• Aucun résultat trouvé

The hadronic contribution to $(g-2)_\mu$

N/A
N/A
Protected

Academic year: 2021

Partager "The hadronic contribution to $(g-2)_\mu$"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: in2p3-00024209

http://hal.in2p3.fr/in2p3-00024209

Submitted on 3 Jun 2005

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

M. Davier

To cite this version:

(2)

The Hadroni Contribution to (g 2)  Mi helDavier a E-mail: davierlal.in2p3.fr a

Laboratoiredel'A elerateurLineaire,IN2P3/CNRS-UniversitedeParis-Sud,

BP34,91898Orsay,Fran e

Theevaluationof thehadroni ontribution tothe muon magneti anomaly a is reviewed,in luding a new

estimate using pre ise results on the 

+

 spe tral fun tionfrom the KLOE Collaboration. It is found that

theKLOEdata on rmtosomeextentthepreviouse

+

e annihilationdatainthis hannel,anda entuatethe

disagreement withthe isospin-breaking- orre ted spe tralfun tion from !  

0 



de ays. Corre ting for

theempiri aldi eren einthemassofthe hargedandtheneutrallo allyimproves,butdoesnotresolvethis

dis repan y. Apreliminaryreevaluation(in ludingtheKLOEdata)ofthee

+

e -basedStandardModelpredi tion

ofa 

resultsinadeviationof2.7standarddeviationsfromtheBNLmeasurement.

1. Introdu tion

Hadroni va uum polarization (HVP) in the

photon propagator plays an important role in

manypre isiontestsoftheStandardModel. This

isthe aseforthemuonanomalousmagneti

mo-menta



(g



2)=2,wheretheHVP omponent

is the leading ontributor to the un ertainty of

the Standard Model predi tion. The HVP

on-tribution is omputed by means of a dispersion

relationasanintegraloverexperimentally

deter-minedspe tralfun tions.Itisthepropertyofthis

dispersionrelationthat the spe tralfun tion

providesthemajorpartofthetotalHVP

ontri-bution,sothattheexperimentale ortfo useson

this hannel.

Spe tral fun tions are dire tly obtained from

the ross se tions of e

+

e annihilation into

hadrons. The a ura y of the al ulations has

therefore followed the progress in the quality of

the orresponding data[1℄. Be ause the latter

were not always suitable, it was deemed

ne es-sary to resort to other sour es of information.

One su h possibility was the use of the ve tor

spe tral fun tions[2℄ derived from the study of

hadroni  de ays[3℄ for the energy range less

than m



' 1:8GeV=

2

. For this purpose, the

isospinrotationthat leadsfromthe harged to

theneutrale

+

e nalstatehastobethoroughly

orre tedforisospin-breakinge e ts.

Also,itwasdemonstratedthatessentially

per-turbativeQCD ouldbeapplied toenergys ales

aslowas1{2GeV[4,5℄,thuso eringawayto

re-pla epoore

+

e datainsomeenergyregionsbya

reliableandpre isetheoreti alpres ription[6-11℄.

Detailed reanalyses in luding all available

ex-perimentaldatahavebeenpublishedin

Refs.[12-14℄ (see also the preliminary results given in

Refs.[15,16℄), taking advantage of pre ise

re-sults in the hannel fromthe CMD-2

experi-ment[17℄ and fromthe ALEPHanalysis of 

de- ays[18℄, and bene ting from a more omplete

treatment of isospin-breaking orre tions[19,20℄.

It was found that the e

+

e and the

isospin-breaking- orre ted  spe tral fun tions do not

agree within their respe tive un ertainties, thus

leadingtoin onsistentpredi tionsforthe

lowest-orderhadroni ontributiontoa



. Thedominant

ontribution to the dis repan y stems from the

 hannelwithadi eren eof( 11:96:4

exp  2:4 rad 2:6 SU(2) (7:3 total ))10 10 , andamore

signi ant energy-dependent deviation. When

omparedtotheworldaverageofthemuon

mag-neti anomaly measurements, dominated by the

resultsfromtheBNLexperiment[21℄,

a  = (11659208:05:8)10 10 ; (1) therespe tivee +

e and-basedpredi tions

(3)

devia-23

24

25

26

27

B(

τ

ν

τ

π

π

o

) (in %)

CLEO

OPAL

L3

ALEPH

preliminary

τ

Average

e

+

e

CVC

25.42

±

0.12

±

0.42

25.44

±

0.17

±

0.29

25.44

±

0.16

±

0.10

25.47

±

0.10

±

0.09

25.46

±

0.10

24.52

±

0.32

Figure 1. The measured bran hing ratios for

 ! 



 

0

ompared to the predi tion from

the e

+

e !

+

 spe tral fun tion applying the

isospin-breaking orre tion fa tors dis ussed in

Ref.[13℄. Themeasuredbran hingratiosarefrom

ALEPH [18℄, CLEO [22℄ and OPAL [23℄. The

L3andOPALresultsareobtainedfromtheir h

0

bran hing ratio,redu edbythesmallK

0

ontri-butionmeasuredbyALEPH[24℄ andCLEO[25℄.

errorsinquadrature.

Theproblembetween ande

+

e dataismore

noti ablewhen omparingthe !

0



bran h-ing fra tion with the predi tion obtained from

integrating the orresponding

isospin-breaking- orre tede

+

e spe tralfun tion. Here,the

fun -tionundertheintegrandislesssele tivethanitis

the asefortheHVP ontributiontoa



,leading

to a dis repan y of 2.9 standard deviations[12℄,

asshowninFig.1.

This summer, new data on the  spe tral

fun tion in the mass region between 0:60 and

0:97GeV=

2

werepresentedbytheKLOE

Collab-oration[26℄, using the|forthe purpose of

pre i-sion measurements|innovativete hnique of the

radiativereturn[27℄. The statisti al pre ision of

these data by far outperforms the Novosibirsk

sample,butthesystemati errorsareabouttwi e

aslargeasthoseobtainedbyCMD-2. Newdata

the BABAR Collaboration[28℄ on the   

-nalstate. Theyunveilalarger rossse tionsand

a resonant peak at around 1:6GeV=

2

that was

missed by the previous DM2 measurement[29℄.

TheBABARdataarenot(yet)usedinthe

prelim-inary reevaluation of thelowest-orderHVP

on-tribution given here. The orre tion to a

had;LO



when using the BABAR data for this mode [30℄

is of theorder of +110

10

. Also, preliminary

BABAR resultsare available onthe2

+

2 nal

statewhi hareoverallmorepre isethanexisting

data [30℄. They arenot in luded in thepresent

evaluationandtheire e twouldbeto hangethe

hadroni ontributionbyabout 110

10 .

2. Muon Magneti Anomaly

Itis onvenienttoseparatetheStandardModel

(SM) predi tionfortheanomalousmagneti

mo-mentofthemuonintoitsdi erent ontributions,

a SM  = a QED  +a had  +a weak  ; (2) with a had  = a had;LO  +a had;HO  +a had;LBL  ; (3) andwherea QED  =(11658472:00:2)10 10 is

thepureele tromagneti ontribution(see[31,32℄

and referen es therein), a

had;LO  is the lowest-order HVP ontribution, a had;HO  = ( 10:0 0:6) 10 10

is the orresponding higher-order

part[33,2℄, and a weak  = (15:4 0:1  0:2)  10 10

, where the rst error is the hadroni

un- ertainty and the se ond is due to the Higgs

mass range, a ounts for orre tions due to

ex- hangeoftheweaklyintera tingbosonsuptotwo

loops[34℄. Forthelight-by-light(LBL)s attering

part, a

had;LBL



, we use the value (12:03:5)

10 10

fromthelatestevaluation[35℄,slightly

or-re tedforthemissing ontributionfrom(mainly)

thepionbox.

Owing to unitarity and to the analyti ity of

the va uum-polarizationfun tion, thelowest

or-derHVP ontributiontoa



anbe omputedvia

thedispersionintegral[36℄

(4)

where K(s) is a well-known QED kernel, and

R (0)

(s) denotes the ratio of the \bare" ross

se tion for e

+

e annihilation into hadrons to

the pointlike muon-pair ross se tion. The

bare ross se tion is de ned as the measured

rossse tion orre tedfor initial-stateradiation,

ele tron-vertex loop ontributions and

va uum-polarization e e ts in the photon propagator.

However,photonradiationinthe nalstateis

in- ludedinthebare rossse tionde nedhere. The

reasonforusingthebare(i.e.,lowestorder) ross

se tion is that a full treatment of higher orders

is anyhowneeded at thelevel of a



, sothat the

useofthe\dressed" rossse tionwouldentailthe

riskof double- ountingsomeof thehigher-order

ontributions.

The fun tion K(s)  1=s in Eq. (4) gives a

strong weight to the low-energy part of the

in-tegral. About 91% of the total ontribution to

a had;LO



isa umulatedat enter-of-massenergies

p

sbelow1:8GeVand 73%of a

had;LO



is overed

bythe nal state,whi h isdominatedbythe

(770)resonan e.

3. The Input Data

Adetailed ompilation ofall theexperimental

datausedintheevaluationofthedispersion

inte-gral(4)isprovidedinRefs.[13,12℄. Alsodis ussed

thereinisthe orre tivetreatmentofradiative

ef-fe tsappliedtosomeofthemeasurements. The

spe tralfun tionisobtainedbyaveragingthe

re-sults from ALEPH[3℄, CLEO[37℄andOPAL[38℄,

whi hexhibitsatisfa torymutualagreement.

A omparison of the e

+

e ! 

+

 data

andthe orresponding spe tralfun tion,

repre-sentedasapoint-by-pointratiotothe spe tral

fun tion is givenin Fig.2. Several observations

anbemade.

 Asigni antdis repan y,mainlyabovethe

 peak is found between  and the e

+ e

datafromCMD-2aswellasolderdatafrom

OLYA.

 Overall,the KLOEdata on rm thetrend

exhibitedbytheothere

+

e data.

 Some disagreement between KLOE and

data arelarge), on the peak (KLOE

be-low CMD-2) as well as on the high mass

side(KLOEdataarelow).

At this stage, the  spe tralfun tion has not

been orre ted for a possible  

0

mass and

width splitting[41,40℄. In ontrastto earlier

ex-perimental[3℄ and theoreti al results[39℄, a

om-bined pion form fa tor t[40℄ to the newpre ise

data on e

+

e and  spe tral fun tions leads to

m  m  0 = (2:30:8)MeV= 2 , while no

sig-ni antwidth splittingisobservedwithinthe t

errorof1:7MeV=

2 .

Note that ifthemassdi eren eisto betaken

asanexperimentalfa t,alargerwidthdi eren e

wouldbeexpe ted. Usinga hiralmodelofthe

resonan e[42,19,20℄,onehas

 0 =   m  0 m   3  0  3 + EM (5) where EM

isthewidthdi eren efrom

ele tro-magneti de ays. Thisleadstoatotalwidth

dif-feren e of (2:10:5)MeV=

2

that is marginally

onsistent with the observed value[40℄. is

ob-servedwithin the terrorof1:7MeV=

2 .

Considering the mass splitting in the

isospin-breaking orre tion of the  spe tral fun tion

tendstolo allyimprove(thoughnotrestore)the

agreement between  and CMD-2 data, leaving

an overallnormalization dis repan y. In reasing

the 

 0

width splitting by+3MeV=

2

im-provestheagreementbetween andKLOEdata

inthepeakregion,whileit annot orre tthe

dis- repan iesin thetails. Note thata orre tionof

the mass splitting alone would in rease the

dis- repan y betweenthe  and e

+ e -based results fora had;LO  .

Duringthepreviousevaluationsofa

had;LO



,the

results using respe tively the  and e

+

e data

werequotedindividually,butonthesamefooting

sin e the e

+

e -based evaluation wasdominated

by the data from a single experiment(CMD-2).

The on rmation of this dis repan y by KLOE

dis redits the -based result for the use in the

dispersion integral until a better understanding

of thedynami al originof the observed e e t is

(5)

-0.3

-0.2

-0.1

0

0.1

0.2

0.2

0.4

0.6

0.8

1

1.2

KLOE

CMD-2

CMD

OLYA

DM1

τ

Average

preliminary

s (GeV

2

)

(

|

F

π

|

2

[

ee

]

|

F

π

|

2

[

τ

]

)

/

|

F

π

|

2

[

τ

]

-0.3

-0.2

-0.1

0

0.1

0.2

0.5

0.55

0.6

0.65

0.7

KLOE

CMD-2

CMD

OLYA

DM1

τ

Average

preliminary

s (GeV

2

)

(

|

F

π

|

2

[

ee

]

|

F

π

|

2

[

τ

]

)

/

|

F

π

|

2

[

τ

]

Figure2. Relative omparisonof the

+

 spe tralfun tionsfrom e

+

e -annihilationdataand

isospin-breaking- orre ted data,expressedasaratiotothe spe tralfun tion. Theshadedbandindi atesthe

errorsofthe data. Thee

+

e dataarefromKLOE[26℄,CMD-2[17℄,CMD,OLYAandDM1(referen es

giveninRef.[12℄). Therighthand plotemphasizestheregionofthepeak.

tan e.

4. Results

Thein lusion ofthe KLOE data de reases

the ontributionfromthismodefrom[12℄(450:2

4:91:6 rad )10 10 to(448:34:11:6 rad )10 10

forthe energyinterval between0.5and 1:8GeV.

Notethat theadditionalsystemati errordue to

radiative e e ts originates from the energy

re-gionsnot overedbythere entKLOEand

CMD-2measurements,whereafulltreatmentof

radia-tive orre tionsis applied. Thepreliminary

esti-mateoftheintegral(4)givenbelowin ludes one

additionalimprovementwithrespe t toRef.[12℄:

perturbative QCDis used insteadof

experimen-tal data in the region between1:8 and 3:7GeV,

wherenon-perturbative ontributionstointegrals

over di erently weighed spe tral fun tions were

foundto besmall[7℄. This resultsin aredu tion

ofa

had;LO



by 110

10

. Allother ontributions

to the dispersionintegralare equalto those

de- nedin Ref.[12℄. + hadroni ontributionis a had;LO  =(693:45:33:5 rad )10 10 ; (6)

where the se ond error is due to our treatment

of (potentially) missing radiative orre tions in

the older data[13℄. Adding to this the QED,

higher-order hadroni , light-by-light s attering,

and weak ontributions given in Se tion 2, one

nds a SM  = (11659182:86:3 had;LO+HO 3:5 had;LBL 0:3 QED+EW )10 10 : (7)

Thisvalue anbe omparedtothepresent

mea-surement(1);addingallerrorsinquadrature,the

di eren ebetweenexperimentandtheoryis

a exp  a SM  =(25:29:2)10 10 ; (8)

whi h orresponds to 2.7 \standard deviations"

(tobeinterpretedwith areduetothedominan e

of systemati errors in the SM predi tion). A

graphi al omparison of the result(7) with

(6)

140

150

160

170

180

190

200

210

a

µ

– 11

659

000 (10

–10

)

BNL-E821 04

DEHZ 03 (e

+

e

-based)

DEHZ 03 (

τ

-based)

HMNT 03 (e

+

e

-based)

J 03 (e

+

e

-based)

TY 04 (e

+

e

-based)

DEHZ 04 (e

+

e

-based)

BNL-E821 04

180.9

±

8.0

195.6

±

6.8

176.3

±

7.4

179.4

±

9.3 (preliminary)

180.6

±

5.9 (preliminary)

182.8

±

7.2 (preliminary)

208

±

5.8

Figure 3. Comparison of theresult (7)with the

BNL measurement[21℄. Also given are our

pre-vious estimates[12℄, where the triangle with the

dotted error barindi ates the -based result, as

well as the estimates from Refs.[14-16℄, not yet

in ludingtheKLOEdata.

5. Con lusion and Perspe tive

In spite of the new and pre ise data on the

two-pion spe tral fun tion from the KLOE

Col-laboration, the lowest order hadroni

va uum-polarization ontributionremainsthemost

riti- al omponentintheStandardModelpredi tion

ofa



. The entral pie e ofinformationprovided

by the present KLOE data is that they on rm

thedis repan ybetweenthe dataande

+

e

an-nihilationobservedinthis hannel[12℄.Thissaid,

wepointoutthat therealsoo ursdisagreement

betweenKLOEand CMD-2 data in someofthe

energyregions.

Anempiri alisospin-breaking orre tionofthe

resonan elineshape(massandwidth)improves

but doesnotrestore the agreement betweenthe

two data sets. It is a onsequen e of this

on- rmation that, until the CVC puzzle is solved,

onlye

+

e datashouldbeusedfortheevaluation

of thedispersionintegral. Doingso,and

in lud-ing the KLOE data, we nd that the Standard

Model predi tion of a di ers from the

experi-mental valueby2.7standarddeviations.

We are looking forward to the forth oming

results on the low- and high-energy two-pion

spe tral fun tion from the CMD-2

Collabora-tion. Thesedata willhelpto signi antlyredu e

the systemati un ertaintydue to the orre tive

treatment of radiative e e ts, often omitted by

partbythepreviousexperiments.

The initial-state-radiation program of the

BABAR ollaborationhasalreadyproved its

per-forman eby publishingthe spe tralfun tion for

 +

 

0

(andsoonfor2

+

2 ),whileresultsfor

thetwo-pion nalstateareexpe ted.

A knowledgements

I thankAndreasHo ker,SimonEidelmanand

Zhiqing Zhangfor the fruitful ollaborationand

BillMar ianoformany larifyingdis ussions.

REFERENCES

1. S. Eidelman and F. Jegerlehner, Z. Phys.

C67,585(1995).

2. R. Alemany, M.Davierand A. Ho ker,Eur.

Phys.J.C2,123(1998).

3. ALEPH Collaboration (R. Barate et al.), Z.

Phys.C76,15(1997).

4. ALEPHCollaboration(R.Barateetal.),Eur.

J.Phys.C4,409(1998).

5. OPAL Collaboration (G. Abbiendi et al.),

Eur.Phys.J.C7,571(1999).

6. A.D. Martin and D. Zeppenfeld, Phys. Lett.

B345, 558(1995).

7. M.DavierandA.Ho ker,Phys.Lett.B419,

419(1998).

8. J.H. Kuhn and M. Steinhauser, Phys. Lett.

B437, 425(1998).

9. J.Erler,Phys.Rev.D59,054008(1999).

10. S. Groote et al., Phys. Lett. B440, 375

(1998).

11. M.DavierandA.Ho ker,Phys.Lett.B435,

427(1998).

12. M. Davier, S. Eidelman, A. Ho ker and

Z. Zhang,Eur.Phys.J.C31,503(2003).

13. M. Davier, S. Eidelman, A. Ho ker and

(7)

T.Teubner, Phys.Lett.B557,69(2003).

15. J.F. de Tro oniz and F.J. Yndurain,

FTUAM-04-02,hep-ph/0402285(2004).

16. F. Jegerlehner, DESY-03-189,

hep-ph/0312372(2003).

17. CMD-2 Collaboration (R.R. Akhmetshin et

al.),Phys.Lett.B578,285(2004).

18. M. Davier and C. Yuan, Nu l. Phys. (Pro .

Suppl.)B123,47(2003).

19. V.Cirigliano,G.E kerandH.Neufeld,Phys.

Lett.B513,361(2001).

20. V.Cirigliano,G.E kerandH.Neufeld,JHEP

0208,2(2002).

21. Muon g-2 Collaboration (G.W. Bennett et

al.),Phys.Rev.Lett.92, 161802(2004).

22. M.Artusoetal.(CLEOCollaboration),Phys.

Rev. Lett. 72(1994)3762.

23. K. A kersta et al. (OPAL Collaboration),

Eur.Phys. J. C4(1998)93.

24. R.Barateetal.(ALEPHCollaboration),Eur.

Phys. J.C11(1999)599.

25. M.Battleetal.(CLEOCollaboration),Phys.

Rev. Lett. 73(1994)1079.

26. KLOECollaboration(A.Aloisioetal.),

hep-ex/0407048(2004).

27. A.B.Arbuzovetal., JHEP9812(1998)9;

S.Binner,J.H.KuhnandK.Melnikov,Phys.

Lett.B459,279(1999);G.Rodrigo,H.Czyz,

J.H.KuhnandM.Szopa,Eur.Phys.J.C24,

71 (2002); see also the later publi ations on

thesubje tfromtheseauthorsand

ollabora-tors;

M. Benayoun et al., Mod. Phys. Lett. A 14

(1999)2605.

28. BABAR Collaboration (B. Aubert et al.),

BABAR-PUB-04/034, hep-ex/0408078

(2004).

29. DM2 Collaboration (A. Antonelli et al.), Z.

Phys.C56,15(1992).

30. M. Davier, Study of e

+

e ollisions with a

hardinitialstatephotonatBABAR,these

pro- eedings.

31. V.W. Hughes and T. Kinoshita, Rev. Mod.

Phys. 71, 133 (1999); T. Kinoshita and

M.Nio,hep-ph/0402206(2004).

32. A.Czarne kiandW.J.Mar iano,Nu l.Phys.

(Pro . Suppl.) B76, 245 (1999); M. Davier

S i. 54,115(2004).

33. B.Krause,Phys.Lett.B390,392(1997).

34. A. Czarne ki, W.J. Mar iano and A.

Vain-shtein, Phys. Rev. D67, 073006 (2003);

A. Czarne ki,B.KrauseandW.J.Mar iano,

Phys.Rev.Lett.76, 3267(1995);Phys.Rev.

D52, 2619 (1995); R. Ja kiw and S.

Wein-berg, Phys. Rev. D5, 2473 (1972); S. Peris,

M. Perrottet and E. de Rafael, Phys. Lett.

B355, 523 (1995); M. Kne ht et al., JHEP

0211,003(2002).

35. K. Melnikov and A. Vainshtein,

UMN-TH-2224-03,hep-ph/0312226(2003).

36. M. Gourdin and E. de Rafael, Nu l. Phys.

B10, 667 (1969); S.J. Brodsky and E. de

Rafael,Phys.Rev.168,1620(1968).

37. CLEO Collaboration (S. Anderson et al.),

Phys.Rev.D61,112002(2000).

38. OPAL Collaboration (K. A kersta et al.),

Eur.Phys.J.C7,571(1999).

39. J. Bijnens and P. Gosdzinsky, Phys. Lett.

B388, 203(1996).

40. M.Davier,hep-ex/0312065(2003).

41. S. Ghozzi and F.J. Jegerlehner, Phys. Lett.

B583, 222(2004).

42. F. GuerreroandA. Pi h, Phys. Lett.B412,

382 (1997); D. Gomez Gumm, A. Pi h and

Références

Documents relatifs

De plus amples prospections en période de rémission devraient être menées pour déterminer si ces zones du Kanem/lac Tchad et Batha, anciennement de transit pour les grégaires, ne

Des LEDs à base des composites polymère/nanocristaux font l’objet de recherches poussées ces dernières années. Les nanocristaux semi-conducteurs luminescents ont été

In the year 2001, we published an updated evaluation of the hadronic contribution to the running of the QED fine structure constant [1], based on a dispersion integral using

Going from the published to the recent revised CMD-2 results [4] moves ∆ α (5) had ( s ) in the opposite direction by about 28%, which is about 18% of the total uncertainty of

In light of this discrepancy, which is not fully captured by the local uncertainty rescaling procedure, we add as an extra systematic uncertainty half of the full difference between

‫اﻟﺠﺮاﺋـــــﻢ اﻟﻤـــــﺎﺳـــﺔ ﺑـــــﺄﻧﻈﻤـــــﺔ اﻟﻤﻌــــﺎﻟﺠـــﺔ اﻵﻟﯿــــــــﺔ ﻟﻠﻤﻌﻄﯿـــــــــﺎت‬ ‫ﻣﻌطﯾﺎت ﻣﺧزﻧﺔ ﻏﯾر ﻣﻠﻣوﺳﺔ ‪ ،‬و ھو ﻣﺎ ﯾﺿﻊ ﻋﻠﻰ ﻛﺎھل اﻟﻘﺎﺿﻲ

8811 ص ، 187.. 6 باجي او يف ا نملأاو ملسلا ظفح يف ةماع ةفصب ةدحتملا مملأاو ةصاخ ةفصب نملأا سلجم رود نييلودلا يدصتلا يف اهب نملأا سلجم زاهجو ةدحتملا

لصفلا ثلاثلا تايلجت ةحورطأ ةدحو دوجولا يف ةفسلف ازونيبس ؿلبخ نم ونوقليس باسح فوكيس ونأب كأ لبثم بٓاظب٤ا سانلا نع اكدر مذلا بْب٢اصلا ةعجرب جلأا