• Aucun résultat trouvé

1. Drury, A.N. and A. Szent-Gyorgyi,

N/A
N/A
Protected

Academic year: 2021

Partager "1. Drury, A.N. and A. Szent-Gyorgyi,"

Copied!
18
0
0

Texte intégral

(1)

1. Drury, A.N. and A. Szent-Gyorgyi, The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol, 1929.

68(3): p. 213-37.

2. Holton, P., The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol, 1959. 145(3): p. 494-504.

3. Berne, R.M., Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol, 1963. 204: p. 317-22.

4. Sattin, A. and T.W. Rall, The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Mol

Pharmacol, 1970. 6(1): p. 13-23.

5. Rall, T.W. and A. Sattin, Factors influencing the accumulation of cyclic AMP in brain tissue. Adv Biochem Psychopharmacol, 1970. 3: p. 113-33.

6. Burnstock, G., D.G. Satchell, and A. Smythe, A comparison of the excitatory and inhibitory effects of non-adrenergic, non-cholinergic nerve stimulation and

exogenously applied ATP on a variety of smooth muscle preparations from different vertebrate species. Br J Pharmacol, 1972. 46(2): p. 234-42.

7. Burnstock, G., Purine and pyrimidine receptors. Cell Mol Life Sci, 2007.

8. Libert, F., et al., Selective amplification and cloning of four new members of the G protein-coupled receptor family. Science, 1989. 244(4904): p. 569-72.

9. Libert, F., et al., The orphan receptor cDNA RDC7 encodes an A1 adenosine receptor.

Embo J, 1991. 10(7): p. 1677-82.

10. Maenhaut, C., et al., RDC8 codes for an adenosine A2 receptor with physiological constitutive activity. Biochem Biophys Res Commun, 1990. 173(3): p. 1169-78.

11. Abbracchio, M.P. and G. Burnstock, Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther, 1994. 64(3): p. 445-75.

12. Foster, C.J., et al., Molecular identification and characterization of the platelet ADP receptor targeted by thienopyridine antithrombotic drugs. J Clin Invest, 2001.

107(12): p. 1591-8.

13. Leon, C., et al., Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y(1) receptor-null mice. J Clin Invest, 1999. 104(12): p. 1731-7.

14. Robaye, B., et al., Loss of nucleotide regulation of epithelial chloride transport in the jejunum of P2Y4-null mice. Mol Pharmacol, 2003. 63(4): p. 777-83.

15. Enjyoji, K., et al., Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med, 1999. 5(9): p. 1010-7.

16. Born, G.V., Platelets and blood vessels. J Cardiovasc Pharmacol, 1984. 6 Suppl 4: p.

S706-13.

17. Manzoni, O.J., T. Manabe, and R.A. Nicoll, Release of adenosine by activation of NMDA receptors in the hippocampus. Science, 1994. 265(5181): p. 2098-101.

18. Lazarowski, E.R., et al., Release of cellular UDP-glucose as a potential extracellular signaling molecule. Mol Pharmacol, 2003. 63(5): p. 1190-7.

19. Ogilvie, A., et al., Adenine dinucleotides: a novel class of signalling molecules. J Auton Pharmacol, 1996. 16(6): p. 325-8.

20. Born, G.V. and M.A. Kratzer, Source and concentration of extracellular adenosine triphosphate during haemostasis in rats, rabbits and man. J Physiol, 1984. 354: p.

419-29.

21. Ryan, L.M., et al., Adenosine triphosphate levels in human plasma. J Rheumatol, 1996. 23(2): p. 214-9.

22. Evans, R.J., V. Derkach, and A. Surprenant, ATP mediates fast synaptic transmission in mammalian neurons. Nature, 1992. 357(6378): p. 503-5.

23. Novak, I., ATP as a signaling molecule: the exocrine focus. News Physiol Sci, 2003.

18: p. 12-7.

(2)

24. Zhong, X., R. Malhotra, and G. Guidotti, ATP uptake in the Golgi and extracellular release require Mcd4 protein and the vacuolar H+-ATPase. J Biol Chem, 2003.

278(35): p. 33436-44.

25. Lazarowski, E.R., R.C. Boucher, and T.K. Harden, Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem, 2000.

275(40): p. 31061-8.

26. Lazarowski, E.R., R.C. Boucher, and T.K. Harden, Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol, 2003. 64(4): p. 785-95.

27. Bodin, P., D. Bailey, and G. Burnstock, Increased flow-induced ATP release from isolated vascular endothelial cells but not smooth muscle cells. Br J Pharmacol, 1991.

103(1): p. 1203-5.

28. Forrester, T., An estimate of adenosine triphosphate release into the venous effluent from exercising human forearm muscle. J Physiol, 1972. 224(3): p. 611-28.

29. Milner, P., et al., Rapid release of endothelin and ATP from isolated aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun, 1990. 170(2): p.

649-56.

30. Feranchak, A.P., J.G. Fitz, and R.M. Roman, Volume-sensitive purinergic signaling in human hepatocytes. J Hepatol, 2000. 33(2): p. 174-82.

31. Ferguson, D.R., I. Kennedy, and T.J. Burton, ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes--a possible sensory mechanism? J Physiol, 1997. 505 (Pt 2): p. 503-11.

32. Blay, J., T.D. White, and D.W. Hoskin, The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res, 1997. 57(13):

p. 2602-5.

33. Caldwell, C.C., J. Tschoep, and A.B. Lentsch, Lymphocyte function during hepatic ischemia/reperfusion injury. J Leukoc Biol, 2007.

34. Cramer, T. and R.S. Johnson, A novel role for the hypoxia inducible transcription factor HIF-1alpha: critical regulation of inflammatory cell function. Cell Cycle, 2003.

2(3): p. 192-3.

35. Fredholm, B.B., K. Lindstrom, and A. Wallman-Johansson, Propentofylline and other adenosine transport inhibitors increase the efflux of adenosine following electrical or metabolic stimulation of rat hippocampal slices. J Neurochem, 1994. 62(2): p. 563-73.

36. Latini, S., et al., Extracellular adenosine concentrations during in vitro ischaemia in rat hippocampal slices. Br J Pharmacol, 1999. 127(3): p. 729-39.

37. Rudolphi, K.A., et al., Neuroprotective role of adenosine in cerebral ischaemia.

Trends Pharmacol Sci, 1992. 13(12): p. 439-45.

38. Rudolphi, K.A., et al., Adenosine and brain ischemia. Cerebrovasc Brain Metab Rev, 1992. 4(4): p. 346-69.

39. Zetterstrom, T., et al., Purine levels in the intact rat brain. Studies with an implanted perfused hollow fibre. Neurosci Lett, 1982. 29(2): p. 111-5.

40. Yang, S., et al., Purinergic axis in cardiac blood vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ Res, 1994. 74(3): p. 401-7.

41. Mizumoto, N., et al., CD39 is the dominant Langerhans cell-associated ecto-

NTPDase: modulatory roles in inflammation and immune responsiveness. Nat Med, 2002. 8(4): p. 358-65.

42. Abraham, E.H., et al., The multidrug resistance (mdr1) gene product functions as an ATP channel. Proc Natl Acad Sci U S A, 1993. 90(1): p. 312-6.

(3)

43. Braunstein, G.M., et al., Cystic fibrosis transmembrane conductance regulator facilitates ATP release by stimulating a separate ATP release channel for autocrine control of cell volume regulation. J Biol Chem, 2001. 276(9): p. 6621-30.

44. Roman, R.M., et al., Evidence for multidrug resistance-1 P-glycoprotein-dependent regulation of cellular ATP permeability. J Membr Biol, 2001. 183(3): p. 165-73.

45. Anderson, C.M., et al., Demonstration of the existence of mRNAs encoding N1/cif and N2/cit sodium/nucleoside cotransporters in rat brain. Brain Res Mol Brain Res, 1996.

42(2): p. 358-61.

46. Baldwin, S.A., et al., Nucleoside transporters: molecular biology and implications for therapeutic development. Mol Med Today, 1999. 5(5): p. 216-24.

47. Cass, C.E., et al., Nucleoside transporters of mammalian cells. Pharm Biotechnol, 1999. 12: p. 313-52.

48. Williams, T.C. and S.M. Jarvis, Multiple sodium-dependent nucleoside transport systems in bovine renal brush-border membrane vesicles. Biochem J, 1991. 274 (Pt 1): p. 27-33.

49. Banerjee, R.K., Ecto-ATPase. Mol Cell Biochem, 1981. 37(2): p. 91-9.

50. Handa, M. and G. Guidotti, Purification and cloning of a soluble ATP-

diphosphohydrolase (apyrase) from potato tubers (Solanum tuberosum). Biochem Biophys Res Commun, 1996. 218(3): p. 916-23.

51. Vasconcelos, E.G., et al., Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross- reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem, 1996. 271(36): p. 22139-45.

52. Zimmermann, H., Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol, 2000. 362(4-5): p. 299-309.

53. Grobben, B., et al., An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem, 1999.

72(2): p. 826-34.

54. Lazarowski, E.R., et al., Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. J Biol Chem, 1997. 272(33):

p. 20402-7.

55. Donaldson, S.H., M. Picher, and R.C. Boucher, Secreted and cell-associated adenylate kinase and nucleoside diphosphokinase contribute to extracellular nucleotide

metabolism on human airway surfaces. Am J Respir Cell Mol Biol, 2002. 26(2): p.

209-15.

56. Nagy, A.K., T.A. Shuster, and A.V. Delgado-Escueta, Rat brain synaptosomal ATP:AMP-phosphotransferase activity. J Neurochem, 1989. 53(4): p. 1166-72.

57. Yegutkin, G.G., T. Henttinen, and S. Jalkanen, Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. Faseb J, 2001. 15(1): p. 251-260.

58. Podgorska, M., K. Kocbuch, and T. Pawelczyk, Recent advances in studies on biochemical and structural properties of equilibrative and concentrative nucleoside transporters. Acta Biochim Pol, 2005. 52(4): p. 749-58.

59. Hirsh, A.J., et al., Adenosine Deaminase 1 and Concentrative Nucleoside Transporters 2 and 3 Regulate Adenosine on the Apical Surface of Human Airway Epithelia:

Implications for Inflammatory Lung Diseases. Biochemistry, 2007.

60. Pacheco, R., et al., CD26, adenosine deaminase, and adenosine receptors mediate costimulatory signals in the immunological synapse. Proc Natl Acad Sci U S A, 2005.

102(27): p. 9583-8.

(4)

61. Huang, P., et al., Compartmentalized autocrine signaling to cystic fibrosis

transmembrane conductance regulator at the apical membrane of airway epithelial cells. Proc Natl Acad Sci U S A, 2001. 98(24): p. 14120-5.

62. Beigi, R., et al., Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase. Am J Physiol, 1999. 276(1 Pt 1): p. C267-78.

63. Homolya, L., T.H. Steinberg, and R.C. Boucher, Cell to cell communication in response to mechanical stress via bilateral release of ATP and UTP in polarized epithelia. J Cell Biol, 2000. 150(6): p. 1349-60.

64. Londos, C., D.M. Cooper, and J. Wolff, Subclasses of external adenosine receptors.

Proc Natl Acad Sci U S A, 1980. 77(5): p. 2551-4.

65. van Calker, D., M. Muller, and B. Hamprecht, Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J

Neurochem, 1979. 33(5): p. 999-1005.

66. Daly, J.W., P. Butts-Lamb, and W. Padgett, Subclasses of adenosine receptors in the central nervous system: interaction with caffeine and related methylxanthines. Cell Mol Neurobiol, 1983. 3(1): p. 69-80.

67. Fredholm, B.B., et al., International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev, 2001. 53(4): p. 527-52.

68. Atkinson, M.R., et al., Cloning, characterisation and chromosomal assignment of the human adenosine A3 receptor (ADORA3) gene. Neurosci Res, 1997. 29(1): p. 73-9.

69. Chu, Y.Y., et al., Characterization of the rat A2a adenosine receptor gene. DNA Cell Biol, 1996. 15(4): p. 329-37.

70. Ren, H. and G.L. Stiles, Characterization of the human A1 adenosine receptor gene.

Evidence for alternative splicing. J Biol Chem, 1994. 269(4): p. 3104-10.

71. Stehle, J.H., et al., Molecular cloning and expression of the cDNA for a novel A2- adenosine receptor subtype. Mol Endocrinol, 1992. 6(3): p. 384-93.

72. Ren, H. and G.L. Stiles, Separate promoters in the human A1 adenosine receptor gene direct the synthesis of distinct messenger RNAs that regulate receptor abundance. Mol Pharmacol, 1995. 48(6): p. 975-80.

73. van Calker, D., M. Muller, and B. Hamprecht, Adenosine inhibits the accumulation of cyclic AMP in cultured brain cells. Nature, 1978. 276(5690): p. 839-41.

74. Zhou, Q.Y., et al., Molecular cloning and characterization of an adenosine receptor:

the A3 adenosine receptor. Proc Natl Acad Sci U S A, 1992. 89(16): p. 7432-6.

75. Palmer, T.M. and G.L. Stiles, Adenosine receptors. Neuropharmacology, 1995. 34(7):

p. 683-94.

76. Brackett, L.E. and J.W. Daly, Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem Pharmacol, 1994. 47(5): p. 801-14.

77. Feoktistov, I. and I. Biaggioni, Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest, 1995. 96(4): p. 1979-86.

78. Reshkin, S.J., et al., Activation of A(3) adenosine receptor induces calcium entry and chloride secretion in A(6) cells. J Membr Biol, 2000. 178(2): p. 103-13.

79. Johansson, B., et al., A1 and A2A adenosine receptors and A1 mRNA in mouse brain:

effect of long-term caffeine treatment. Brain Res, 1997. 762(1-2): p. 153-64.

80. Yaar, R., et al., Animal models for the study of adenosine receptor function. J Cell Physiol, 2005. 202(1): p. 9-20.

81. Reppert, S.M., et al., Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol, 1991.

5(8): p. 1037-48.

82. Fredholm, B.B., et al., Adenosine and brain function. Int Rev Neurobiol, 2005. 63: p.

191-270.

(5)

83. Fredholm, B.B., et al., Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol, 2005. 45: p. 385-412.

84. Stambaugh, K., et al., A novel cardioprotective function of adenosine A1 and A3 receptors during prolonged simulated ischemia. Am J Physiol, 1997. 273(1 Pt 2): p.

H501-5.

85. Neely, C.F. and I.M. Keith, A1 adenosine receptor antagonists block ischemia- reperfusion injury of the lung. Am J Physiol, 1995. 268(6 Pt 1): p. L1036-46.

86. Yang, Z., et al., Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol Heart Circ Physiol, 2002. 282(3): p.

H949-55.

87. Johansson, B., et al., Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A, 2001. 98(16): p.

9407-12.

88. Minelli, A., et al., Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity. J Androl, 2004. 25(2): p. 286-92.

89. Peterfreund, R.A., et al., Characterization and expression of the human A2a adenosine receptor gene. J Neurochem, 1996. 66(1): p. 362-8.

90. Rosin, D.L., et al., Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol, 1998. 401(2): p. 163-86.

91. Conti, A., et al., Effects of selective A1 and A2 adenosine receptor agonists on

cardiovascular tissues. Naunyn Schmiedebergs Arch Pharmacol, 1993. 348(1): p. 108- 12.

92. Varani, K., et al., Dose and time effects of caffeine intake on human platelet adenosine A(2A) receptors: functional and biochemical aspects. Circulation, 2000. 102(3): p.

285-9.

93. Ledent, C., et al., Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature, 1997. 388(6643): p. 674-8.

94. Ohta, A. and M. Sitkovsky, Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature, 2001.

414(6866): p. 916-20.

95. Martin, P.L., Evidence that adenosine receptors in the dog left atrium are not of the typical A1 or A2 adenosine receptor subtypes. Eur J Pharmacol, 1992. 214(2-3): p.

199-205.

96. Linden, J., New insights into the regulation of inflammation by adenosine. J Clin Invest, 2006. 116(7): p. 1835-7.

97. Yang, D., et al., The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J Clin Invest, 2006. 116(7): p. 1913-23.

98. Hua, X., et al., Enhanced mast cell activation in mice deficient in the A2b adenosine receptor. J Exp Med, 2007. 204(1): p. 117-28.

99. Rivkees, S.A., Localization and characterization of adenosine receptor expression in rat testis. Endocrinology, 1994. 135(6): p. 2307-13.

100. Murrison, E.M., et al., Cloning and characterisation of the human adenosine A3 receptor gene. FEBS Lett, 1996. 384(3): p. 243-6.

101. Ramkumar, V., et al., The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem, 1993.

268(23): p. 16887-90.

102. Gao, Z., et al., A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol, 2001. 59(1): p. 76-82.

(6)

103. Yao, Y., et al., Adenosine A3 receptor agonists protect HL-60 and U-937 cells from apoptosis induced by A3 antagonists. Biochem Biophys Res Commun, 1997. 232(2):

p. 317-22.

104. Ohana, G., et al., Differential effect of adenosine on tumor and normal cell growth:

focus on the A3 adenosine receptor. J Cell Physiol, 2001. 186(1): p. 19-23.

105. Salvatore, C.A., et al., Disruption of the A(3) adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem, 2000. 275(6): p. 4429-34.

106. Guo, Y., et al., Targeted deletion of the A3 adenosine receptor confers resistance to myocardial ischemic injury and does not prevent early preconditioning. J Mol Cell Cardiol, 2001. 33(4): p. 825-30.

107. North, R.A., Molecular physiology of P2X receptors. Physiol Rev, 2002. 82(4): p.

1013-67.

108. Stojilkovic, S.S., et al., Molecular dissection of purinergic P2X receptor channels.

Ann N Y Acad Sci, 2005. 1048: p. 116-30.

109. Torres, G.E., T.M. Egan, and M.M. Voigt, Hetero-oligomeric assembly of P2X receptor subunits. Specificities exist with regard to possible partners. J Biol Chem, 1999. 274(10): p. 6653-9.

110. Nicke, A., et al., P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. Embo J, 1998. 17(11): p. 3016-28.

111. Townsend-Nicholson, A., et al., Molecular cloning, functional characterization and possible cooperativity between the murine P2X4 and P2X4a receptors. Brain Res Mol Brain Res, 1999. 64(2): p. 246-54.

112. Volonte, C., et al., P2 receptor web: complexity and fine-tuning. Pharmacol Ther, 2006. 112(1): p. 264-80.

113. Swanson, K.D., C. Reigh, and G.E. Landreth, ATP-stimulated activation of the

mitogen-activated protein kinases through ionotrophic P2X2 purinoreceptors in PC12 cells. Difference in purinoreceptor sensitivity in two PC12 cell lines. J Biol Chem, 1998. 273(32): p. 19965-71.

114. Evans, R.J., et al., Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J Physiol, 1996. 497 (Pt 2): p. 413-22.

115. Khakh, B.S., et al., Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat Neurosci, 1999. 2(4): p. 322-30.

116. Virginio, C., et al., Pore dilation of neuronal P2X receptor channels. Nat Neurosci, 1999. 2(4): p. 315-21.

117. Adriouch, S., et al., NAD+ Released during Inflammation Participates in T Cell Homeostasis by Inducing ART2-Mediated Death of Naive T Cells In Vivo. J Immunol, 2007. 179(1): p. 186-94.

118. Ding, S. and F. Sachs, Single channel properties of P2X2 purinoceptors. J Gen Physiol, 1999. 113(5): p. 695-720.

119. Williams, M. and M.F. Jarvis, Purinergic and pyrimidinergic receptors as potential drug targets. Biochem Pharmacol, 2000. 59(10): p. 1173-85.

120. Burnstock, G., Introduction: P2 receptors. Curr Top Med Chem, 2004. 4(8): p. 793- 803.

121. Bardoni, R., et al., ATP P2X receptors mediate fast synaptic transmission in the dorsal horn of the rat spinal cord. J Neurosci, 1997. 17(14): p. 5297-304.

122. Khakh, B.S. and G. Henderson, ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol, 1998. 54(2): p. 372-8.

123. Tsuda, M., et al., P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature, 2003. 424(6950): p. 778-83.

(7)

124. Mulryan, K., et al., Reduced vas deferens contraction and male infertility in mice lacking P2X1 receptors. Nature, 2000. 403(6765): p. 86-9.

125. Rong, W., et al., Pivotal role of nucleotide P2X2 receptor subunit of the ATP-gated ion channel mediating ventilatory responses to hypoxia. J Neurosci, 2003. 23(36): p.

11315-21.

126. Cockayne, D.A., et al., Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature, 2000. 407(6807): p. 1011-5.

127. Fairbairn, I.P., et al., ATP-mediated killing of intracellular mycobacteria by

macrophages is a P2X(7)-dependent process inducing bacterial death by phagosome- lysosome fusion. J Immunol, 2001. 167(6): p. 3300-7.

128. Solle, M., et al., Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem, 2001. 276(1): p. 125-32.

129. Ke, H.Z., et al., Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol, 2003. 17(7): p. 1356-67.

130. Adriouch, S., et al., Cutting edge: a natural P451L mutation in the cytoplasmic domain impairs the function of the mouse P2X7 receptor. J Immunol, 2002. 169(8): p.

4108-12.

131. Wiley, J.S., et al., An Ile-568 to Asn polymorphism prevents normal trafficking and function of the human P2X7 receptor. J Biol Chem, 2003. 278(19): p. 17108-13.

132. Lustig, K.D., et al., Expression cloning of an ATP receptor from mouse neuroblastoma cells. Proc Natl Acad Sci U S A, 1993. 90(11): p. 5113-7.

133. Webb, T.E., et al., Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett, 1993. 324(2): p. 219-25.

134. Hollopeter, G., et al., Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature, 2001. 409(6817): p. 202-7.

135. Abbracchio, M.P., et al., International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev, 2006. 58(3): p. 281-341.

136. Li, Q., et al., Evidence that the p2y3 receptor is the avian homologue of the mammalian P2Y6 receptor. Mol Pharmacol, 1998. 54(3): p. 541-6.

137. Bogdanov, Y.D., et al., Early expression of a novel nucleotide receptor in the neural plate of Xenopus embryos. J Biol Chem, 1997. 272(19): p. 12583-90.

138. Yokomizo, T., et al., A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature, 1997. 387(6633): p. 620-4.

139. Noguchi, K., S. Ishii, and T. Shimizu, Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem, 2003. 278(28): p. 25600-6.

140. Webb, T.E., M.G. Kaplan, and E.A. Barnard, Identification of 6H1 as a P2Y purinoceptor: P2Y5. Biochem Biophys Res Commun, 1996. 219(1): p. 105-10.

141. Rao, S., et al., The Ets factors PU.1 and Spi-B regulate the transcription in vivo of P2Y10, a lymphoid restricted heptahelical receptor. J Biol Chem, 1999. 274(48): p.

34245-52.

142. King, B.F. and A. Townsend-Nicholson, Recombinant P2Y receptors: the UCL experience. J Auton Nerv Syst, 2000. 81(1-3): p. 164-70.

143. Inbe, H., et al., Identification and characterization of a cell-surface receptor, P2Y15, for AMP and adenosine. J Biol Chem, 2004. 279(19): p. 19790-9.

144. He, W., et al., Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature, 2004. 429(6988): p. 188-93.

145. Communi, D., et al., Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem, 1997. 272(51): p. 31969-73.

(8)

146. Van Rhee, A.M., et al., Modelling the P2Y purinoceptor using rhodopsin as template.

Drug Des Discov, 1995. 13(2): p. 133-54.

147. Erb, L., et al., Site-directed mutagenesis of P2U purinoceptors. Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity. J Biol Chem, 1995. 270(9): p. 4185-8.

148. Jiang, Q., et al., A mutational analysis of residues essential for ligand recognition at the human P2Y1 receptor. Mol Pharmacol, 1997. 52(3): p. 499-507.

149. Al-Ani, B., et al., Proteinase activated receptor 2: Role of extracellular loop 2 for ligand-mediated activation. Br J Pharmacol, 1999. 128(5): p. 1105-13.

150. Moro, S., C. Hoffmann, and K.A. Jacobson, Role of the extracellular loops of G protein-coupled receptors in ligand recognition: a molecular modeling study of the human P2Y1 receptor. Biochemistry, 1999. 38(12): p. 3498-507.

151. Zhong, X., et al., N-linked glycosylation of platelet P2Y12 ADP receptor is essential for signal transduction but not for ligand binding or cell surface expression. FEBS Lett, 2004. 562(1-3): p. 111-7.

152. Ding, Z., et al., Arg333 and Arg334 in the COOH terminus of the human P2Y1 receptor are crucial for Gq coupling. Am J Physiol Cell Physiol, 2005. 288(3): p.

C559-67.

153. Yoshioka, K., O. Saitoh, and H. Nakata, Heteromeric association creates a P2Y-like adenosine receptor. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7617-22.

154. Bodor, E.T., et al., Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol, 2003. 64(5): p. 1210-6.

155. Waldo, G.L. and T.K. Harden, Agonist binding and Gq-stimulating activities of the purified human P2Y1 receptor. Mol Pharmacol, 2004. 65(2): p. 426-36.

156. Baltensperger, K. and H. Porzig, The P2U purinoceptor obligatorily engages the heterotrimeric G protein G16 to mobilize intracellular Ca2+ in human

erythroleukemia cells. J Biol Chem, 1997. 272(15): p. 10151-9.

157. White, P.J., T.E. Webb, and M.R. Boarder, Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol, 2003. 63(6): p. 1356-63.

158. Wilkie, T.M. and S. Yokoyama, Evolution of the G protein alpha subunit multigene family. Soc Gen Physiol Ser, 1994. 49: p. 249-70.

159. Marrari, Y., et al., Assembly and trafficking of heterotrimeric G proteins.

Biochemistry, 2007. 46(26): p. 7665-77.

160. Rens-Domiano, S. and H.E. Hamm, Structural and functional relationships of heterotrimeric G-proteins. Faseb J, 1995. 9(11): p. 1059-66.

161. Patel, T.B., et al., Molecular biological approaches to unravel adenylyl cyclase signaling and function. Gene, 2001. 269(1-2): p. 13-25.

162. Wickman, K. and D.E. Clapham, Ion channel regulation by G proteins. Physiol Rev, 1995. 75(4): p. 865-85.

163. Dolphin, A.C., Beta subunits of voltage-gated calcium channels. J Bioenerg Biomembr, 2003. 35(6): p. 599-620.

164. Hall, R.A., et al., The beta2-adrenergic receptor interacts with the Na+/H+-

exchanger regulatory factor to control Na+/H+ exchange. Nature, 1998. 392(6676):

p. 626-30.

165. Murga, C., S. Fukuhara, and J.S. Gutkind, Novel Molecular Mediators in the Pathway Connecting G-protein-coupled Receptors to MAP Kinase Cascades. Trends

Endocrinol Metab, 1999. 10(4): p. 122-127. _00000131 _00000131.

166. Blumer, K.J. and G.L. Johnson, Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci, 1994. 19(6): p. 236-40.

(9)

167. Luttrell, L.M., Y. Daaka, and R.J. Lefkowitz, Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol, 1999. 11(2): p. 177-83.

168. Simon, J. and E.A. Barnard, The P2Y nucleotide receptors in the human genome. Acta Biol Hung, 2003. 54(2): p. 191-201.

169. Chhatriwala, M., et al., Induction of novel agonist selectivity for the ADP-activated P2Y1 receptor versus the ADP-activated P2Y12 and P2Y13 receptors by

conformational constraint of an ADP analog. J Pharmacol Exp Ther, 2004. 311(3): p.

1038-43.

170. Janssens, R., et al., Cloning and tissue distribution of the human P2Y1 receptor.

Biochem Biophys Res Commun, 1996. 221(3): p. 588-93.

171. Moore, D.J., et al., Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta, 2001.

1521(1-3): p. 107-19.

172. Burnstock, G. and G.E. Knight, Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol, 2004. 240: p. 31-304.

173. Fabre, J.E., et al., Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1-deficient mice. Nat Med, 1999. 5(10): p.

1199-202.

174. Hechler, B., et al., Lineage-specific overexpression of the P2Y1 receptor induces platelet hyper-reactivity in transgenic mice. J Thromb Haemost, 2003. 1(1): p. 155-63.

175. Shen, J., et al., Cloning, up-regulation, and mitogenic role of porcine P2Y2 receptor in coronary artery smooth muscle cells. Mol Pharmacol, 2004. 66(5): p. 1265-74.

176. Jacobson, K.A., et al., Molecular recognition at purine and pyrimidine nucleotide (P2) receptors. Curr Top Med Chem, 2004. 4(8): p. 805-19.

177. Hou, M., et al., Cytokines induce upregulation of vascular P2Y(2) receptors and increased mitogenic responses to UTP and ATP. Arterioscler Thromb Vasc Biol, 2000. 20(9): p. 2064-9.

178. Kellerman, D., et al., Inhaled P2Y2 receptor agonists as a treatment for patients with Cystic Fibrosis lung disease. Adv Drug Deliv Rev, 2002. 54(11): p. 1463-74.

179. Ghanem, E., et al., The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol, 2005. 146(3): p. 364-9.

180. Deterding, R.R., et al., Phase 2 Randomized Safety and Efficacy Trial of Nebulized Denufosol Tetrasodium in Cystic Fibrosis. Am J Respir Crit Care Med, 2007.

181. Nichols, K.K., B. Yerxa, and D.J. Kellerman, Diquafosol tetrasodium: a novel dry eye therapy. Expert Opin Investig Drugs, 2004. 13(1): p. 47-54.

182. Cressman, V.L., et al., Effect of loss of P2Y(2) receptor gene expression on nucleotide regulation of murine epithelial Cl(-) transport. J Biol Chem, 1999. 274(37): p. 26461- 8.

183. Matos, J.E., et al., Distal colonic Na(+) absorption inhibited by luminal P2Y(2) receptors. Pflugers Arch, 2007. 454(6): p. 977-87.

184. Communi, D., et al., Pharmacological characterization of the human P2Y4 receptor.

Eur J Pharmacol, 1996. 317(2-3): p. 383-9.

185. Bogdanov, Y.D., et al., Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol, 1998. 124(3): p. 428-30.

186. Suarez-Huerta, N., et al., Molecular cloning and characterization of the mouse P2Y4 nucleotide receptor. Eur J Pharmacol, 2001. 416(3): p. 197-202.

187. Kennedy, C., et al., ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor. Mol Pharmacol, 2000. 57(5): p. 926-31.

188. Lazarowski, E.R., et al., Cloning and functional characterization of two murine uridine nucleotide receptors reveal a potential target for correcting ion transport deficiency in cystic fibrosis gallbladder. J Pharmacol Exp Ther, 2001. 297(1): p. 43-9.

(10)

189. Chang, K., et al., Molecular cloning and functional analysis of a novel P2 nucleotide receptor. J Biol Chem, 1995. 270(44): p. 26152-8.

190. Communi, D., M. Parmentier, and J.M. Boeynaems, Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun, 1996. 222(2): p. 303-8.

191. Pendergast, W., et al., Synthesis and P2Y receptor activity of a series of uridine dinucleoside 5'-polyphosphates. Bioorg Med Chem Lett, 2001. 11(2): p. 157-60.

192. Mamedova, L.K., et al., Diisothiocyanate derivatives as potent, insurmountable antagonists of P2Y6 nucleotide receptors. Biochem Pharmacol, 2004. 67(9): p. 1763- 70.

193. Robaye, B., J.M. Boeynaems, and D. Communi, Slow desensitization of the human P2Y6 receptor. Eur J Pharmacol, 1997. 329(2-3): p. 231-6.

194. Malmsjo, M., et al., Potent P2Y6 receptor mediated contractions in human cerebral arteries. BMC Pharmacol, 2003. 3: p. 4.

195. Warny, M., et al., P2Y(6) nucleotide receptor mediates monocyte interleukin-8

production in response to UDP or lipopolysaccharide. J Biol Chem, 2001. 276(28): p.

26051-6.

196. Communi, D., et al., Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem, 2001. 276(19): p. 16561-6.

197. Communi, D., B. Robaye, and J.M. Boeynaems, Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol, 1999. 128(6): p. 1199-206.

198. Wilkin, F., et al., The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol, 2001. 166(12): p. 7172-7.

199. Schnurr, M., et al., ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood, 2003. 102(2):

p. 613-20.

200. Communi, D., et al., Rapid up-regulation of P2Y messengers during granulocytic differentiation of HL-60 cells. FEBS Lett, 2000. 475(1): p. 39-42.

201. Herbert, J.M. and P. Savi, P2Y12, a new platelet ADP receptor, target of clopidogrel.

Semin Vasc Med, 2003. 3(2): p. 113-22.

202. Ingall, A.H., et al., Antagonists of the platelet P2T receptor: a novel approach to antithrombotic therapy. J Med Chem, 1999. 42(2): p. 213-20.

203. Takasaki, J., et al., Molecular cloning of the platelet P2T(AC) ADP receptor:

pharmacological comparison with another ADP receptor, the P2Y(1) receptor. Mol Pharmacol, 2001. 60(3): p. 432-9.

204. Sasaki, Y., et al., Selective expression of Gi/o-coupled ATP receptor P2Y12 in microglia in rat brain. Glia, 2003. 44(3): p. 242-50.

205. Geiger, J., et al., Specific impairment of human platelet P2Y(AC) ADP receptor- mediated signaling by the antiplatelet drug clopidogrel. Arterioscler Thromb Vasc Biol, 1999. 19(8): p. 2007-11.

206. Honda, S., et al., Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci, 2001. 21(6): p. 1975-82.

207. Haynes, S.E., et al., The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci, 2006. 9(12): p. 1512-9.

208. Communi, D., et al., Identification of a novel human ADP receptor coupled to G(i). J Biol Chem, 2001. 276(44): p. 41479-85.

209. Marteau, F., et al., Pharmacological characterization of the human P2Y13 receptor.

Mol Pharmacol, 2003. 64(1): p. 104-12.

210. Kim, Y.C., et al., Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. Biochem Pharmacol, 2005. 70(2): p. 266-74.

(11)

211. Eason, M.G., et al., Simultaneous coupling of alpha 2-adrenergic receptors to two G- proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem, 1992. 267(22): p.

15795-801.

212. Wirkner, K., et al., Adenine nucleotides inhibit recombinant N-type calcium channels via G protein-coupled mechanisms in HEK 293 cells; involvement of the P2Y13 receptor-type. Br J Pharmacol, 2004. 141(1): p. 141-51.

213. Fumagalli, M., et al., Cloning, pharmacological characterisation and distribution of the rat G-protein-coupled P2Y(13) receptor. Biochem Pharmacol, 2004. 68(1): p. 113- 24.

214. Zhang, F.L., et al., P2Y(13): identification and characterization of a novel Galphai- coupled ADP receptor from human and mouse. J Pharmacol Exp Ther, 2002. 301(2):

p. 705-13.

215. Wang, L., et al., P2 receptor mRNA expression profiles in human lymphocytes, monocytes and CD34+ stem and progenitor cells. BMC Immunol, 2004. 5(1): p. 16.

216. Wang, L., et al., ADP acting on P2Y13 receptors is a negative feedback pathway for ATP release from human red blood cells. Circ Res, 2005. 96(2): p. 189-96.

217. Jacquet, S., et al., The nucleotide receptor P2Y13 is a key regulator of hepatic high- density lipoprotein (HDL) endocytosis. Cell Mol Life Sci, 2005. 62(21): p. 2508-15.

218. Cosby, K., et al., Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med, 2003. 9(12): p. 1498-505.

219. Ellsworth, M.L., et al., The erythrocyte as a regulator of vascular tone. Am J Physiol, 1995. 269(6 Pt 2): p. H2155-61.

220. Gonzalez-Alonso, J., D.B. Olsen, and B. Saltin, Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP. Circ Res, 2002. 91(11): p. 1046-55.

221. Dietrich, H.H., et al., Red blood cell regulation of microvascular tone through adenosine triphosphate. Am J Physiol Heart Circ Physiol, 2000. 278(4): p. H1294-8.

222. Bergfeld, G.R. and T. Forrester, Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc Res, 1992. 26(1): p. 40-7.

223. Malmsjo, M., L. Edvinsson, and D. Erlinge, P2U-receptor mediated endothelium- dependent but nitric oxide-independent vascular relaxation. Br J Pharmacol, 1998.

123(4): p. 719-29.

224. Martinez, L.O., et al., Characterization of two high-density lipoprotein binding sites on porcine hepatocyte plasma membranes: contribution of scavenger receptor class B type I (SR-BI) to the low-affinity component. Biochemistry, 2000. 39(5): p. 1076-82.

225. Martinez, L.O., et al., Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis. Nature, 2003. 421(6918): p. 75-9.

226. Freeman, K., et al., Cloning, pharmacology, and tissue distribution of G-protein- coupled receptor GPR105 (KIAA0001) rodent orthologs. Genomics, 2001. 78(3): p.

124-8.

227. Chambers, J.K., et al., A G protein-coupled receptor for UDP-glucose. J Biol Chem, 2000. 275(15): p. 10767-71.

228. Scrivens, M. and J.M. Dickenson, Functional expression of the P2Y14 receptor in murine T-lymphocytes. Br J Pharmacol, 2005. 146(3): p. 435-44.

229. Scrivens, M. and J.M. Dickenson, Functional expression of the P2Y14 receptor in human neutrophils. Eur J Pharmacol, 2006. 543(1-3): p. 166-73.

230. Skelton, L., et al., Human immature monocyte-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) and increase intracellular calcium in response to its agonist, uridine diphosphoglucose. J Immunol, 2003.

171(4): p. 1941-9.

(12)

231. Lee, B.C., et al., P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. Genes Dev, 2003. 17(13): p.

1592-604.

232. Siess, W., Molecular mechanisms of platelet activation. Physiol Rev, 1989. 69(1): p.

58-178.

233. Burnstock, G. and M. Williams, P2 purinergic receptors: modulation of cell function and therapeutic potential. J Pharmacol Exp Ther, 2000. 295(3): p. 862-9.

234. Dwyer, K.M., et al., Thromboregulatory manifestations in human CD39 transgenic mice and the implications for thrombotic disease and transplantation. J Clin Invest, 2004. 113(10): p. 1440-6.

235. Baurand, A., et al., Differential regulation and relocalization of the platelet P2Y receptors after activation: a way to avoid loss of hemostatic properties? Mol Pharmacol, 2005. 67(3): p. 721-33.

236. Fung, C.Y., et al., Primary and secondary agonists can use P2X(1) receptors as a major pathway to increase intracellular Ca(2+) in the human platelet. J Thromb Haemost, 2007. 5(5): p. 910-7.

237. Leon, C., et al., The P2Y1 receptor is an ADP receptor antagonized by ATP and expressed in platelets and megakaryoblastic cells. FEBS Lett, 1997. 403(1): p. 26-30.

238. Pirotton, S., et al., Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J Biol Chem, 1987. 262(36):

p. 17461-6.

239. Savi, P., et al., The active metabolite of Clopidogrel disrupts P2Y12 receptor oligomers and partitions them out of lipid rafts. Proc Natl Acad Sci U S A, 2006.

103(29): p. 11069-74.

240. Gutcher, I. and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest, 2007. 117(5): p. 1119-27.

241. Wu, L. and Y.J. Liu, Development of dendritic-cell lineages. Immunity, 2007. 26(6):

p. 741-50.

242. Maldonado-Lopez, R., et al., CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med, 1999. 189(3): p.

587-92.

243. Villadangos, J.A. and P. Schnorrer, Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol, 2007. 7(7): p. 543-55.

244. Moser, M. and K.M. Murphy, Dendritic cell regulation of TH1-TH2 development. Nat Immunol, 2000. 1(3): p. 199-205.

245. Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells.

Annu Rev Immunol, 2003. 21: p. 685-711.

246. Bours, M.J., et al., Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther, 2006. 112(2): p. 358-404.

247. Di Virgilio, F., et al., Nucleotide receptors: an emerging family of regulatory molecules in blood cells. Blood, 2001. 97(3): p. 587-600.

248. Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity.

Nature, 1998. 392(6673): p. 245-52.

249. Berchtold, S., et al., Human monocyte derived dendritic cells express functional P2X and P2Y receptors as well as ecto-nucleotidases. FEBS Lett, 1999. 458(3): p. 424-8.

250. Boeynaems, J.M. and D. Communi, Modulation of inflammation by extracellular nucleotides. J Invest Dermatol, 2006. 126(5): p. 943-4.

251. Idzko, M., et al., Nucleotides induce chemotaxis and actin polymerization in immature but not mature human dendritic cells via activation of pertussis toxin-sensitive P2y receptors. Blood, 2002. 100(3): p. 925-32.

(13)

252. Idzko, M., et al., Characterization of the biological activities of uridine diphosphate in human dendritic cells: Influence on chemotaxis and CXCL8 release. J Cell Physiol, 2004. 201(2): p. 286-93.

253. Liu, Q.H., et al., Expression and a role of functionally coupled P2Y receptors in human dendritic cells. FEBS Lett, 1999. 445(2-3): p. 402-8.

254. Panther, E., et al., Expression and function of adenosine receptors in human dendritic cells. Faseb J, 2001. 15(11): p. 1963-70.

255. Panther, E., et al., Adenosine affects expression of membrane molecules, cytokine and chemokine release, and the T-cell stimulatory capacity of human dendritic cells.

Blood, 2003. 101(10): p. 3985-90.

256. Schnurr, M., et al., Extracellular ATP and TNF-alpha synergize in the activation and maturation of human dendritic cells. J Immunol, 2000. 165(8): p. 4704-9.

257. Hofer, S., et al., Adenosine slows migration of dendritic cells but does not affect other aspects of dendritic cell maturation. J Invest Dermatol, 2003. 121(2): p. 300-7.

258. Marteau, F., et al., Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood, 2005. 106(12): p. 3860- 6.

259. Ferrari, D., et al., The P2 purinergic receptors of human dendritic cells: identification and coupling to cytokine release. Faseb J, 2000. 14(15): p. 2466-76.

260. Coutinho-Silva, R., et al., P2Z/P2X7 receptor-dependent apoptosis of dendritic cells.

Am J Physiol, 1999. 276(5 Pt 1): p. C1139-47.

261. Nihei, O.K., et al., Pharmacologic properties of P(2Z)/P2X(7)receptor characterized in murine dendritic cells: role on the induction of apoptosis. Blood, 2000. 96(3): p.

996-1005.

262. Wilkin, F., et al., Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dendritic cells: dual effect on IL-12 and stimulation of IL- 10. Eur J Immunol, 2002. 32(9): p. 2409-17.

263. la Sala, A., et al., Dendritic cells exposed to extracellular adenosine triphosphate acquire the migratory properties of mature cells and show a reduced capacity to attract type 1 T lymphocytes. Blood, 2002. 99(5): p. 1715-22.

264. Sak, K., J.M. Boeynaems, and H. Everaus, Involvement of P2Y receptors in the differentiation of haematopoietic cells. J Leukoc Biol, 2003. 73(4): p. 442-7.

265. Tateda, K., et al., Early recruitment of neutrophils determines subsequent T1/T2 host responses in a murine model of Legionella pneumophila pneumonia. J Immunol, 2001.

166(5): p. 3355-61.

266. Chen, L., et al., Neutrophil depletion exacerbates experimental Chagas' disease in BALB/c, but protects C57BL/6 mice through modulating the Th1/Th2 dichotomy in different directions. Eur J Immunol, 2001. 31(1): p. 265-75.

267. el-Sawy, T., N.M. Fahmy, and R.L. Fairchild, Chemokines: directing leukocyte infiltration into allografts. Curr Opin Immunol, 2002. 14(5): p. 562-8.

268. Rudolph, U., et al., Ulcerative colitis and adenocarcinoma of the colon in G alpha i2- deficient mice. Nat Genet, 1995. 10(2): p. 143-50.

269. Toscano, M.A., et al., Galectin-1 suppresses autoimmune retinal disease by promoting concomitant Th2- and T regulatory-mediated anti-inflammatory responses. J

Immunol, 2006. 176(10): p. 6323-32.

270. Rizzo, L.V., et al., IL-10 has a protective role in experimental autoimmune uveoretinitis. Int Immunol, 1998. 10(6): p. 807-14.

271. Hong, Y. and F.V. Abbott, Peripheral opioid modulation of pain and inflammation in the formalin test. Eur J Pharmacol, 1995. 277(1): p. 21-8.

272. Damas, J. and J.F. Liegeois, The inflammatory reaction induced by formalin in the rat paw. Naunyn Schmiedebergs Arch Pharmacol, 1999. 359(3): p. 220-7.

(14)

273. Cannon, K.E., R. Leurs, and L.B. Hough, Activation of peripheral and spinal histamine H(3) receptors inhibits formalin-induced inflammation and nociception, respectively. Pharmacol Biochem Behav, 2007. 88(1): p. 122-9.

274. Feng, C., et al., Adenine nucleotides inhibit cytokine generation by human mast cells through a Gs-coupled receptor. J Immunol, 2004. 173(12): p. 7539-47.

275. Montoya, M., et al., Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002. 99(9): p. 3263-71.

276. Banchereau, J., et al., Immunobiology of dendritic cells. Annu Rev Immunol, 2000.

18: p. 767-811.

277. Guermonprez, P., et al., Antigen presentation and T cell stimulation by dendritic cells.

Annu Rev Immunol, 2002. 20: p. 621-67.

278. Lee, D.H., et al., Expression of P2 receptors in human B cells and Epstein-Barr virus- transformed lymphoblastoid cell lines. BMC Immunol, 2006. 7: p. 22.

279. Duhant, X., et al., Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. J Immunol, 2002. 169(1): p. 15-21.

280. Ohta, A., et al., A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A, 2006. 103(35): p. 13132-7.

281. Biffen, M. and D.R. Alexander, Mobilization of intracellular Ca2+ by adenine nucleotides in human T-leukaemia cells: evidence for ADP-specific and P2y- purinergic receptors. Biochem J, 1994. 304 (Pt 3): p. 769-74.

282. Zhang, F.L., et al., ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem, 2001. 276(11): p. 8608-15.

283. Mizumoto, N., et al., Keratinocyte ATP release assay for testing skin-irritating potentials of structurally diverse chemicals. J Invest Dermatol, 2003. 121(5): p. 1066- 72.

284. He, J., et al., Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J Exp Med, 2000.

191(9): p. 1605-10.

285. Saint-Mezard, P., et al., Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Invest Dermatol, 2003. 120(4): p. 641-7.

286. Verspohl, E.J., et al., Effect of purinergic agonists and antagonists on insulin secretion from INS-1 cells (insulinoma cell line) and rat pancreatic islets. Can J Physiol

Pharmacol, 2002. 80(6): p. 562-8.

287. Kreckler, L.M., et al., Adenosine inhibits tumor necrosis factor-alpha release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther, 2006. 317(1): p. 172-80.

288. Ash, D.E., Structure and function of arginases. J Nutr, 2004. 134(10 Suppl): p. 2760S- 2764S; discussion 2765S-2767S.

289. Morris, S.M., Jr., Recent advances in arginine metabolism. Curr Opin Clin Nutr Metab Care, 2004. 7(1): p. 45-51.

290. Munder, M., et al., Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J Immunol, 1999. 163(7): p. 3771-7.

291. Martin, E., et al., Antigen-specific suppression of a primed immune response by dendritic cells mediated by regulatory T cells secreting interleukin-10. Immunity, 2003. 18(1): p. 155-67.

292. Andre, P., et al., P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J Clin Invest, 2003. 112(3): p. 398-406.

293. Bachman, E.S., et al., betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science, 2002. 297(5582): p. 843-5.

(15)

294. Sakai, N., et al., Secondary lymphoid tissue chemokine (SLC/CCL21)/CCR7 signaling regulates fibrocytes in renal fibrosis. Proc Natl Acad Sci U S A, 2006. 103(38): p.

14098-103.

295. Wittamer, V., et al., Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J Exp Med, 2003. 198(7): p.

977-85.

296. Dalwadi, H., et al., B cell developmental requirement for the G alpha i2 gene. J Immunol, 2003. 170(4): p. 1707-15.

297. Jantzen, H.M., et al., Impaired activation of murine platelets lacking G alpha(i2). J Clin Invest, 2001. 108(3): p. 477-83.

298. Idzko, M., et al., Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med, 2007. 13(8): p. 913-9.

299. Simon, J., et al., Characterization and channel coupling of the P2Y(12) nucleotide receptor of brain capillary endothelial cells. J Biol Chem, 2002. 277(35): p. 31390- 400.

300. Camps, M., et al., Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature, 1992. 360(6405): p. 684-6.

301. Fox, S.C., M.W. Behan, and S. Heptinstall, Inhibition of ADP-induced intracellular Ca2+ responses and platelet aggregation by the P2Y12 receptor antagonists AR- C69931MX and clopidogrel is enhanced by prostaglandin E1. Cell Calcium, 2004.

35(1): p. 39-46.

302. Sage, S.O., E.H. Yamoah, and J.W. Heemskerk, The roles of P(2X1)and P(2T AC)receptors in ADP-evoked calcium signalling in human platelets. Cell Calcium, 2000. 28(2): p. 119-26.

303. Hardy, A.R., et al., Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets. Blood, 2004. 104(6): p. 1745-52.

304. Marteau, F., et al., Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol, 2004. 7: p. 7.

305. Shankar, H., et al., G-protein-gated inwardly rectifying potassium channels regulate ADP-induced cPLA2 activity in platelets through Src family kinases. Blood, 2006.

108(9): p. 3027-34.

306. Shankar, H., et al., Role of G protein-gated inwardly rectifying potassium channels in P2Y12 receptor-mediated platelet functional responses. Blood, 2004. 104(5): p. 1335- 43.

307. Offermanns, S., Activation of platelet function through G protein-coupled receptors.

Circ Res, 2006. 99(12): p. 1293-304.

308. Gilboa, E., DC-based cancer vaccines. J Clin Invest, 2007. 117(5): p. 1195-203.

309. Morelli, A.E. and A.W. Thomson, Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol, 2007. 7(8): p. 610-21.

310. Trucco, M. and N. Giannoukakis, Immunoregulatory dendritic cells to prevent and reverse new-onset Type 1 diabetes mellitus. Expert Opin Biol Ther, 2007. 7(7): p. 951- 63.

311. Schnurr, M., et al., Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood, 2005. 105(4): p. 1582-9.

312. Yanagawa, Y. and K. Onoe, CCR7 ligands induce rapid endocytosis in mature dendritic cells with concomitant up-regulation of Cdc42 and Rac activities. Blood, 2003. 101(12): p. 4923-9.

313. Caux, C., et al., Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol, 2000. 22(4): p. 345-69.

(16)

314. Geisler, T. and D.L. Bhatt, The role of inflammation in atherothrombosis: current and future strategies of medical treatment. Med Sci Monit, 2004. 10(12): p. RA308-16.

315. Graff, J., et al., Anti-inflammatory effects of clopidogrel intake in renal transplant patients: effects on platelet-leukocyte interactions, platelet CD40 ligand expression, and proinflammatory biomarkers. Clin Pharmacol Ther, 2005. 78(5): p. 468-76.

316. von Hundelshausen, P. and C. Weber, Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res, 2007. 100(1): p. 27-40.

317. Petit, P., et al., Effects of extracellular adenine nucleotides on the electrical, ionic and secretory events in mouse pancreatic beta-cells. Br J Pharmacol, 1989. 98(3): p. 875- 82.

318. Pihlajamaki, J., et al., Insulin resistance is associated with increased cholesterol synthesis and decreased cholesterol absorption in normoglycemic men. J Lipid Res, 2004. 45(3): p. 507-12.

319. Burcelin, R., et al., Impaired glucose homeostasis in mice lacking the alpha1b- adrenergic receptor subtype. J Biol Chem, 2004. 279(2): p. 1108-15.

320. Woods, S.C., et al., Food intake and the regulation of body weight. Annu Rev Psychol, 2000. 51: p. 255-77.

321. Bjornholm, M., et al., Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. J Clin Invest, 2007. 117(5): p. 1354-60.

322. Lowell, B.B. and B.M. Spiegelman, Towards a molecular understanding of adaptive thermogenesis. Nature, 2000. 404(6778): p. 652-60.

323. Light, A.R., et al., Purinergic receptors activating rapid intracellular Ca increases in microglia. Neuron Glia Biol, 2006. 2(2): p. 125-138.

324. Hasko, G. and B.N. Cronstein, Adenosine: an endogenous regulator of innate immunity. Trends Immunol, 2004. 25(1): p. 33-9.

325. Sitkovsky, M.V. and A. Ohta, The 'danger' sensors that STOP the immune response:

the A2 adenosine receptors? Trends Immunol, 2005. 26(6): p. 299-304.

326. Fossetta, J., et al., Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol Pharmacol, 2003. 63(2): p. 342-50.

327. Schnurr, M., et al., Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood, 2004. 103(4): p. 1391-7.

328. Dickenson, J.M., et al., Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106. Eur J Pharmacol, 2003. 474(1): p. 43-51.

329. Marquardt, D.L., L.L. Walker, and S. Heinemann, Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J Immunol, 1994. 152(9): p.

4508-15.

330. Iwakura, Y. and H. Ishigame, The IL-23/IL-17 axis in inflammation. J Clin Invest, 2006. 116(5): p. 1218-22.

331. Sheibanie, A.F., et al., The Proinflammatory Effect of Prostaglandin E2 in

Experimental Inflammatory Bowel Disease Is Mediated through the IL-23->IL-17 Axis. J Immunol, 2007. 178(12): p. 8138-47.

332. Doyen, V., et al., Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med, 2003. 198(8): p. 1277-83.

333. Crawford, S.E., et al., Thrombospondin-1 is a major activator of TGF-beta1 in vivo.

Cell, 1998. 93(7): p. 1159-70.

334. Uyttenhove, C., et al., Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med, 2003. 9(10): p.

1269-74.

335. Bles, N., et al., Gene expression profiling defines ATP as a key regulator of human dendritic cell functions. J Immunol, 2007. 179(6): p. 3550-8.

(17)

336. Horckmans, M., et al., Extracellular adenine nucleotides inhibit the release of major monocyte recruiters by human monocyte-derived dendritic cells. FEBS Lett, 2006.

580(3): p. 747-54.

337. Bagley, K.C., et al., Calcium signaling through phospholipase C activates dendritic cells to mature and is necessary for the activation and maturation of dendritic cells induced by diverse agonists. Clin Diagn Lab Immunol, 2004. 11(1): p. 77-82.

338. Ramanathan, M., et al., Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell, 2007. 18(1): p. 14-23.

339. Bronte, V., et al., L-arginine metabolism in myeloid cells controls T-lymphocyte functions. Trends Immunol, 2003. 24(6): p. 302-6.

340. Chang, C.I., et al., The involvement of tyrosine kinases, cyclic AMP/protein kinase A, and p38 mitogen-activated protein kinase in IL-13-mediated arginase I induction in macrophages: its implications in IL-13-inhibited nitric oxide production. J Immunol, 2000. 165(4): p. 2134-41.

341. Ochoa, A.C., et al., Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res, 2007. 13(2 Pt 2): p. 721s-726s.

342. Rodriguez, P.C., et al., Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res, 2004. 64(16): p. 5839-49.

343. Gallina, G., et al., Tumors induce a subset of inflammatory monocytes with

immunosuppressive activity on CD8+ T cells. J Clin Invest, 2006. 116(10): p. 2777- 90.

344. Mellor, A.L. and D.H. Munn, IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol, 2004. 4(10): p. 762-74.

345. Rodriguez, P.C., D.G. Quiceno, and A.C. Ochoa, L-arginine availability regulates T- lymphocyte cell-cycle progression. Blood, 2007. 109(4): p. 1568-73.

346. Zea, A.H., et al., L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol, 2004. 232(1-2): p. 21-31.

347. Munn, D.H. and A.L. Mellor, IDO and tolerance to tumors. Trends Mol Med, 2004.

10(1): p. 15-8.

348. Decking, U.K., et al., Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circ Res, 1997. 81(2): p. 154-64.

349. Johnson, B.F., et al., Vascular endothelial growth factor and immunosuppression in cancer: current knowledge and potential for new therapy. Expert Opin Biol Ther, 2007. 7(4): p. 449-60.

350. Takahashi, A., et al., Vascular endothelial growth factor inhibits maturation of dendritic cells induced by lipopolysaccharide, but not by proinflammatory cytokines.

Cancer Immunol Immunother, 2004. 53(6): p. 543-50.

351. Ohm, J.E., et al., VEGF inhibits T-cell development and may contribute to tumor- induced immune suppression. Blood, 2003. 101(12): p. 4878-86.

352. Demetri, G.D. and J.D. Griffin, Granulocyte colony-stimulating factor and its receptor. Blood, 1991. 78(11): p. 2791-808.

353. Rutella, S., et al., Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol, 2005. 175(11): p. 7085-91.

354. Rutella, S., et al., Role for granulocyte colony-stimulating factor in the generation of human T regulatory type 1 cells. Blood, 2002. 100(7): p. 2562-71.

355. Rutella, S., et al., Granulocyte colony-stimulating factor promotes the generation of regulatory DC through induction of IL-10 and IFN-alpha. Eur J Immunol, 2004.

34(5): p. 1291-302.

(18)

356. Rey Nores, J.E., et al., Soluble CD14 acts as a negative regulator of human T cell activation and function. Eur J Immunol, 1999. 29(1): p. 265-76.

357. Matsuzaki, J., et al., 1alpha,25-Dihydroxyvitamin D3 downmodulates the functional differentiation of Th1 cytokine-conditioned bone marrow-derived dendritic cells beneficial for cytotoxic T lymphocyte generation. Cancer Sci, 2006. 97(2): p. 139-47.

358. Sadeghi, K., et al., Vitamin D3 down-regulates monocyte TLR expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol, 2006.

36(2): p. 361-70.

359. Riboldi, E., et al., Cutting edge: proangiogenic properties of alternatively activated dendritic cells. J Immunol, 2005. 175(5): p. 2788-92.

360. Penna, G., et al., 1,25-Dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol, 2007. 178(1):

p. 145-53.

361. Schmitz, J., et al., IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines.

Immunity, 2005. 23(5): p. 479-90.

362. Komai-Koma, M., et al., IL-33 is a chemoattractant for human Th2 cells. Eur J Immunol, 2007.

363. Lappas, C.M., J.M. Rieger, and J. Linden, A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol, 2005. 174(2): p. 1073- 80.

Références

Documents relatifs

La relación de confianza y compromiso es crítica en todas las actividades del proyecto y para el logro de resultados. Estas relaciones determinan en gran parte el interés que

In pDCs transfected with a plasmid construct containing the mouse Ido1 promoter upstream of the luciferase gene, IFN- γ induced Ido1 promoter activity in an intense and rapid (at

This difference is significant since, as we shall see, it permits this algorithm to start with any interior solution and attain a linear rate of convergence.. Moreover,

A study of FCD in superior frontal sulcus (SFS) using quantified analysis of seizure discharge showed an ante- roposterior gradient of semiological expression, with seizures

In this study, we were interested in the effect of gender on the results of the voice localizer and we asked an explorative research question of whether brain activation

position et la conception de ce nouveau pavillon La bénédiction des nouveaux locaux par Mon- sont bien faites pour inviter la jeunesse au tra- seigneur Charrière, a donné lieu à

(3) Affirmative imperatives are formed with a set of imperative affixes. Negative imperatives are formed with a special verb which has a negative meaning. This special verb is

E2f3a knockout MEFs could be examined to determine if the defect in cell cycle re-entry and in the induction of E2F target gene expression is seperable from the regulation of