• Aucun résultat trouvé

1.2 Organization of the Work . . . . 3

N/A
N/A
Protected

Academic year: 2021

Partager "1.2 Organization of the Work . . . . 3"

Copied!
13
0
0

Texte intégral

(1)

I INTRODUCTION 1

1 General Introduction 2

1.1 Context . . . . 2

1.2 Organization of the Work . . . . 3

1.3 Main Achievements . . . . 4

2 Radioactive Waste 5 2.1 Introduction . . . . 5

2.2 Definition . . . . 5

2.3 Origin . . . . 5

2.3.1 Introduction . . . . 5

2.3.2 Waste from the Nuclear Fuel Cycle . . . . 6

2.3.3 Waste from the Production and Use of Radionuclides . . . . 6

2.3.4 Waste from the Decommissioning of Nuclear Facilities . . . . 7

2.3.5 Waste Not Deriving from Nuclear Activities . . . . 7

2.4 International Classification . . . . 7

2.5 Belgian Situation . . . . 8

2.5.1 Classification . . . . 8

2.5.2 Description . . . . 10

2.5.3 Belgian Inventory . . . . 12

2.6 HLW Management . . . . 14

2.6.1 Introduction . . . . 14

2.6.2 HLW Management Options . . . . 14

2.6.3 HLW Repository Characterization . . . . 16

2.6.4 HLW-SFA Repository Example . . . . 17

2.7 Conclusions . . . . 20

3 Nuclear Criticality Risk 21 3.1 Introduction . . . . 21

3.2 Nuclear Fission Reactions . . . . 21

3.2.1 Isotopes . . . . 21

3.2.2 Examples . . . . 22

3.2.3 Fission Products . . . . 23

3.2.4 Multiplication Factor . . . . 24

3.2.5 Feedback Mechanisms . . . . 26

3.3 Risk . . . . 27

3.3.1 Definitions . . . . 27

3.3.2 Nuclear Risk . . . . 27

(2)

Contents

3.3.3 Radiological Consequences . . . . 28

3.3.4 Nuclear Criticality Risk . . . . 29

3.4 Conclusions . . . . 31

II SCENARIOS DEVELOPMENT 32 4 Scenarios Development Procedures 33 4.1 Introduction . . . . 33

4.2 Definitions . . . . 33

4.2.1 Features, Events, and Processes . . . . 33

4.2.2 Scenarios . . . . 34

4.2.3 Scenarios Development . . . . 35

4.3 Aims of Scenarios Development . . . . 35

4.4 The Bottom-Up Procedure: The Sandia/NRC Procedure . . . . 37

4.4.1 Introduction . . . . 37

4.4.2 Identification of FEPs . . . . 37

4.4.3 Classification of FEPs . . . . 38

4.4.4 Screening of FEPs . . . . 38

4.4.5 Scenarios Construction . . . . 38

4.4.6 Screening of Scenarios . . . . 40

4.4.7 Use of Expert Judgment in Scenarios Selection Procedure . . . . 40

4.5 The Top-Down Procedure: The Joint SKI/SKB Investigations . . . . 41

4.5.1 Introduction . . . . 41

4.5.2 System Elements Identification . . . . 41

4.5.3 Element States Identification . . . . 41

4.5.4 Incompatible States Identification and Screening . . . . 41

4.5.5 Scenarios Formation and Final Screening . . . . 42

4.6 Conclusions . . . . 42

5 Criticality Scenarios Development: Examples 44 5.1 Introduction . . . . 44

5.2 Yucca Mountain Repository Project (USA) . . . . 44

5.2.1 Introduction . . . . 44

5.2.2 U.S. Design . . . . 44

5.2.3 U.S. Waste . . . . 46

5.2.4 U.S. Waste Packages . . . . 46

5.2.5 U.S. Inventory . . . . 49

5.2.6 First Approach to Criticality Scenarios Development . . . . 49

5.2.7 In-Package Critical Configurations . . . . 50

5.2.8 Scenarios Classification . . . . 53

5.2.9 Conclusions . . . . 54

5.3 KBS-3 Repository Project (Sweden) . . . . 55

5.3.1 Introduction . . . . 55

5.3.2 KBS-3 Repository Design . . . . 55

5.3.3 Swedish Spent Nuclear Fuel . . . . 55

5.3.4 Spent Fuel Canisters . . . . 57

5.3.5 Swedish Inventory . . . . 58

5.3.6 Plutonium Criticality Scenarios . . . . 58

5.3.7 Uranium Criticality Scenarios . . . . 58

5.3.8 Conclusions . . . . 59

5.4 Conclusions . . . . 59

(3)

6 In-Package Criticality Scenarios Development: SAFIR2 60

6.1 Introduction . . . . 60

6.2 SAFIR2 Repository Design . . . . 60

6.2.1 Introduction . . . . 60

6.2.2 ZAGALC Waste Repository Design . . . . 61

6.2.3 ZAGALS Waste Repository Designs . . . . 62

6.3 Comparison Between Yucca Mountain and SAFIR2 Designs . . . . 63

6.3.1 Introduction . . . . 63

6.3.2 Comparative Approach . . . . 63

6.3.3 Disruptive FEPs Identification . . . . 64

6.4 Bottom-Up Scenarios Development . . . . 65

6.4.1 Introduction . . . . 65

6.4.2 FEPs Listing and Screening . . . . 65

6.4.3 Scenarios Formation . . . . 66

6.4.4 Scenarios Screening . . . . 68

6.4.5 Bottom-Up Criticality Scenarios List . . . . 69

6.5 Top-Down Scenarios Development . . . . 71

6.5.1 Introduction . . . . 71

6.5.2 System and Element States . . . . 71

6.5.3 Combination of System States and First Screening . . . . 72

6.5.4 Second Screening and Top-Down Criticality Scenarios List . . . . 75

6.6 Conclusions . . . . 75

7 In-Package Criticality Scenarios Development: Supercontainer Designs 76 7.1 Introduction . . . . 76

7.2 Supercontainer 1 . . . . 76

7.2.1 Introduction . . . . 76

7.2.2 Design . . . . 76

7.2.3 Bottom-Up Scenarios . . . . 77

7.2.4 Top-Down Scenarios . . . . 79

7.2.5 Conclusions . . . . 80

7.3 Supercontainer 2 . . . . 81

7.3.1 Introduction . . . . 81

7.3.2 Design . . . . 81

7.3.3 Bottom-Up Scenarios . . . . 81

7.3.4 Top-Down Scenarios . . . . 83

7.3.5 Conclusions . . . . 84

7.4 Supercontainer 3 . . . . 84

7.4.1 Introduction . . . . 84

7.4.2 Design . . . . 84

7.4.3 Bottom-Up Scenarios . . . . 84

7.4.4 Top-Down Scenarios . . . . 85

7.4.5 Conclusions . . . . 86

7.5 Conclusions . . . . 86

III CRITICALITY CALCULATIONS 87 8 The MCNP Computer Code 88 8.1 Introduction . . . . 88

8.2 Monte Carlo Methods . . . . 88

8.3 Introduction to MCNP Features . . . . 89

8.3.1 Nuclear Data and Reactions . . . . 89

(4)

Contents

8.3.2 Neutron Thermal S(α, β) Tables . . . . 89

8.3.3 Source Specification . . . . 89

8.3.4 Output . . . . 89

8.3.5 Estimation of Monte Carlo Errors . . . . 90

8.3.6 Variance Reduction . . . . 90

8.3.7 Tally Choice . . . . 90

8.3.8 Nonanalog Monte Carlo . . . . 90

8.3.9 Variance Reduction Tools in MCNP . . . . 91

8.3.10 MCNP Geometry . . . . 91

8.3.11 MCNP Input . . . . 92

8.3.12 MCNP Plotter . . . . 92

8.4 Criticality Calculations . . . . 92

8.4.1 Introduction . . . . 92

8.4.2 Criticality Program Flow . . . . 92

8.4.3 Estimation of k eff Confidence Intervals . . . . 93

8.4.4 Recommendation for Making a Good Criticality Calculation . . . . 96

8.5 Conclusions . . . . 97

9 In-Package Criticality Calculations: SAFIR2 99 9.1 Introduction . . . . 99

9.2 Modelling and Hypotheses . . . 102

9.2.1 FAs . . . 102

9.2.2 Fuels . . . 102

9.2.3 Canisters . . . 102

9.2.4 Disposal Gallery and Host Rock . . . 103

9.3 Results . . . 103

9.3.1 Acceptation Criterium . . . 103

9.3.2 Comparison with Previous Results . . . 103

9.3.3 Geometry Simplification . . . 104

9.3.4 Water Moderation Effects . . . 106

9.3.5 FAs Geometry Alteration Effects . . . 106

9.3.6 Gallery Geometry Alteration Effects . . . 106

9.4 Conclusions . . . 107

10 In-Package Criticality Calculations: Supercontainer 1 112 10.1 Introduction . . . 112

10.2 Modelling and Hypotheses . . . 112

10.2.1 FAs . . . 112

10.2.2 Fuels . . . 113

10.2.3 Overpacks . . . 113

10.2.4 Supercontainer . . . 113

10.2.5 Disposal Gallery and Host Rock . . . 114

10.3 Results . . . 115

10.3.1 Water Moderation and Burn-up Effects . . . 115

10.3.2 SFAs Geometry Alteration Effects . . . 117

10.3.3 Supercontainer Internal Geometry Variations Effects . . . 121

10.4 Comparison with Scenarios . . . 125

10.5 Conclusions . . . 126

(5)

11 In-Package Criticality Calculations: Supercontainer 2 127

11.1 Introduction . . . 127

11.2 Modelling and Hypotheses . . . 127

11.2.1 FAs . . . 127

11.2.2 Fuel . . . 128

11.2.3 Overpack . . . 128

11.2.4 Supercontainer . . . 129

11.2.5 Disposal Gallery and Host Rock . . . 129

11.2.6 Additional Informations . . . 130

11.3 Results . . . 132

11.3.1 Introduction . . . 132

11.3.2 Overpack Water Density Variation . . . 132

11.3.3 Overpack Water Volume Fraction Variation . . . 135

11.3.4 Influence of the Overpack Material . . . 140

11.4 Comparison with Scenarios . . . 141

11.5 Conclusions . . . 142

12 In-Package Criticality Calculations: Supercontainer 3 143 12.1 Introduction . . . 143

12.2 Modelling and Hypotheses . . . 144

12.2.1 FAs . . . 144

12.2.2 Fuels . . . 144

12.2.3 Overpack . . . 144

12.2.4 Supercontainer . . . 145

12.2.5 Disposal Gallery and Host Rock . . . 145

12.2.6 Additional Informations . . . 145

12.3 Results . . . 148

12.3.1 Introduction . . . 148

12.3.2 SC3 Internal Geometry Variation . . . 148

12.3.3 FAs Geometry Variation . . . 151

12.3.4 Evolution in Time . . . 157

12.4 Comparison with Scenarios . . . 182

12.5 Conclusions . . . 182

IV CONCLUSIONS AND PERSPECTIVES 183 13 General Conclusions and Perspectives 184 13.1 Context . . . 184

13.2 Scenarios Development . . . 185

13.3 Criticality Calculations . . . 186

13.4 Consequences . . . 186

13.5 Perspectives . . . 187

APPENDICES 188 A Bowman and Venneri 189 A.1 Introduction . . . 189

A.2 Studied Configurations . . . 189

A.2.1 Introduction . . . 189

A.2.2 Case A: Water Ingress in TFMs and Rock Systems (Negative Feedback) . 190

A.2.3 Case B: TFMs Migration to Wet Rock Systems (Negative Feedback) . . . 190

(6)

Contents

A.2.4 Case C: TFMs Migration to wet rock Systems (Positive Feedback) . . . . 191

A.2.5 Case D: TFMs Migration to Wet Rock Systems (Positive Feedback) . . . 191

A.2.6 Case E: Drying-Out of TFMs Deposits in Rock (Positive Feedback) . . . 191

A.2.7 Case F: Small Volume Systems (Positive Feedback) . . . 191

A.3 Summary of the Results . . . 191

A.4 Conclusions . . . 192

B The Oklo Natural Fission Reactors 194 B.1 Introduction . . . 194

B.2 Situation . . . 194

B.3 The Oklo Phenomenon . . . 194

B.3.1 Uranium Accumulation at Oklo . . . 194

B.3.2 Criticality at Oklo . . . 195

B.3.3 Cyclic Time Evolution at Oklo . . . 195

B.4 Conclusions . . . 196

C Yucca Mountain Out-Package Criticality Scenarios 197 C.1 Introduction . . . 197

C.2 Near-Field Critical Configurations . . . 197

C.2.1 Failure of the Waste Package Bottom after Failure of the Top . . . 197

C.2.2 Failure of the Waste Package Bottom First . . . 198

C.3 Far-Field Critical Configurations . . . 201

C.3.1 Unsaturated Zone . . . 201

C.3.2 Saturated Zone . . . 202

C.4 Conclusions . . . 203

D NEA FEPs Database Screening 205 D.1 Introduction . . . 205

D.2 Assessment Basis (IFEP 0) . . . 206

D.3 External Factors (IFEP 1) . . . 208

D.3.1 Repository Issues (IFEP 1.1) . . . 208

D.3.2 Geological Processes and Effects (IFEP 1.2) . . . 210

D.3.3 Climatic Processes and Effects (IFEP 1.3) . . . 211

D.3.4 Future Human Actions (Active) (IFEP 1.4) . . . 213

D.3.5 Other (IFEP 1.5) . . . 215

D.4 Disposal System Domain: Environmental Factors (IFEP 2) . . . 215

D.4.1 Wastes and Engineered Features (IFEP 2.1) . . . 215

D.4.2 Geological Environment (IFEP 2.2) . . . 222

D.4.3 Surface Environment (IFEP 2.3) . . . 225

D.4.4 Human Behavior (IFEP 2.4) . . . 226

D.5 Radionuclide/Contaminant Factors (IFEP 3) . . . 228

D.5.1 Contaminant Characteristics (IFEP 3.1) . . . 228

D.5.2 Contaminant Release/Migration Factors (IFEP 3.2) . . . 229

D.5.3 Exposure Factors (IFEP 3.3) . . . 231

D.6 Conclusions . . . 232

E MCNP Input File Example 233 E.1 Introduction . . . 233

E.2 Listing of the Input File Example . . . 233

E.3 Description of the Input File Example . . . 237

E.4 Figures . . . 238

(7)

F Atomic Densities for MCNP Input 245

F.1 Introduction . . . 245

F.2 Fuel Assemblies . . . 245

F.2.1 UOX Fuels . . . 245

F.2.2 MOX Fuel . . . 246

F.2.3 Zircalloy Cladding . . . 246

F.3 Sand Filling . . . 246

F.4 Canister . . . 247

F.5 Supercontainer . . . 247

F.6 Gallery Walls . . . 247

F.7 Boom Clay . . . 248

Bibliography 249

(8)

List of Figures

2.1 A typical (Westinghouse) 17 × 17 FA. . . . 11

2.2 The KBS-3 multi-barrier design. . . . 18

2.3 The multi-barrier concept. . . . 19

3.1 Example of the thermal fission reaction of

235

U . . . . 22

3.2 Fission products yields for the thermal fission reaction of

235

U . . . . 23

3.3 Typical neutron fate in a reactor. . . . 24

4.1 Sandia scenarios selection procedure. . . . 37

4.2 Sandia scenarios formation (left) and screening (right). . . . 39

4.3 Identification of the incompatible states. . . . 42

5.1 General presentation of the Yucca Mountain site. . . . 45

5.2 Schematic view of different U.S. waste packages and the engineered barriers in a disposal gallery. . . . 47

5.3 Detailed waste package for 21 PWR uncanistered fuel assemblies. . . . 48

5.4 Top of the criticality FEPs tree. . . . 50

5.5 The criticality FEPs tree: water accumulates in waste package. . . . 51

5.6 The criticality FEPs tree: absorbers dissolution. . . . 52

5.7 The criticality FEPs tree: waste package internal structures degrade first. . . . . 53

5.8 The criticality FEPs tree: water flows through the waste package. . . . 54

5.9 The Svea 100 BWR assembly comprises four 5 × 5 arrays of pins with a 2.5 mm gap between adjacent arrays. . . . 56

5.10 F 17 × 17 PWR assembly containing no burnable poison. . . . 56

5.11 F 17 × 17 PWR assembly containing burnable poison. . . . 56

5.12 Canister design for 12 BWR SFAs. . . . 57

5.13 Canister design for 4 PWR SFAs. . . . 57

6.1 Schematic view of the SAFIR2 ZAGALC waste repository design. . . . 61

6.2 The SAFIR2 reference design for ZAGALS waste (gallery cross section). . . . 62

6.3 Bottom-up scenarios formation: initial criticality FEPs tree. . . . 67

6.4 Bottom-up scenarios first screening: incompatible combinations between FEPs are screened off. . . . 70

6.5 The 5 components of the system and their respective states. . . . 72

6.6 Incompatible system states are linked by dotted lines. . . . 73

7.1 The SC1 design (vertical cross section of a disposal gallery). . . . 77

7.2 Upper part of the SC1 in-package criticality FEPs Tree. FEPs 1, 2, and 3 are assumed to have occurred. . . . 78

7.3 The SC2 overpack holding four fuel assemblies and its cross-shaped separator. . . 81

(9)

7.4 Upper part of the SC2 in-package criticality FEPs Tree. FEPs 1, 2, and 7 are

assumed to have occurred. . . . 82

7.5 The SC3 full metal overpack of holding 4 fuel assemblies. . . . 85

9.1 The SAFIR2 reference design. . . 100

9.2 The SAFIR2 variant design . . . 101

9.3 Influence of moderation inside the canisters. . . 108

9.4 Influence of the fuel assemblies geometry (reference design) [nominal distance between the fuel rods centres = 1.26 cm]. . . 109

9.5 Influence of the fuel assemblies geometry (variant design) [nominal distance be- tween the fuel rods centres = 1.26 cm]. . . 110

9.6 Influence of the geometry of the disposal gallery (reference design) [nominal dis- tance between the disposal tubes and the gallery centres = 45 cm]. . . 111

10.1 The SC1 design (vertical cross section of a disposal gallery). . . 113

10.2 Influence of moderation inside the overpacks. . . 116

10.3 Influence of the FAs geometry (0 % vol. water inside the overpacks) [nominal distance between the fuel rods centres = 1.26 cm]. . . 118

10.4 Influence of the FAs geometry (40 % vol. water inside the overpacks) [nominal distance between the fuel rods centres = 1.26 cm]. . . 119

10.5 Influence of the FAs geometry (100 % vol. water inside the overpacks) [nominal distance between the fuel rods centres = 1.26 cm]. . . 120

10.6 Influence of the supercontainer geometry (0 % vol. water inside the overpacks) [nominal distance between the overpacks = 10 cm]. . . 122

10.7 Influence of the supercontainer geometry (40 % vol. water inside the overpacks) [nominal distance between the overpacks = 10 cm]. . . 123

10.8 Influence of the supercontainer geometry (100 % vol. water inside the overpacks) [nominal distance between the overpacks = 10 cm]. . . 124

11.1 The SC2 overpack holding four fuel assemblies and its cross-shaped separator. . . 129

11.2 MCNP cross section of a supercontainer in a disposal gallery. . . 131

12.1 The SC3 full metal overpack of holding 4 fuel assemblies. . . 143

12.2 Influence of the cross separator geometry (additional cooling time= 0 year / water density in overpack = 1.00) [nominal cross separator thickness = 8 cm]. . . 149

12.3 Influence of the burn-up (additional cooling time = 0 year / water density in overpack = 1.00 / distance between fuel rods = 1.26 cm). . . 150

12.4 Influence of the FAs geometry (additional cooling time = 0 year / water density in overpack = 0.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 152

12.5 Influence of the FAs geometry (additional cooling time = 0 year / water density in overpack = 0.25) [nominal distance between the fuel rods centres = 1.26 cm]. . 153

12.6 Influence of the FAs geometry (additional cooling time = 0 year / water density in overpack = 0.50) [nominal distance between the fuel rods centres = 1.26 cm]. . 154

12.7 Influence of the FAs geometry (additional cooling time = 0 year / water density in overpack = 0.75) [nominal distance between the fuel rods centres = 1.26 cm]. . 155

12.8 Influence of the FAs geometry (additional cooling time = 0 year / water density in overpack = 1.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 156

12.9 Influence of the FAs geometry (additional cooling time = 10

3

years / water density in overpack = 0.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 158

12.10Influence of the FAs geometry (additional cooling time = 10

4

years / water density in overpack = 0.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 159

12.11Influence of the FAs geometry (additional cooling time = 10

5

years / water density

in overpack = 0.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 160

(10)

List of Figures

12.12Influence of the FAs geometry (additional cooling time = 10

6

years / water density

in overpack = 0.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 161

12.13Influence of the FAs geometry (additional cooling time = 10

3

years / water density in overpack = 0.25) [nominal distance between the fuel rods centres = 1.26 cm]. . 164

12.14Influence of the FAs geometry (additional cooling time = 10

3

years / water density in overpack = 0.50) [nominal distance between the fuel rods centres = 1.26 cm]. . 165

12.15Influence of the FAs geometry (additional cooling time = 10

3

years / water density in overpack = 0.75) [nominal distance between the fuel rods centres = 1.26 cm]. . 166

12.16Influence of the FAs geometry (additional cooling time = 10

3

years / water density in overpack = 1.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 167

12.17Influence of the FAs geometry (additional cooling time = 10

4

years / water density in overpack = 0.25) [nominal distance between the fuel rods centres = 1.26 cm]. . 168

12.18Influence of the FAs geometry (additional cooling time = 10

4

years / water density in overpack = 0.50) [nominal distance between the fuel rods centres = 1.26 cm]. . 169

12.19Influence of the FAs geometry (additional cooling time = 10

4

years / water density in overpack = 0.75) [nominal distance between the fuel rods centres = 1.26 cm]. . 170

12.20Influence of the FAs geometry (additional cooling time = 10

4

years / water density in overpack = 1.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 171

12.21Influence of the FAs geometry (additional cooling time = 10

5

years / water density in overpack = 0.25) [nominal distance between the fuel rods centres = 1.26 cm]. . 172

12.22Influence of the FAs geometry (additional cooling time = 10

5

years / water density in overpack = 0.50) [nominal distance between the fuel rods centres = 1.26 cm]. . 173

12.23Influence of the FAs geometry (additional cooling time = 10

5

years / water density in overpack = 0.75) [nominal distance between the fuel rods centres = 1.26 cm]. . 174

12.24Influence of the FAs geometry (additional cooling time = 10

5

years / water density in overpack = 1.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 175

12.25Influence of the FAs geometry (additional cooling time = 10

6

years / water density in overpack = 0.25) [nominal distance between the fuel rods centres = 1.26 cm]. . 176

12.26Influence of the FAs geometry (additional cooling time = 10

6

years / water density in overpack = 0.50) [nominal distance between the fuel rods centres = 1.26 cm]. . 177

12.27Influence of the FAs geometry (additional cooling time = 10

6

years / water density in overpack = 0.75) [nominal distance between the fuel rods centres = 1.26 cm]. . 178

12.28Influence of the FAs geometry (additional cooling time = 10

6

years / water density in overpack = 1.00) [nominal distance between the fuel rods centres = 1.26 cm]. . 179

12.29Variation of k eff ± 2σ with time (water density in overpack = 1.00 / distance between the fuel rods centres = 1.26 cm). . . 180

12.30Evolution in time of the k eff (Swedish case. . . 181

A.1 Criticality curves for different radii in spherical geometries. . . 190

B.1 Schematic geological profile across the western margin of the Franceville Basin. . 195

B.2 Idealised cross section of a fossil reactor zone at Oklo. . . 196

C.1 The criticality tree: near-field scenarios. . . 198

C.2 The criticality tree: near-field scenarios. . . 199

C.3 The criticality tree: near-field scenarios. . . 200

C.4 The criticality tree: near-field scenarios. . . 200

C.5 The criticality tree: far-field scenarios. . . 202

C.6 The criticality tree: near-field scenarios. . . 203

C.7 The criticality tree: near-field scenarios. . . 204

E.1 Fuel, fuel rods, control and instrument tubes (cells). . . 239

(11)

E.3 Fuel assembly (cells). . . 241

E.4 Canisters inside the supercontainer (cells). . . 242

E.5 Gallery lateral cross section (cells). . . 243

E.6 Gallery vertical cross section (cells). . . 244

(12)

List of Tables

2.1 UOX fresh fuel assemblies characteristics. . . . 10

2.2 Typical 1450 days irradiated (45 GWd/tHM) UOX SFA radionuclide inventory. . 12

2.3 Typical 1450 days irradiated (45 GWd/tHM) MOX SFA radionuclide inventory. . 13

2.4 Belgian radioactive waste inventory. . . . 13

2.5 Number of SFAs foreseen for the Belgian repository. . . . 13

2.6 Composition of residues from reprocessing of 1,000 kg of SFAs. . . . 15

4.1 Illustration of consequences on the barrier states caused by individual FEPs. . . 42

5.1 Approximate inventories of U.S. nuclear waste destined for geological disposal and quantities planned for Yucca Mountain. . . . 49

6.1 First scenarios screening: incompatible system elements states are screened off. . 74

9.1 Atomic densities of the UOX and MOX fuels. . . 102

9.2 Reference design: UOX modelling validation. . . 104

9.3 Variant design: UOX modelling validation. . . . 104

9.4 Reference design: UOX geometry simplification. . . 105

9.5 Variant design: UOX geometry simplification. . . 105

9.6 Reference design: MOX geometry simplification. . . 105

9.7 Variant design: MOX geometry simplification. . . 105

10.1 Atomic densities (in 10

30

atom/m

3

) of the UOX and MOX fuels as a function of the burn-up. . . 114

11.1 Zircalloy-4 mass composition. . . 128

11.2 UOX fuel isotopic composition. . . 128

11.3 Overpack materials compositions and densities. . . 129

11.4 Void overpack. . . 133

11.5 Water density inside the overpack = 0.25 g/cm

3

. . . 133

11.6 Water density inside the overpack = 0.50 g/cm

3

. . . 133

11.7 Water density inside the overpack = 0.75 g/cm

3

. . . 134

11.8 Water density inside the overpack = 1.00 g/cm

3

. . . 134

11.9 Pure sand filled overpack (no water). . . 135

11.10Water volume fraction in overpack = 10 %. . . 136

11.11Water volume fraction in overpack = 20 %. . . 136

11.12Water volume fraction in overpack = 30 %. . . 137

11.13Water volume fraction in overpack = 40 %. . . 137

11.14Water volume fraction in overpack = 50 %. . . 137

11.15Water volume fraction in overpack = 60 %. . . 138

(13)

11.17Water volume fraction in overpack = 80 %. . . 138

11.18Water volume fraction in overpack = 90 %. . . 139

11.19Overpack material influence on k eff ± 2σ. . . 140

12.1 UOX fuel isotopic composition (additional cooling time = 0 years). . . 145

12.2 UOX fuel isotopic composition (additional cooling time = 10

3

years). . . 146

12.3 UOX fuel isotopic composition (additional cooling time = 10

4

years). . . 146

12.4 UOX fuel isotopic composition (additional cooling time = 10

5

years). . . 147

12.5 UOX fuel isotopic composition (additional cooling time = 10

6

years). . . 147

12.6 Isotopic contribution to k eff (additional cooling time = 0 year). . . 163

12.7 Isotopic contribution to k eff (additional cooling time = 10

4

years). . . 163

F.1 UOX fuels atomic densities composition in 10

2

atom barn

1

cm

1

. . . 246

F.2 MOX fuel atomic densities. . . 247

F.3 Stainless steel weight fractions and atomic densities. . . 247

F.4 Supercontainer concrete composition. . . 247

F.5 Supercontainer concrete atomic densities. . . 248

F.6 Gallery walls atomic densities. . . 248

F.7 Boom Clay weight composition. . . 248

F.8 Boom Clay atomic densities. . . 248

Références

Documents relatifs

2 - Écris les fractions suivantes en chiffres, comme dans l’exemple. Ex : deux cinquièmes 2

Models & Transformations : We propose to use functional languages s– expressions to represent a productive meta–model.. The Dsl compiler will pro- duce unevaluated

We provide a representation property of such dynamic risk measures in the convex case as well as some new results on a robust optimization problem, related to the case of

Abstract Particulate-bound aliphatic and polycyclic aromatic hydrocarbons AHs and PAHs were investigated in the surface waters of the Gulf of Gabès Tunisia, southern Mediterranean

In those MPAs where habitat structure appears to exert a great influence on grouper abundance, biomass and mean individual weight (Tabarca – rocky and Cabo de Palos), extracting

Conclusion We have designed in this paper a new numerical method of characteristics which is 2nd-order accurate so as to simulate smooth solutions to convection problems such as

Table 2 provides the results of the multivariate logistic regression model for the risk of a supra- and sub- therapeutic aPTT Combining our logistic regression models as shown

To develop these results we introduce three relevant benchmarks: (i) the “actual” pricing strategy that parallels the airline case and offers every product in the demand group at