29)

29

Gel texture –

Compression strength

Letters indicate statistically significant differences (LSD Fisher test; p<0.05)

0 5000 10000 15000 20000 25000 30000 35000

Taro Thai Rice Yam bean Thai Kudzu purified Maize Sago Thai Canna purified Canna bleached Canna unbleached Mungbean Viet Mungbean Thai Compression strength (kg/m2) b c cd de e f fg fgh gh h a

(30)

30

Gel texture –

Strain

at

break

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 Maize Canna purified Canna unbleached Kudzu purified Rice Canna bleached Sago Thai Yam bean Thai Mungbean Viet Mungbean Thai Taro Thai Strain at break a ab b c cd cd d d e e a

(31)

31

Gel texture

0 5000 10000 15000 20000 25000 30000 35000 0.3 0.35 0.4 0.45 0.5 0.55 Strain at break C o mpr ession st rengt h ( k g/m2) Canna bleach Canna pur. Canna non-bleach Maize Rice Kudzu pur. Mungbean Thai Mungbean Viet Sago Thai Taro Thai Yam bean Thai

Strong

Soft

Cohesive

Brittle

(32)

32

Noodle

texture

Starch mixed with water and worked into a dough (partially

gelatinized).

Flat noodles prepared with a Marcato

150 pasta machine.

Dimensions:

# Cross section 9x2mm

(after

cooking)

# Length

150mm

Moisture

content ~75-80%

(after

cooking)

(33)

33

(34)

34

Noodle

texture

Noodles tested in extension with texture analyzer

-

Noodles

made

of

pure starches

(35)

35

Noodle

texture

Example of texture profile

Record:

-

Peak force (g)

-

Deformation at

peak force (mm)

-

Deformation at

final break (mm)

Normalized to:

-

Tensile

strength (kg/m2)

-

Strain at peak

force

-

Additional

strain at break

Extension speed: 2mm/s

Distance: 10-30cm until break Initial length: 50mm 15-20 replications/sample -5 0 5 10 15 20 25 30 0 10 20 30 40 50 Time (s) Force (g) Mungbean 80% Sago Cassava Mungbean 20%

(36)

36

Noodle

texture

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 20 40 60 80 100

Proportion of marginal starch (%)

Tensile str ength (kg/m2) Canna bleached Canna purified Sago Mungbean Kudzu

Above 40%, tensile strength moves towards that of the corresponding pure starch.

0% corresponds to pure cassava noodles

(37)

37

Noodle

texture

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 20 40 60 80 100

Proportion of marginal starch (%)

Stra in a t p e ak fo rc e Canna bleached Canna purified Sago Mungbean Kudzu 0% corresponds to pure cassava noodles

Kudzu: Cassava determines extension behaviour up to 80% kudzu.

Sago: Cassava determines extension behaviour only up to 20%.

Extension behaviour of mungbean and canna is determined by both components.

(38)

38

Noodle

texture

0.0 0.1 0.2 0.3 0 20 40 60 80 100

Proportion of marginal starch (%)

Additonal str ain at final br eak Canna bleached Canna purified Sago Mungbean Kudzu

Cassava gives the most extensible noodles both at peak force and final break.

Addition of other starches reduces the strain at final break. 0% corresponds to pure

(39)

39

Noodle

texture

Canna, mungbean: Strong texture, low extensibility. Cassava, sago: Soft, extensible texture.

Kudzu: Soft texture with low extensibility.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Strain at peak force

Tensile str e ngth (kg/m2) Canna bleached 80% Canna bleached 20% Canna pur. 80% Canna pur. 20% Cassava Thai Cassava pur. Cassava bleached RICE Sago 100% Mungbean 80% Mungbean 20% Kudzu 100% Kudzu 20% Sago 20%

(40)

40

Noodle

texture

Kudzu, sago: Strain at peak force varies little, contrary to strain at break

Æ Kudzu/sago determine strain at peak; cassava determines break

behavior Æ Hypothesis of poor blend with cassava starch.

Canna, mungbean: Strain at peak force and additional strain at final break

vary simultaneously Æ Hypothesis of good blend with cassava starch.

0.0 0.1 0.2 0.3 0.4 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Strain at peak force

Ad di ti on al str ai n at break Canna bleached 80% Canna bleached 20% Canna pur. 80% Canna pur. 20% Cassava Thai Cassava pur. Cassava bleached RICE Sago 100% Mungbean 80% Mungbean 20% Kudzu 100% Kudzu 20% Sago 20%

(41)

41

Noodle

texture

Mungbean 80% Mungbean 20% Sago 80% Sago 20% Cassava

Mungbean: Extends little, breaks quickly.

Sago: Extends well, breaks; extends more if cassava added.

Cassava: Extends a lot, starts to break, extends more before complete break. Strain at peak force Strain at break Strain at peak force Strain at break Strain at peak force Strain at break Strain at peak force Strain at break Strain at peak force + break

(42)

42

Syneresis

-

refrigerated

0 5 10 15 20 25 30

Yam bean Thai Taro Thai Cassava Thai Sago Thai Canna purified Canna bleached Canna non-bleached Mungbean Thai Mungbean Viet Kudzu

Syneresis after refrigerated storage (%)

Sago starch gels had the best stability under refrigerated conditions (syneresis below 2%).

Cassava, taro, yam bean did not gel.

Kudzu is paste-like more than gel-like and did not retain water well.

10% starch gels. Storage 10 days at 4°C. The syneresis was calculated as the difference in gel weight

before and after storage, and expressed as % of the initial

(43)

43

Syneresis

frozen

Partial compression

0 10 20 30 40 50 Cassava Thai Mungbean Thai Mungbean Viet Canna purified Canna non-bleached Canna bleached Sago Thai Yam bean Thai Kudzu Taro Thai

Syneresis after frozen storage - Partial compression (%)

Mungbean and canna starch gels were most efficient for retaining water (7-9% and 22-25% syneresis respectively), possibly due to their higher gel strength (less deformation).

10% starch gels. Five freeze-thaw cycles between -20°C and 25°C. The syneresis was calculated as the difference in gel weight before storage and after compression, and expressed as % of the initial weight.

(44)

44

Syneresis

frozen

Full

compression

0 10 20 30 40 50 60 70 Cassava Thai Mungbean Viet Mungbean Thai Sago Thai Taro Thai Yam bean Thai Kudzu Canna non-bleached Canna purified Canna bleached

Syneresis after frozen storage - Full compression (%)

0 10 20 30 40 50 60 70 Cassava Thai Mungbean Thai Mungbean Viet Canna purified Canna non-bleached Canna bleached Sago Thai Yam bean Thai Kudzu Taro Thai

Syneresis after frozen storage - Partial compression (%)

Differences between

starches disappeared

after full compression,

indicating that the water

retention after freezing

may be determined

mainly by the gels

resistance to mechanical

deformation.

(45)

46

Correlations

between

starch

properties

• Granules size <-> Higher peak viscosity & Lower shear resistance

• High AM <-> Higher final viscosity; Increased gel hardness (?)

• Higher pasting time <-> Higher DSC onset temperature

• Higher swelling power <-> Higher breakdown

(46)

49

Yam

Mungbean Canna Sago Kudzu bean Taro Cassava

Granule size: + +++ ++ -- -- --- -Amylose: +++ ++ + - - -- -RVA: Pasting temp. -- + ++ + + +++ ---Peak viscosity ++ +++ + -- --- --Breakdown (rel.) -- + ++ --- ++ -- +++ Final viscosity +++ ++ + ++ -- -- ---Shear resistance -- --- ++ -- ++ + +++ DSC: Gelat. onset -- + ++ - + +++ ---Gelat. enthalpy -- +++ ++ - + - ++ % Retrogradation ++ - + -- ++ +

---Conclusions (1)

(47)

50

Yam

Mungbean Canna Sago Kudzu bean Taro Cassava

Gels: Clarity - ++ ++ - - -- ++ Strong, cohesive ++ - + - - - -Strong, brittle - ++ + - - - -Soft, cohesive - - + - ++ - -Soft, brittle - - + ++ - - -Noodles:

Rigid ++ +++ - - n/a n/a

-Extensible - - ++ + n/a n/a +++

Noodle blends with cassava:

Rigid ++ +++ - - n/a n/a n/a

Extensible - - ++ +++ n/a n/a n/a

Syneresis:

Refrigerated - + +++ - n/a n/a n/a

Frozen ++ + - - - - n/a

(48)

51

Quantities:

Cassava factory: ~800 tons roots/day (Thailand)

Canna, kudzu: 1-2 tons roots/day (Vietnam)

Mungbean: est. 1 ton beans/day (?)

Sago: Household scale

Æ

Niche applications first, then scaling-up.

Technology and quality control:

To be adapted from

established starch production process (canna,

tapioca Æ CSTRU).

Funding:

If interest for buying the starch, investment

possible by Thai company; or support by BOI for

FDI.

(49)

52

Canna

1-2 t roots/day

Cassava 500-800 t

roots/day

(50)

53

Agence

Universitaire

pour la Francophonie

(AUF)

for financial support.

Coordination team at AIT (Thailand), HUT

(Vietnam), CIRAD (France) & CSTRU (Thailand).

NSTDA-BIOTEC Thailand for enabling

experimental work at CSTRU.

(51)

54

STARCH UPDATE 2009

Bangkok, 24-25 September 2009

Æ Starch properties and technology Æ Bio-ethanol

Æ Bio-plastics

Æ Study tour to Sonish cassava starch factory and Double A paper factory

http://www.biotec.or.th/StarchUpdate2009/

(52)

55

Références

Documents relatifs

Listen to the following short telephone conversation and answer the

Listen to a conversation between Peter and Somsak, and then decide if the following statements are True or False.. There is no rail service

Listen to the following text about the joint operation and answer True or False to the following statements:.. ____

Listen to the following exchange between a Thai bank teller and a customer and answer the questions in English.. Listen and answer the

(c) Single Mapping and Segmentation: The unsegmented Thai queries are segmented using the NECTEC wordbreak program and single mapping is applied for the query translation..

The within-subject design included three independent variables: (1) Language: text in Thai (subjects’ native language) or in English; (2) Spacing: spaced or

In the short stories chosen for this paper, three kinds of people are represented : the middle- class, in Khrop khrua klang thanon, in which the hero is working in advertising and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des