• Aucun résultat trouvé

The B A B AR Detector: Upgrades, Operation and Performance

N/A
N/A
Protected

Academic year: 2021

Partager "The B A B AR Detector: Upgrades, Operation and Performance"

Copied!
123
0
0

Texte intégral

(1)

BABAR-PUB-13/009 SLAC-PUB-15456

arXiv:1305.3560 [physics.ins-det]

NIMA 729(2013), 615-701

The B A B AR Detector: Upgrades, Operation and Performance

B. Auberta, R. Baratea, D. Boutignya, F. Couderca, P. del Amo Sancheza, J.-M. Gaillarda, A. Hicheura, Y. Karyotakisa, J. P. Leesa, V. Poireaua, X. Prudenta, P. Robbea, V. Tisseranda, A. Zghichea, E. Graugesb, J. Garra Ticob, L. Lopezc,d, M. Martinellic,d, A. Palanoc,d, M. Pappagalloc,d, A. Pompilic,d, G. P. Chene, J. C. Chene,

N. D. Qie, G. Ronge, P. Wange, Y. S. Zhue, G. Eigenf, B. Stuguf, L. Sunf, G. S. Abramsg, M. Battagliag, A. W. Borglandg, A. B. Breong, D. N. Browng, J. Button-Shaferg, R. N. Cahng, E. Charlesg, A. R. Clarkg, C. T. Dayg,

M. Furmang, M. S. Gillg, Y. Groysmang, R. G. Jacobseng, R. W. Kadelg, J. A. Kadykg, L. T. Kerthg, Yu. G. Kolomenskyg, J. F. Kralg, G. Kukartsevg, C. LeClercg, M. E. Levig, G. Lynchg, A. M. Merchantg, L. M. Mirg,

P. J. Oddoneg, T. J. Orimotog, I. L. Osipenkovg, M. Pripsteing, N. A. Roeg, A. Romosang, M. T. Ronang,1, V. G. Shelkovg, A. Suzukig, K. Tackmanng, T. Tanabeg, W. A. Wenzelg, M. Zismang, M. Barretth, P. G. Bright-Thomash, K. E. Fordh, T. J. Harrisonh, A. J. Harth, C. M. Hawkesh, D. J. Knowlesh, S. E. Morganh, S. W. O’Nealeh,1, R. C. Pennyh, D. Smithh, N. Sonih, A. T. Watsonh, N. K. Watsonh, K. Goetzeni, T. Heldi, H. Kochi,

M. Kunzei, B. Lewandowskii,1, M. Pelizaeusi, K. Petersi, H. Schmueckeri, T. Schroederi, M. Steinkei, A. Fellaj, E. Antoniolij, J. T. Boydk, N. Chevalierk, W. N. Cottinghamk, B. Fosterk, C. Mackayk, D. Walkerk, K. Abel,

D. J. Asgeirssonl, T. Cuhadar-Donszelmannl, B. G. Fulsoml, C. Heartyl, N. S. Knechtl, T. S. Mattisonl, J. A. McKennal, D. Thiessenl, A. Khanm, P. Kyberdm, A. K. McKemeym, A. Randle-Condem, M. Saleemm,

D. J. Sherwoodm, L. Teodorescum, V. E. Blinovn,o, A. D. Bukinn,p,1, A. R. Buzykaevn, V. P. Druzhininn,p, V. B. Golubevn,p, A. A. Koroln,p, E. A. Kravchenkon,p, A. P. Onuchinn,o, S. I. Serednyakovn,p, Yu. I. Skovpenn,p, E. P. Solodovn,p, V. I. Telnovn,p, K. Yu. Todyshevn,p, A. N. Yushkovn, D. S. Bestq, M. Bondioliq, M. Bruinsmaq, M. Chaoq, S. Curryq, I. Eschrichq, D. Kirkbyq, A. J. Lankfordq, M. Mandelkernq, E. C. Martinq, S. McMahonq, R. K. Mommsenq, D. P. Stokerq, S. Abachir, C. Buchananr, B. L. Hartfielr, A. J. R. Weinsteinr, H. Atmacans,

S. D. Foulkess, J. W. Garys, J. Layters, F. Lius, O. Longs, B. C. Shens,1, G. M. Vitugs, K. Wangs, Z. Yasins, L. Zhangs, H. K. Hadavandt, E. J. Hillt, H. P. Paart, S. Rahatlout, U. Schwanket, V. Sharmat, J. W. Berryhillu, C. Campagnariu, A. Cunhau, B. Dahmesu, T. M. Hongu, D. Kovalskyiu, N. Kuznetsovau, S. L. Levyu, A. Luu, M. A. Mazuru, J. D. Richmanu, W. Verkerkeu, T. W. Beckv, J. Beringerv, A. M. Eisnerv, C. J. Flaccov, A. A. Grillov, M. Grothev, C. A. Heuschv, J. Krosebergv, W. S. Lockmanv, A. J. Martinezv, G. Nesomv, T. Schalkv, R. E. Schmitzv,

B. A. Schummv, A. Seidenv, E. Spencerv, P. Spradlinv, M. Turriv, W. Walkowiakv, L. Wangv, M. Wilderv, D. C. Williamsv, M. G. Wilsonv, L. O. Winstromv, E. Chenw, C. H. Chengw, D. A. Dollw, M. P. Dorstenw, A. Dvoretskiiw, B. Echenardw, R. J. Erwinw, F. Fangw, K. T. Floodw, D. G. Hitlinw, S. Metzlerw, I. Narskyw, J. Oyangw, T. Piatenkow, F. C. Porterw, A. Rydw, A. Samuelw, S. Yangw, R. Y. Zhuw, R. Andreassenx, S. Devmalx, T. L. Geldx, S. Jayatillekex, G. Mancinellix, B. T. Meadowsx, K. Mishrax, M. D. Sokoloffx, T. Abey, E. A. Antillony,

T. Barillariy, J. Beckery, F. Blancy, P. C. Bloomy, S. Cheny, Z. C. Cliftony, I. M. Derringtony, J. Destreey, M. O. Dimay, W. T. Fordy, A. Gazy, J. D. Gilmany, J. Hachtely, J. F. Hirschauery, D. R. Johnsony, A. Kreisely,

M. Nagely, U. Nauenbergy, A. Olivasy, P. Rankiny, J. Royy, W. O. Ruddicky, J. G. Smithy, K. A. Ulmery, W. C. van Hoeky, S. R. Wagnery, C. G. Westy, J. Zhangy, R. Ayadz, J. Blouwz, A. Chenz, E. A. Eckhartz, J. L. Hartonz, T. Huz, W. H. Tokiz, R. J. Wilsonz, F. Winklmeierz, Q. L. Zengz, D. Altenburgaa, E. Feltresiaa, A. Haukeaa, H. Jasperaa, M. Karbachaa, J. Merkelaa, A. Petzoldaa, B. Spaanaa, K. Wackeraa, T. Brandtab, J. Broseab,

T. Colbergab, G. Dahlingerab, M. Dickoppab, P. Ecksteinab, H. Futterschneiderab, S. Kaiserab, M. J. Kobelab,

Principal corresponding author

∗∗Corresponding author

1Deceased

2Staffmember of the Centre de Calcul IN2P3, Lyon, France

arXiv:1305.3560v2 [physics.ins-det] 17 Sep 2013

(2)

R. Krauseab, R. M¨uller-Pfefferkornab, W. F. Maderab, E. Malyab, R. Nogowskiab, S. Ottoab, J. Schubertab, K. R. Schubertab, R. Schwierzab, J. E. Sundermannab, A. Volkab, L. Wildenab, D. Bernardac, F. Brochardac, J. Cohen-Tanugiac, F. Dohouac, S. Ferragac, E. Latourac, A. Mathieuac, C. Renardac, S. Schrenkac, S. T’Jampensac,

Ch. Thiebauxac, G. Vasileiadisac, M. Verderiac, A. Anjomshoaaad, R. Bernetad, P. J. Clarkad, D. R. Lavinad, F. Muheimad, S. Playferad, A. I. Robertsonad, J. E. Swainad, J. E. Watsonad, Y. Xiead, D. Andreottiae, M. Andreottiae,af,

D. Bettoniae, C. Bozziae, R. Calabreseae,af, V. Carassitiae, A. Cecchiae, G. Cibinettoae, A. Cotta Ramusinoae, F. Evangelistiae, E. Fioravantiae, P. Franchiniae, I. Garziaae, L. Landiae,af, E. Luppiae,af, R. Malagutiae, M. Negriniae,

C. Padoanae,af, A. Petrellaae, L. Piemonteseae, V. Santoroae, A. Sartiae,af, F. Anulliag,ca, R. Baldini-Ferroliag, A. Calcaterraag, G. Finocchiaroag, S. Pacettiag, P. Patteriag, I. M. Peruzziag,bu, M. Piccoloag, M. Ramaag, R. de Sangroag, M. Santoniag, A. Zalloag, S. Bagnascoah,ai, A. Buzzoah, R. Capraah,ai, R. Contriah,ai, G. Crosettiah,ai,

M. Lo Vetereah,ai, M. M. Macriah, S. Minutoliah, M. R. Mongeah,ai, P. Musicoah, S. Passaggioah, F. C. Pastoreah,ai, C. Patrignaniah,ai, M. G. Piaah, E. Robuttiah, A. Santroniah,ai, S. Tosiah,ai, B. Bhuyanaj, V. Prasadaj, S. Baileyak,

G. Brandenburgak, K. S. Chaisanguanthumak, C. L. Leeak, M. Moriiak, E. Wonak, J. Wuak, A. Adametzal, R. S. Dubitzkyal, J. Marksal, S. Schenkal, U. Uweral, V. Kloseam, H. M. Lackeram, M. L. Aspinwallan, W. Bhimjian,

D. A. Bowermanan, P. D. Daunceyan, U. Egedean, R. L. Flackan, J. R. Gaillardan, N. J. W. Gunawardanean, G. W. Mortonan, J .A. Nashan, M. B. Nikolichan, W. Panduro Vazquezan, P. Sandersan, D. Smithan, G. P. Tayloran, M. Tibbettsan, P. K. Beheraao, X. Chaiao, M. J. Charlesao, G. J. Grenierao, R. Hamiltonao, S.-J. Leeao, U. Mallikao, N. T. Meyerao, C. Chenap, J. Cochranap, H. B. Crawleyap, L. Dongap, V. Eygesap, P.-A. Fischerap, J. Lamsaap, W. T. Meyerap, S. Prellap, E. I. Rosenbergap, A. E. Rubinap, Y. Y. Gaoaq, A. V. Gritsanaq, Z. J. Guoaq, C. K. Laeaq,

G. Schottar, J. N. Albertas, N. Arnaudas,∗, C. Beigbederas, D. Bretonas, M. Davieras, D. Derkachas, S. Dˆuas, J. Firmino da Costaas, G. Grosdidieras, A. H¨ockeras, S. Laplaceas, F. Le Diberderas, V. Lepeltieras,1, A. M. Lutzas,

B. Malaescuas, J. Y. Niefas,2, T. C. Petersenas, S. Plaszczynskias, S. Pruvotas, P. Roudeauas, M. H. Schuneas, J. Serranoas, V. Sordinias,ca,cb, A. Stocchias, V. Tocutas, S. Trincaz-Duvoidas, L. L. Wangas, G. Wormseras, R. M. Biontaat, V. Brigljevi´cat, D. J. Langeat, M. C. Simaniat, D. M. Wrightat, I. Binghamau, J. P. Burkeau, C. A. Chavezau, J. P. Colemanau, I. J. Forsterau, J. R. Fryau, E. Gabathulerau, R. Gametau, M. Georgeau, D. E. Hutchcroftau, M. Kayau, R. J. Parryau, D. J. Payneau, K. C. Schofieldau, R. J. Sloaneau, C. Touramanisau, D. E. Azzopardiav, G. Bellodiav, A. J. Bevanav, C. K. Clarkeav, C. M. Cormackav, F. Di Lodovicoav, P. Dixonav,

K. A. Georgeav, W. Mengesav, R. J. L. Potterav, R. Saccoav, H. W. Shorthouseav, M. Sigamaniav, P. Strotherav, P. B. Vidalav, C. L. Brownaw, G. Cowanaw, H. U. Flaecheraw, S. Georgeaw, M. G. Greenaw, D. A. Hopkinsaw, P. S. Jacksonaw, A. Kurupaw, C. E. Markeraw, P. McGrathaw, T. R. McMahonaw, S. Paramesvaranaw, F. Salvatoreaw,

G. Vaitsasaw, M. A. Winteraw, A. C. Wrenaw, D. N. Brownax, C. L. Davisax, A. G. Denigar,ay, M. Fritschay, W. Gradlay, K. Griessingeray, A. Hafneray, E. Prencipeay, J. Allisonaz, K. E. Alwynaz, D. S. Baileyaz, N. R. Barlowaz,

R. J. Barlowaz, Y. M. Chiaaz, C. L. Edgaraz, A. C. Fortiaz, J. Fullwoodaz, P. A. Hartaz, M. C. Hodgkinsonaz, F. Jacksonaz, G. Jacksonaz, M. P. Kellyaz, S. D. Kolyaaz, G. D. Laffertyaz, A. J. Lyonaz, M. T. Naisbitaz, N. Savvasaz,

J. H. Weatherallaz, T. J. Westaz, J. C. Williamsaz, J. I. Yiaz, J. Andersonba, A. Farbinba, W. D. Hulsbergenba, A. Jawaheryba, V. Lillardba, D. A. Robertsba, J. R. Schieckba, G. Simiba, J. M. Tuggleba, G. Blaylockbb, C. Dallapiccolabb, S. S. Hertzbachbb, R. Koflerbb, V. B. Koptchevbb, X. Libb, T. B. Moorebb, E. Salvatibb, S. Saremibb,

H. Staenglebb, S. Y. Willocqbb, R. Cowanbc, D. Dujmicbc, P. H. Fisherbc, S. W. Hendersonbc, K. Koenekebc, M. I. Langbc, G. Sciollabc, M. Spitznagelbc, F. Taylorbc, R. K. Yamamotobc,1, M. Yibc, M. Zhaobc, Y. Zhengbc,

M. Klemettibd, D. Lindemannbd, D. J. J. Mangeolbd, S. E. Mclachlinbd,1, M. Milekbd, P. M. Patelbd,1, S. H. Robertsonbd, P. Biassonibe,bf, G. Cerizzabe,bf, A. Lazzarobe,bf, V. Lombardobe,bf, N. Neribe,bf, F. Palombobe,bf,

R. Pellegrinibe,bf, S. Strackabe,bf, J. M. Bauerbg, L. Cremaldibg, V. Eschenburgbg, R. Kroegerbg, J. Reidybg, D. A. Sandersbg, D. J. Summersbg, H. W. Zhaobg, R. Godangbh, S. Brunetbi, D. Cotebi, X. Nguyenbi, M. Simardbi,

P. Tarasbi, B. Viaudbi, H. Nicholsonbj, N. Cavallobk, G. De Nardobk,bl, F. Fabozzibk, C. Gattobk, L. Listabk, D. Monorchiobk,bl, G. Onoratobk,bl, P. Paoluccibk, D. Piccolobk,bl, C. Sciaccabk,bl, M. A. Baakbm, G. Ravenbm, H. L. Snoekbm, C. P. Jessopbn, K. J. Knoepfelbn, J. M. LoSeccobn, W. F. Wangbn, T. Allmendingerbo, G. Benellibo,

B. Braubo, L. A. Corwinbo, K. K. Ganbo, K. Honscheidbo, D. Hufnagelbo, H. Kaganbo, R. Kassbo, J. P. Morrisbo, A. M. Rahimibo, J. J. Regensburgerbo, D. S. Smithbo, R. Ter-Antonyanbo, Q. K. Wongbo, N. L. Blountbp, J. Braubp,

R. Freybp, O. Igonkinabp, M. Iwasakibp, J. A. Kolbbp, M. Lubp, C. T. Potterbp, R. Rahmatbp, N. B. Sinevbp, D. Strombp, J. Strubebp, E. Torrencebp, E. Borsatobq,br, G. Castellibq, F. Colecchiabq,br, A. Crescentebq, F. Dal Corsobq,

(3)

A. Dorigobq, C. Faninbq, F. Furanobq, N. Gagliardibq,br, F. Galeazzibq,br, M. Margonibq,br, M. Marzollabq, G. Michelonbq,br, M. Morandinbq, M. Posoccobq, M. Rotondobq, F. Simonettobq,br, P. Solagnabq, E. Stevanatobq,

R. Stroilibq,br, G. Tiozzobq, C. Vocibq,br, S. Akarbs, P. Baillybs, E. Ben-Haimbs, G. Bonneaudbs, H. Briandbs, J. Chauveaubs, O. Hamonbs, M. J. J. Johnbs, H. Lebbolobs, Ph. Lerustebs, J. Malcl`esbs, G. Marchioribs, L. Martinbs,

J. Ocarizbs, A. Perezbs, M. Pivkbs, J. Prendkibs, L. Roosbs, S. Sittbs, J. Starkbs, G. Th´erinbs, A. Vallereaubs, M. Biasinibt,bu, R. Covarellibt,bu, E. Manonibt,bu, S. Pennazzibt,bu, M. Pioppibt,bu, C. Angelinibv,bw, G. Batignanibv,bw,

S. Bettarinibv,bw, F. Bosibv, F. Buccibv,bw, G. Calderinibv,bw,bs, M. Carpinellibv,bw, R. Cencibv,bw, A. Cervellibv,bw, F. Fortibv,bw, M. A. Giorgibv,bw, A. Lusianibv,bx, G. Marchioribv,bw, M. Morgantibv,bw, F. Morsanibv, E. Paolonibv,bw, F. Raffaellibv, G. Rizzobv,bw, F. Sandrellibv,bw, G. Triggianibv,bw, J. J. Walshbv,bw, M. Haireby, D. Juddby, J. Biesiadabz,

N. Danielsonbz, P. Elmerbz, R. E. Fernholzbz, Y. P. Laubz, C. Lubz, V. Miftakovbz, J. Olsenbz, D. Lopes Pegnabz, W. R. Sandsbz, A. J. S. Smithbz, A. V. Telnovbz, A. Tumanovbz, E. W. Varnesbz, E. Baracchinica,cb, F. Bellinica,cb,

C. Bulfonca, E. Buccherica, G. Cavotoca, A. D’Orazioca,cb, E. Di Marcoca,cb, R. Faccinica,cb, F. Ferrarottoca, F. Ferronica,cb, M. Gasperoca,cb, P. D. Jacksonca,cb, E. Lamannaca,cb, E. Leonardica, L. Li Gioica,cb, R. Lunadeica, M. A. Mazzonica, S. Morgantica, G. Pireddaca, F. Polcica,cb, D. del Reca,cb, F. Rengaca,cb, F. Safai Tehranica, M. Serraca,

C. Voenaca, C. B¨ungercc, S. Christcc, T. Hartmanncc, T. Leddigcc, H. Schr¨odercc, G. Wagnercc, R. Waldicc, T. Adyecd, M. Blycd, C. Brewcd, C. Condurachecd, N. De Grootcd, B. Franekcd, N. I. Geddescd, G. P. Gopalcd, E. O. Olaiyacd, S. Ricciardicd, W. Roethelcd, F. F. Wilsoncd, S. M. Xellacd, R. Aleksance, P. Bourgeoisce, S. Emeryce, M. Escalierce, L. Estevece, A. Gaidotce, S. F. Ganzhurce, P.-F. Giraudce, Z. Georgettece, G. Grazianice, G. Hamel de Monchenaultce,

W. Kozaneckice, M. Langerce, M. Legendrece, G. W. Londonce, B. Mayerce, P. Micoutce, B. Serfassce, G. Vasseurce, Ch. Y`echece, M. Zitoce, M. T. Allencf, R. Akrecf,1, D. Astoncf, T. Azemooncf, D. J. Bardcf, J. Barteltcf, R. Bartolduscf,

P. Bechtlecf, J. Beclacf, J. F. Benitezcf, N. Bergercf, K. Bertschecf, C. T. Boeheimcf, K. Bouldincf, A. M. Boyarskicf, R. F. Boycecf, M. Brownecf, O. L. Buchmuellercf, W. Burgesscf, Y. Caicf, C. Cartarocf, A. Ceseracciucf, R. Clauscf, M. R. Converycf, D. P. Coupalcf, W. W. Craddockcf, G. Cranecf, M. Cristinzianicf, S. DeBargercf, F. J. Deckercf, J. C. Dingfeldercf, M. Donaldcf, J. Dorfancf, G. P. Dubois-Felsmanncf, W. Dunwoodiecf, M. Ebertcf, S. Ecklundcf, R. Ericksoncf, S. Fancf, R. C. Fieldcf, A. Fishercf, J. Foxcf, M. Franco Sevillacf, B. G. Fulsomcf, A. M. Gabareencf, I. Gaponenkocf, T. Glanzmancf, S. J. Gowdycf, M. T. Grahamcf, P. Greniercf, T. Hadigcf, V. Halyocf, G. Hallercf,

J. Hamiltoncf, A. Hanushevskycf, A. Hasancf, C. Hastcf, C. Heecf, T. Himelcf, T. Hryn’ovacf, M. E. Huffercf, T. Hungcf, W. R. Innescf, R. Iversoncf, J. Kaminskicf, M. H. Kelseycf, H. Kimcf, P. Kimcf, D. Kharakhcf,

M. L. Kociancf, A. Krasnykhcf, J. Krebscf, W. Kroegercf, A. Kulikovcf, N. Kuritacf, U. Langeneggercf, D. W. G. S. Leithcf, P. Lewiscf, S. Licf, J. Libbycf, B. Lindquistcf, S. Luitzcf, V. L¨uthcf,∗∗, H. L. Lynchcf, D. B. MacFarlanecf, H. Marsiskecf, M. McCullochcf, J. McDonaldcf, R. Melencf, S. Menkecf, S. Metcalfecf,

R. Messnercf,1, L. J. Mosscf, R. Mountcf, D. R. Mullercf, H. Nealcf, D. Nelsoncf, S. Nelsoncf, M. Nordbycf, Y. Nosochkovcf, A. Novokhatskicf, C. P. O’Gradycf, F. G. O’Neillcf, I. Oftecf, V. E. Ozcancf, A. Perazzocf, M. Perlcf,

S. Petrakcf, M. Piemontesecf, S. Piersoncf, T. Pulliamcf, B. N. Ratcliffcf, S. Ratkovskycf, R. Reifcf, C. Rivettacf, R. Rodriguezcf, A. Roodmancf, A. A. Salnikovcf, T. Schietingercf, R. H. Schindlercf, H. Schwarzcf, J. Schwieningcf,

J. Seemancf, D. Smithcf, A. Snydercf, A. Sohacf, M. Stanekcf, J. Stelzercf, D. Sucf, M. K. Sullivancf, K. Suzukicf, S. K. Swaincf, H. A. Tanakacf, D. Teytelmancf, J. M. Thompsoncf, J. S. Tinslaycf, A. Trunovcf, J. Turnercf, N. van Bakelcf, D. van Winklecf, J. Va’vracf, A. P. Wagnercf, M. Weavercf, A. J. R. Weinsteincf, T. Webercf, C. A. Westcf, U. Wienandscf, W. J. Wisniewskicf,∗∗, M. Wittgencf, W. Wittmercf, D. H. Wrightcf, H. W. Wulsincf,

Y. Yancf, A. K. Yarritucf, K. Yicf, G. Yockycf, C. C. Youngcf, V. Zieglercf, X. R. Chencg, H. Liucg, W. Parkcg, M. V. Purohitcg, H. Singhcg, A. W. Weidemanncg, R. M. Whitecg, J. R. Wilsoncg, F. X. Yumicevacg, S. J. Sekulach,

M. Bellisci, P. R. Burchatci, A. J. Edwardsci, S. A. Majewskici, T. I. Meyerci, T. S. Miyashitaci, B. A. Petersenci, C. Roatci, M. Ahmedcj, S. Ahmedcj, M. S. Alamcj, R. Bulacj, J. A. Ernstcj, V. Jaincj, J. Liucj, B. Pancj, M. A. Saeedcj,

F. R. Wapplercj, S. B. Zaincj, R. Gorodeiskyck, N. Guttmanck, D. Peimerck, A. Sofferck, A. De Silvacl, P. Lundcm, M. Krishnamurthycm, G. Ragghianticm, S. M. Spaniercm, B. J. Wogslandcm, R. Eckmanncn, J. L. Ritchiecn, A. M. Rulandcn, A. Satpathycn, C. J. Schillingcn, R. F. Schwitterscn, B. C. Wraycn, B. W. Drummondco, J. M. Izenco,

I. Kitayamaco, X. C. Louco, S. Yeco, F. Bianchicp,cq, M. Bonacp,cq, F. Gallocp,cq, D. Gambacp,cq, M. Pelliccionicp,cq, M. Bombencr,cs, C. Boreancr,cs, L. Bosisiocr,cs, F. Cossutticr, G. Della Riccacr,cs, S. Dittongocr,cs, S. Grancagnolocr,cs, L. Lancericr,cs, P. Poropatcr,cs,1, I. Rashevskayacr, L. Vitalecr,cs, G. Vuagnincr,cs, P. F. Manfredict, V. Rect, V. Spezialict,

E. D. Frankcu, L. Gladneycu, Q. H. Guocu, J. Panettacu, V. Azzolinicv, N. Lopez-Marchcv, F. Martinez-Vidalcv,

(4)

D. A. Milanescv, A. Oyangurencv, A. Agarwalcw, J. Albertcw, Sw. Banerjeecw, F. U. Bernlochnercw, C. M. Browncw, H. H. F. Choicw, D. Fortincw, K. B. Franshamcw, K. Hamanocw, R. Kowalewskicw, M. J. Lewczukcw, I. M. Nugentcw, J. M. Roneycw, R. J. Sobiecw, J. J. Backcx, T. J. Gershoncx, P. F. Harrisoncx, J. Iliccx, T. E. Lathamcx, G. B. Mohantycx,

E. Pucciocx, H. R. Bandcy, X. Chency, B. Chengcy, S. Dasucy, M. Dattacy, A. M. Eichenbaumcy, J. J. Hollarcy, H. Hucy, J. R. Johnsoncy, P. E. Kuttercy, H. Licy, R. Liucy, B. Melladocy, A. Mihalyicy, A. K. Mohapatracy, Y. Pancy,

M. Pierinicy, R. Prepostcy, I. J. Scottcy, P. Tancy, C. O. Vuosalocy, J. H. von Wimmersperg-Toellercy, S. L. Wucy, Z. Yucy, M. G. Greenecz, T. M. B. Kordichcz,

TheBABARCollaboration

aLaboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Universit´e de Savoie, CNRS/IN2P3, F-74941 Annecy-le-Vieux, France

bUniversitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain

cINFN Sezione di Bari, I-70126 Bari, Italy

dDipartmento di Fisica, Universit`a di Bari, I-70126 Bari, Italy

eInstitute of High Energy Physics, Beijing 100039, China

fUniversity of Bergen, Institute of Physics, N-5007 Bergen, Norway

gLawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA

hUniversity of Birmingham, Birmingham, B15 2TT, United Kingdom

iRuhr Universit¨at Bochum, Institut f¨ur Experimentalphysik 1, D-44780 Bochum, Germany

jINFN CNAF I-40127 Bologna, Italy

kUniversity of Bristol, Bristol BS8 1TL, United Kingdom

lUniversity of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

mBrunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom

nBudker Institute of Nuclear Physics SB RAS, Novosibirsk 630090, Russia

oNovosibirsk State Technical University, Novosibirsk 630092, Russia

pNovosibirsk State University, Novosibirsk 630090, Russia

qUniversity of California at Irvine, Irvine, California 92697, USA

rUniversity of California at Los Angeles, Los Angeles, California 90024, USA

sUniversity of California at Riverside, Riverside, California 92521, USA

tUniversity of California at San Diego, La Jolla, California 92093, USA

uUniversity of California at Santa Barbara, Santa Barbara, California 93106, USA

vUniversity of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA

wCalifornia Institute of Technology, Pasadena, California 91125, USA

xUniversity of Cincinnati, Cincinnati, Ohio 45221, USA

yUniversity of Colorado, Boulder, Colorado 80309, USA

zColorado State University, Fort Collins, Colorado 80523, USA

aaTechnische Universit¨at Dortmund, Fakult¨at Physik, D-44221 Dortmund, Germany

abTechnische Universit¨at Dresden, Institut f¨ur Kern- und Teilchenphysik, D-01062 Dresden, Germany

acLaboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France

adUniversity of Edinburgh, Edinburgh EH9 3JZ, United Kingdom

aeINFN Sezione di Ferrara, I-44100 Ferrara, Italy

afDipartimento di Fisica e Scienze della Terra, Universit`a di Ferrara, I-44100 Ferrara, Italy

agINFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy

ahINFN Sezione di Genova, I-16146 Genova, Italy

aiDipartimento di Fisica, Universit`a di Genova, I-16146 Genova, Italy

ajIndian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India

akHarvard University, Cambridge, Massachusetts 02138, USA

alUniversit¨at Heidelberg, Physikalisches Institut, D-69120 Heidelberg, Germany

amHumboldt-Universit¨at zu Berlin, Institut f¨ur Physik, D-12489 Berlin, Germany

anImperial College London, London, SW7 2AZ, United Kingdom

aoUniversity of Iowa, Iowa City, Iowa 52242, USA

apIowa State University, Ames, Iowa 50011-3160, USA

aqJohns Hopkins University, Baltimore, Maryland 21218, USA

arUniversit¨at Karlsruhe, Institut f¨ur Experimentelle Kernphysik, D-76021 Karlsruhe, Germany

asLaboratoire de l’Acc´el´erateur Lin´eaire, IN2P3/CNRS et Universit´e Paris-Sud 11, Centre Scientifique d’Orsay, F-91898 Orsay Cedex, France

atLawrence Livermore National Laboratory, Livermore, California 94550, USA

auUniversity of Liverpool, Liverpool L69 7ZE, United Kingdom

avQueen Mary, University of London, London, E1 4NS, United Kingdom

awUniversity of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom

axUniversity of Louisville, Louisville, Kentucky 40292, USA

ayJohannes Gutenberg-Universit¨at Mainz, Institut f¨ur Kernphysik, D-55099 Mainz, Germany

azUniversity of Manchester, Manchester M13 9PL, United Kingdom

(5)

baUniversity of Maryland, College Park, Maryland 20742, USA

bbUniversity of Massachusetts, Amherst, Massachusetts 01003, USA

bcMassachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA

bdMcGill University, Montr´eal, Qu´ebec, Canada H3A 2T8

beINFN Sezione di Milano, I-20133 Milano, Italy

bfDipartimento di Fisica, Universit`a di Milano, I-20133 Milano, Italy

bgUniversity of Mississippi, University, Mississippi 38677, USA

bhUniversity of South Alabama, Mobile, Alabama 36688, USA

biUniversit´e de Montr´eal, Physique des Particules, Montr´eal, Qu´ebec, Canada H3C 3J7

bjMount Holyoke College, South Hadley, Massachusetts 01075, USA

bkINFN Sezione di Napoli, I-80126 Napoli, Italy

blDipartimento di Scienze Fisiche, Universit`a di Napoli Federico II, I-80126 Napoli, Italy

bmNIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands

bnUniversity of Notre Dame, Notre Dame, Indiana 46556, USA

boOhio State University, Columbus, Ohio 43210, USA

bpUniversity of Oregon, Eugene, Oregon 97403, USA

bqINFN Sezione di Padova, I-35131 Padova, Italy

brDipartimento di Fisica, Universit`a di Padova, I-35131 Padova, Italy

bsLaboratoire de Physique Nucl´eaire et de Hautes Energies, IN2P3/CNRS, Universit´e Pierre et Marie Curie-Paris6, Universit´e Denis Diderot-Paris7, F-75252 Paris, France

btINFN Sezione di Perugia I-06123 Perugia, Italy

buDipartimento di Fisica, Universit`a di Perugia, I-06123 Perugia, Italy

bvINFN Sezione di Pisa, I-56127 Pisa, Italy

bwDipartimento di Fisica, Universit`a di Pisa, I-56127 Pisa, Italy

bxScuola Normale Superiore di Pisa, I-56127 Pisa, Italy

byPrairie View A&M University, Prairie View, Texas 77446, USA

bzPrinceton University, Princeton, New Jersey 08544, USA

caINFN Sezione di Roma, I-00185 Roma, Italy

cbDipartimento di Fisica, Universit`a di Roma La Sapienza, I-00185 Roma, Italy

ccUniversit¨at Rostock, D-18051 Rostock, Germany

cdRutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom

ceCEA, Irfu, SPP, Centre de Saclay, F-91191 Gif-sur-Yvette, France

cfSLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA

cgUniversity of South Carolina, Columbia, South Carolina 29208, USA

chSouthern Methodist University, Dallas, Texas 75275, USA

ciStanford University, Stanford, California 94305-4060, USA

cjState University of New York, Albany, New York 12222, USA

ckTel Aviv University, Tel Aviv, 69978, Israel

clTRIUMF, Vancouver, BC, Canada V6T 2A3

cmUniversity of Tennessee, Knoxville, Tennessee 37996, USA

cnUniversity of Texas at Austin, Austin, Texas 78712, USA

coUniversity of Texas at Dallas, Richardson, Texas 75083, USA

cpINFN Sezione di Torino, I-10125 Torino, Italy

cqDipartimento di Fisica Sperimentale, Universit`a di Torino, I-10125 Torino, Italy

crINFN Sezione di Trieste, I-34127 Trieste, Italy

csDipartimento di Fisica, Universit`a di Trieste, I-34127 Trieste, Italy

ctUniversit`a di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy

cuUniversity of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

cvIFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain

cwUniversity of Victoria, Victoria, British Columbia, Canada V8W 3P6

cxDepartment of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

cyUniversity of Wisconsin, Madison, Wisconsin 53706, USA

czYale University, New Haven, Connecticut 06511, USA

Abstract

TheBABARdetector operated successfully at the PEP-II asymmetrice+ecollider at the SLAC National Accelerator Laboratory from 1999 to 2008. This report covers upgrades, operation, and performance of the collider and the

(6)

detector systems, as well as the trigger, online and offline computing, and aspects of event reconstruction since the beginning of data taking.

Keywords: BABARdetector upgrade,BABARoperational experience, PEP-II storage ring operation, beam monitoring

Contents

1 Introduction 8

1.1 Overview . . . 8

1.2 Detector System Requirements . . . 8

1.3 Detector Design and Layout . . . 9

1.4 Detector Components . . . 10

1.5 Electronics, Trigger, Data Acquisition and Computing . . . 11

1.5.1 Electronics . . . 11

1.5.2 Trigger . . . 11

1.5.3 Data Acquisition and Online Systems . . . 12

1.5.4 Reconstruction and Offline Computing . . . 12

1.6 Detector Operation . . . 12

2 PEP-II Operation and Interface toBABAR 13 2.1 Overview of PEP-II . . . 13

2.2 PEP-II Evolution and Upgrades . . . 14

2.2.1 PEP-II Instrumentation . . . 14

2.2.2 Gradual Enhancement of Per- formance . . . 15

2.2.3 Trickle Injection . . . 17

2.3 PEP-II Operation and Monitoring . . . 20

2.3.1 Beam Energies . . . 20

2.3.2 Bunch Sizes, Positions, and Angles . . . 21

2.4 Luminosity Measurements . . . 22

2.4.1 PEP-II Peak and Integrated Lu- minosities . . . 22

2.4.2 Precision Measurement of the Integrated Luminosity . . . 23

2.4.3 BBEvent Counting . . . 23

2.5 BABAR Background Protection and Monitoring . . . 25

2.5.1 Beam Background Sources . . . 25

2.5.2 Survey of Beam Background . . 26

2.5.3 Detector Shielding . . . 26

2.5.4 Active Detector Protection Sys- tems . . . 27

2.5.5 Background Monitoring . . . . 30

3 BABARDetector Upgrades 33 3.1 Overview . . . 33

3.2 Online System Upgrades . . . 33

3.2.1 Evolution of Requirements . . . 33

3.2.2 Overall Architecture . . . 33

3.2.3 Upgrades and Improvements . . 34

3.3 Trigger Upgrades . . . 41

3.3.1 Overview . . . 41

3.3.2 Drift Chamber Trigger Upgrade 42 3.4 Electronics Upgrades . . . 44

3.4.1 DCH Front-End Electronics . . 44

3.4.2 DIRC Front-End Electronics . . 44

3.4.3 Dead-Time Reduction . . . 44

3.5 Instrumented Flux Return . . . 45

3.5.1 RPC Infrastructure Upgrades . . 45

3.5.2 Forward Endcap Upgrade . . . 47

3.6 IFR Barrel Upgrade . . . 48

3.6.1 LST Design and Construction . 49 3.6.2 LST Fabrication . . . 51

3.6.3 High Voltage Distribution . . . 52

3.6.4 Gas System . . . 53

3.6.5 Electronics . . . 53

4 Detector Operation 55 4.1 Overview . . . 55

4.2 Silicon Vertex Tracker . . . 56

4.2.1 SVT Performance . . . 56

4.2.2 SVT Operation and Challenges 57 4.2.3 Radiation Damage to SVT Sen- sors . . . 57

4.2.4 Radiation Damage to Front- End Electronics . . . 60

4.2.5 Impact of Radiation Damage on Signal-to-Noise . . . 62

4.2.6 Unexpected Leakage Currents in Layer 4 . . . 62

4.2.7 Summary . . . 63

4.3 Drift Chamber . . . 64

4.3.1 DCH Operations . . . 64

4.3.2 Incidents . . . 64

4.3.3 Radiation Effects . . . 65

4.4 DIRC . . . 65

4.4.1 Overview . . . 65

4.4.2 Calibration of PMT Timing . . 65

4.4.3 Monitoring and Protection System 66 4.4.4 Impact of Beam Background and Aging of Components . . . 67

4.4.5 Maintenance and Operational Issues . . . 69

4.5 Electromagnetic Calorimeter . . . 71

(7)

4.5.1 Introduction . . . 71

4.5.2 Routine Operation and Mainte- nance . . . 72

4.5.3 Crystal Light Yield Calibrations 72 4.5.4 Digital Filter . . . 73

4.5.5 Crystal Aging . . . 73

4.5.6 Photon Energy Calibration . . . 74

4.5.7 Preshower Photons . . . 78

4.6 IFR Operation and Performance . . . . 79

4.6.1 Resistive Plate Chambers . . . . 79

4.6.2 Limited Streamer Tubes . . . . 80

4.6.3 Overall IFR Performance . . . . 82

4.7 Trigger . . . 83

4.7.1 Operation atΥ(4S) . . . 83

4.7.2 Run 7 Operation . . . 85

5 Event Reconstruction 86 5.1 Overview . . . 86

5.2 Charged Particle Reconstruction . . . . 86

5.2.1 Track Finding . . . 86

5.2.2 Track Filtering and Refinement 87 5.2.3 Track Reconstruction Efficiency 90 5.2.4 Track-Cluster Matching . . . . 91

5.3 Reconstruction of Neutral Particles . . . 92

5.3.1 Cluster Reconstruction . . . 92

5.3.2 Converted Photons . . . 92

5.3.3 Cluster Energy Corrections . . . 93

5.3.4 High-Energy Single-Photon Ef- ficiency . . . 94

5.3.5 KL0Selection . . . 94

5.3.6 π0Efficiency Corrections . . . . 94

5.4 Charged Particle Identification . . . 96

5.4.1 PID Control Samples . . . 96

5.4.2 PID Information from Subde- tectors . . . 97

5.4.3 Charged Hadron Identification . 99 5.4.4 Electron Identification . . . 102

5.4.5 Muon Identification . . . 102

5.4.6 Systematic Uncertainties . . . . 104

6 Offline Computing 104 6.1 Overview . . . 104

6.2 Processing Chain . . . 105

6.2.1 Raw Data Handling, Filtering, and Calibration . . . 105

6.2.2 Reconstruction and Reprocessing 106 6.2.3 Simulation . . . 107

6.2.4 Skimming . . . 108

6.2.5 Analysis Environment and Framework . . . 108

6.3 Computing Model Evolution . . . 109

6.3.1 Data Persistence . . . 109

6.3.2 Offline Calibration System . . . 110

6.3.3 Solutions . . . 110

7 Long Term Data Access 111 7.1 Overview . . . 111

7.2 Goals and Requirements . . . 112

7.3 Design . . . 112

7.4 Implementation . . . 113

7.5 Performance . . . 114

8 Summary 115

(8)

1. Introduction 1.1. Overview

TheBABARdetector [1] operated at the PEP-II asym- metric e+e collider [2, 3, 4] at the SLAC National Accelerator Laboratory from 1999 to 2008. The ex- periment [5] was optimized for detailed studies ofCP- violating asymmetries in the decay ofBmesons, but it was well suited for a large variety of other studies [6], for instance, precision measurements of decays of bot- tom and charm mesons and τ leptons, and searches for rare processes, including many not expected in the framework of the Standard Model of electroweak inter- actions.

The PEP-II collider operated in the center-of-mass (c.m.) energy range of 9.99 GeV (just below theΥ(2S) resonance) to 11.2 GeV, mostly at 10.58 GeV, corre- sponding to the mass of the Υ(4S) resonance. This resonance decays exclusively to B0B0 and B+B pairs and thus provides an ideal laboratory for the study of Bmesons. At theΥ(4S) resonance, the electron beam of 9.0 GeV collided head-on with the positron beam of 3.1 GeV resulting in a Lorentz boost to theΥ(4S) res- onance ofβγ = 0.56. This boost made it possible to reconstruct the decay vertices of the BandBmesons, to determine their relative decay times, and to measure the time dependence of their decay rates, a feature that was critical for the observation ofCP-violation in B0- B0mixing.

To reach the desired sensitivity for the most inter- esting analyses, datasets of order 108 to 109 Bmesons were needed. For the peak cross section at theΥ(4S) of 1.1 nb, this required an integrated luminosity of the or- der 500 fb−1, that is, many years of reliable and highly efficient operation of the detector, and stable operation of the PEP-II storage rings at luminosities exceeding the design of 3×1033cm−2s−1.

The PEP-II storage rings gradually increased their performance and towards the end of the first year of data-taking routinely delivered beams close to design luminosity. In the following years, a series of up- grades was implemented to reach a maximum instanta- neous luminosity of four times the design and to exceed the design integrated luminosity per day by a factor of seven [4]. Among these upgrades, one of the most im- portant wastrickleinjection [7], i.e.,continuous injec- tions into both beams, replacing the traditional method of replenishing the beam currents every 40-50 minutes after they had dropped to about 30-50% of the maxi- mum.

From the start ofBABAR operation, the goal was to operate the detector at the highest level of efficiency

to maximize the data rate and data quality. Once it became obvious that PEP-II was capable of exceed- ing its design luminosity, continuous improvements to the hardware, electronics, trigger, data acquisition sys- tem (DAQ), and online and offline computing were re- quired. Moreover, the instrumentation to assess, mon- itor, and control backgrounds and other environmental conditions, and to handle ever-increasing trigger rates had to be enhanced. These enhancements served the routine operation at higher data rates, and also provided the information needed to understand operational limi- tations of the detector and software and to subsequently design the necessary upgrades in a timely manner. To attain such large, high quality datasets and maximize the scientific output, the accelerator, detector, and anal- yses had to perform coherently in factory mode, with unprecedented operational efficiency and stability. This factory-like operation required that experimenters paid very close attention to what were often considered rou- tine monitoring and quality assurance tasks. As a result, BABARlogged more than 96% of the total delivered lu- minosity, of which 1.1% were discarded during recon- struction because of hardware problems that could im- pact the physics analyses.

This review emphasizes theBABARdetector upgrades, operation, and performance as well as the development of the online and offline computing and event recon- struction over a period of almost ten years since the start of data taking in 1999. Following this brief in- troduction, an overview of the design of the principal components of the detector, the trigger, the DAQ, and the online computing and control system is provided.

A brief description of the PEP-II collider and the inter- action region is followed by a description of its grad- ual evolution and upgrades, as well as the performance and monitoring of the collider operation, and the closely relatedBABARbackground suppression and monitoring.

The following section covers the upgrades to the online computing and DAQ systems, the trigger, the front-end electronics, and also the replacement of the muon detec- tors in the barrel and forward regions. Next, the opera- tional experience with all detector systems is described in detail. The last sections cover selected topics related to the event reconstruction, and provide an overview of the offline computing, including the provision for long- term access to data and analysis software.

1.2. Detector System Requirements

The need for full reconstruction ofB-meson decays (which have an average multiplicity of 5.5 charged par- ticles and an equal number of photons), and, in many analyses, the additional requirement to tag the flavor of

(9)

the secondBor to fully reconstruct its decay, place strin- gent requirements on the detector:

• large and uniform acceptance down to small polar angles relative to the boost direction;

• excellent reconstruction efficiency for charged par- ticles down to a momentum of 40 MeV/cand for photons to an energy of 30 MeV;

• excellent momentum resolution to separate small signals from relatively large backgrounds;

• very good energy and angular resolutions for the detection of photons fromπ0 andη0 decays, and from radiative decays in the full energy range, from 30 MeV to 4 GeV;

• efficient reconstruction of secondary vertices;

• efficient electron and muon identification, with low misidentification probabilities for hadrons;

• efficient and accurate identification of hadrons over a wide range of momenta for B flavor-tagging (mostly for momenta below 1 GeV/c) and the re- construction of exclusive decays (up to a momen- tum of 4 GeV/c);

• detector components that can tolerate significant radiation doses and operate reliably under high- background conditions;

• a flexible, redundant, and selective trigger system, highly efficient for all kinds of signal events;

• low-noise electronics and a reliable, high band- width DAQ and control system;

• detailed monitoring and automated calibrations;

stable power supplies, plus control of the environ- mental conditions to ensure continuous and stable operation;

• an online computing system and network that can control, process, and store the expected high vol- ume of data;

• reconstruction software able to fully exploit the ca- pabilities of the detector hardware;

• a detector simulation of sufficient fidelity to sup- port the detailed understanding of detector re- sponse appropriate for the high-statistics data sam- ples; and

• an offline computing system scaled to the data flow arising fromfactoryoperation, and capable of sup- porting a wide variety of highly sophisticated anal- yses.

1.3. Detector Design and Layout

TheBABARdetector was designed and built by a large international team of scientists and engineers. Details of its original design were documented in the Techni- cal Design Report [5], while the construction and initial performance of the detector are described in a later pub- lication [1].

Figure 1 shows a longitudinal section through the de- tector center with the principal dimensions. To maxi- mize the geometric acceptance for the boosted Υ(4S) decays, the whole detector was offset from the interac- tion point by 0.37 m in the direction of the high-energy electron beam.

The inner detector consisted of a silicon vertex tracker, a drift chamber, a ring-imaging Cherenkov de- tector, and an electromagnetic calorimeter. These de- tector systems were surrounded by a superconducting solenoid which provided a field of 1.5 T. The steel flux return was instrumented for muon and neutral hadron detection. The polar angle coverage extended to 350 mrad in the forward direction and 400 mrad in the backward direction, defined relative to the direc- tion of the high-energy beam. As indicated in Figure 1, the right-handed coordinate system was anchored on the main tracking system, the drift chamber, with thez-axis coinciding with its principal axis. This axis was offset relative to the direction of theebeam by 20 mrad in the horizontal plane. The positive y-axis pointed upward and the positivex-axis pointed away from the center of the PEP-II storage rings. For reference, the detector was located on the eastern section of the storage rings, with the electron beam entering from the north.

The forward and backward acceptance of the tracking system was constrained by components of PEP-II, a pair of dipole magnets (B1) followed by a pair of quadrupole magnets (Q1). The vertex detector and these magnets were placed inside a tube (4.5 m long and 0.434 m in- ner diameter) that was supported from the detector at the backward end and by a beam-line support at the for- ward end. The central section of this support tube was fabricated from a carbon-fiber composite with a thick- ness of 0.79% of a radiation length.

The detector was of compact design, its transverse di- mension being constrained by the 3.5 m elevation of the beam above the floor. The solenoid radius was chosen by balancing the physics requirements and performance

(10)

/6

,2558

K K

2&,3*9.(8-.*1)

+47).7(

.3897:2*39*) +1:=7*9:73.+7 '&77*1

8:5*7(43):(9.3, (4.1

8.1.(43;*79*=

97&(0*7 8;9 JKZKIZUX)2

S

' 6 6 6

':(0.3,(4.1 9IGRK ('('8)UUXJOTGZK9_YZKS

_ ^

`

+47<&7)

*3)51:,

*1*(9742&,3*9.(

(&147.2*9*7

*2(

)7.+9(-&2'*7 )(-

(-*7*304;

)*9*(947 ).7(

.+7

*3)(&5 (7>4,*3.(

(-.23*>

Figure 1:BABARdetector longitudinal section [1].

of the drift chamber and calorimeter against the total de- tector cost.

Since the average momentum of charged particles produced inB-meson decays is less than 1 GeV/c, the precision of the measured track parameters was heav- ily influenced by multiple Coulomb scattering. Simi- larly, the detection efficiency and energy resolution of low-energy photons were severely affected by material in front of the calorimeter. Thus, special care was taken to keep material in the active volume of the detector to a minimum. At normal incidence, a particle would trans- verse 4% of a radiation length prior to entering the drift chamber and another 26% to reach the calorimeter.

1.4. Detector Components

The charged particle tracking system was made of two components, the silicon vertex tracker (SVT) and the drift chamber (DCH). Pulse height information from

the SVT and DCH was also used to measure ioniza- tion loss for charged particle identification (PID). The SVT was designed to measure positions and angles of charged particles just outside the beam pipe. It was composed of five layers of double-sided silicon strip de- tectors that were assembled from modules with read- out at each end. The inner three layers primarily pro- vided position and angle information for the measure- ment of the vertex position. They were mounted as close to the water-cooled beryllium beam pipe as practical, thus minimizing the impact of multiple scattering in the beam pipe on the extrapolation of tracks to the vertex.

The outer two layers were at much larger radii, provid- ing the coordinate and angle measurements needed for linking SVT and DCH tracks.

The principal purpose of the DCH was the momen- tum measurement for charged particles. It also supplied information for the charged particle trigger and dE/dx

Références

Documents relatifs

This is done with the aim of maximising the expertise toward the integration electronic components have been fully replaced by Phase 2 prototypes, installed with a setup as close

Illustration of RoIs from the one-stage tracking (pink) and two-stage tracking (blue - first stage, green - second stage) [2].. Triggers for hadronic jets containing b quarks,

While muon identification relies almost entirely on the IFR, other detector systems provide com- plementary information. Charged particles are reconstructed in the SVT and DCH and

decay before the TPC and of particles that interact before it) to be reconstructed at DST level using di erent track search algorithms, b) the re tting of previously-found tracks

A further source for detailed debugging of the frontend chips are, among others, temperature sensors (diodes), which are built-in in the frontend chips themselves. On

Starting from the standard secondary vertex described in Section 4.3, four algorithms were implemented, based on the BD-Net, with the aim of improving the decay length resolution

Commissioning of the ATLAS detector and combined beam test

Figure 14: Distribution of the number of NOMAD{ST AR tracks in the primary vertex for data (points).