• Aucun résultat trouvé

Evaluation of the Dynamic Seismic Analysis Recommended for the 1975 National Building Code

N/A
N/A
Protected

Academic year: 2021

Partager "Evaluation of the Dynamic Seismic Analysis Recommended for the 1975 National Building Code"

Copied!
24
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Paper (National Research Council of Canada. Division of Building Research); no.

DBR-P-694, 1976-08

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=ac3b8f6b-3a7a-43d7-b587-94fcf72ffc62 https://publications-cnrc.canada.ca/fra/voir/objet/?id=ac3b8f6b-3a7a-43d7-b587-94fcf72ffc62

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Evaluation of the Dynamic Seismic Analysis Recommended for the

1975 National Building Code

(2)
(3)

NATIONAL RESEARCH C O U N C I L O F CANADA D I V I S I O N O F B U I L D I N G RESEARCH

EVALUATION O F THE DYNAMIC S E I S M I C A N A L Y S I S RECOMMENDED

FOR THE 1975 NATIONAL BUILDING CODE

by J . H . R a i n e r DBR P a p e r N o . 694 of t h e D i v i s i o n o f B u i l d i n g R e s e a r c h O t t a w a , A u g u s t 1976

(4)

EVALUATION OF THE DYNAMIC SEISMIC ANALYSIS RECOMMENDED

FOR THE 1975 NATIONAL BUILDING CODE

by J . H . R a i n e r ABSTRACT

A s a n a l t e r n a t i v e t o t h e s t a t i c s e i s m i c l o a d a n a l y s i s o f b u i l d i n g s , a recommended dynamic s e i s m i c p r o c e d u r e i s p r e s e n t e d i n Commentary K of Supplement No. 4 t o t h e 1975 E d i t i o n of t h e N a t i o n a l B u i l d i n g Code o f

Canada (NBC). I n t h i s p a p e r comparisons a r e p r e s e n t e d between t h e

recommended r e s p o n s e s p e c t r u m and t h e f o l l o w i n g : a ) t h e a v e r a g e r e s p o n s e s p e c t r u m by Housner; b ) t h e r e s p o n s e s p e c t r a by Newmark, Blume and Kapur, and by Newmark and H a l l ; c ) t h e s e i s m i c c o e f f i c i e n t S of t h e 1975 NBC; and d ) t h e p r o d u c t o f t h e c o e f f i c i e n t s SKI a p p l i c a b l e t o c r o s s - b r a c e d w a t e r towers.

D e t a i l e d comparisons of s t o r e y s h e a r s and o v e r t u r n i n g moments are

p r e s e n t e d f o r t h r e e b u i l d i n g s , a s c a l c u l a t e d from t h e 1975 NBC and t h e

recommended dynamic a n a l y s i s . Although t h e r e is o v e r - a l l agreement i n

t h e f o r c e s o b t a i n e d from t h e two methods, f o r r e g u l a r b u i l d i n g s t h e recommended dynamic a n a l y s i s i s more c o n s e r v a t i v e i n t h e s h o r t p e r i o d r a n g e ( a p p r o x i m a t e l y 0.5 s ) , and l e s s c o n s e r v a t i v e i n t h e l o n g p e r i o d range ( a p p r o x i m a t e l y 2 s and g r e a t e r ) t h a n t h e 1975 NBC s e i s m i c

r e q u i r e m e n t s .

UNE

VALUATION

DE L'ANALYSE S ~ I S M I Q U E DYNAMIQUE RECOMD~E EN WE DU

CODE NATIONAL DU B ~ T I M E N T DE 1975

p a r J . H . R a i n e r

Devant l ' a n a l y s e s t a t i q u e e x i s t a n t e d e s s u r c h a r g e s dues a u x sGismes, l e commentaire K du suppl6ment no. 4 d e 1' 6 d i t i o n de 19 75 du Code

n a t i o n a l du b 2 t i m e n t du Canada (CNB) recommande une mgthode s g i s m i q u e dynamique. Le p r e s e n t a r t i c l e d g c r i t b r i h e m e n t c e t t e mgthode, fond6e s u r l a s u p e r p o s i t i o n des rgponses modales de l a c o n s t r u c t i o n . L ' a u t e u r

compare l e s p e c t r e d e ri5ponses recommand6 a ) a u s p e c t r e de r6ponses

moyennes de Housner; b) aux s p e c t r e s de rgponses de Newmark, Blume e t

Kapur, e t de Newmark e t H a l l ; c) a u c o e f f i c i e n t s g i s m i q u e S du CNB de 1975; e t d) a u p r o d u i t d e s c o e f f i c i e n t s SKI a p p l i c a b l e a u x r g s e r v o i r s d ' e a u s u r po t e a u x a v e c t r a v e r s e s d e con t r e v e n t e m e n t .

L' a u t e u r p r 6 s e n t e d e s comparaisons d 6 t a i l l 6 e s Y pour t r o i s G d i f i c e s , des c i s a i l l e m e n t s des 6 t a g e s e t d e s moments de renversement, conform6ment

a u CNB de 19 75 e t 2 1

'

a n a l y s e dynamique recommand6e. Bien que l e s f o r c e s

c a l c u l 6 e s 2 1' a i d e des deux m6thodes s ' a c c o r d e n t dans l ' e n s e m b l e ,

l ' a n a l y s e dynamique r e c o m n d 6 e e s t p l u s p r u d e n t e , e n c e q u i concerne l e s e d i f i c e s o r d i n a i r e s , pour de brZves p g r i o d e s ( e n v i r o n 0 , 5 s ) , e t moins p r u d e n t e pour l e s p g r i o d e s d ' e n v i r o n 2 s e t p l u s , que ne l e s o n t l e s e x i g e n c e s s 6 i s m i q u e s du CNB de 1975.

(5)

EVALUATION OF THE DYNAMIC SEISMIC ANALYSIS RECOMMENDED

FOR THE 1975 NATIONAL BUILDING CODE*

by J . H . Rainer

The primary purpose o f t h e s e i s m i c requirements o f t h e National Building Code o f Canada i s t o reduce t o an acceptably low l e v e l t h e r i s k o f i n j u r y o r death t o occupants o f b u i l d i n g s s u b j e c t t o earthquakes. This implies t h e p r e v e n t i o n o f p a r t i a l o r t o t a l c o l l a p s e o f a b u i l d i n g under t h e a c t i o n o f earthquakes t h a t a r e l i k e l y t o occur i n a given l o c a t i o n . In most seismic r e g i o n s o f t h e world t h e usual method o f achieving t h i s i s t o endow t h e b u i l d i n g s with a c e r t a i n l e v e l o f r e s i s t a n c e t o s t a t i c l a t e r a l loads o f t h e o r d e r o f those induced by earthquakes. Acceptable design methods a r e a l s o p r e s c r i b e d s o t h a t adequate d u c t i l i t y i s achieved f o r severe overloads. These a r e a l s o t h e p r i n c i p l e s followed i n t h e seismic p r o v i s i o n s o f t h e National Building Code o f Canada. ( There a r e c a s e s , however, f o r which t h e s t a t i c load method i s inadequate o r i n a p p r o p r i a t e , and t h e r e i s p r o v i s i o n f o r t h e use of a dynamic method a s an a1 t e r n a t i v e t o t h e Code procedure. Such a method, based on an average spectrum approach, i s p r e s e n t e d i n Commentary K , Supplement No. 4 t o t h e National Building Code of Canada 1975. ( 2 )

I t i s t h e purpose o f t h i s p a p e r t o b r i e f l y d e s c r i b e t h i s method, t o compare t h e spectrum used i n t h e recommended procedure with o t h e r design s p e c t r a , and t o compare t h e loads derived from t h e recommended dynamic procedure with those o b t a i n e d from t h e s e i s m i c p r o v i s i o n s of t h e 1975 National Building Code ( h e r e i n a f t e r r e f e r r e d t o a s 1975 NBC)

.

PRINCIPAL FEATURES OF

THE

RECOMMENDED DYNAMIC ANALYSIS

The recommended dynamic a n a l y s i s p r e s e n t e d i n Commentary K o f Supplement No. 4 t o t h e 1975 NBC ( 2 ) i s one t h a t i s based on t h e

p r i n c i p l e of s u p e r p o s i t i o n o f t h e s p e c t r a l responses o f t h e normal modes o f v i b r a t i o n o f t h e s t r u c t u r e . The spectrum employed i s a smoothed envelope response spectrum, sometimes c a l l e d t h e average response spectrum.

*

Presented a t t h e UPADI

-

EIC Congress, Toronto, O n t a r i o . 6- 12 October 1974.

(6)

The p r i n c i p a l s t e p s i n t h e recommended dynamic procedure a r e , b r i e f l y , a s follows:

1. E s t a b l i s h the seismic zone and corresponding ground a c c e l e r a t i o n t o be used a t t h e given l o c a t i o n . The recommended values, which correspond t o t h e 100-year r e t u r n p e r i o d , a r e given i n 1975 NBC,

Supplement No. 1 on Climatic Infarmation. ( 3 ) The information i s

p r e s e n t e d i n a t a b l e and a l s o i n t h e form o f t h e zoning map reproduced h e r e a s Figure 1. C a l c u l a t i o n s of expected ground a c c e l e r a t i o n s f o r p a r t i c u l a r l o c a t i o n s can a l s o be o b t a i n e d a s o u t l i n e d i n Commentaries J and

K

o f Supplement No. 4 t o t h e 1975

NBC. The recommended spectrum reproduced i n Figure 2 i s then

s c a l e d i n p r o p o r t i o n t o t h e peak design ground a c c e l e r a t i o n .

2. Determine t h e dynamic p r o p e r t i e s o f t h e s t r u c t u r e , i n c l u d i n g n a t u r a l f r e q u e n c i e s , mode shapes, and p a r t i c i p a t i o n f a c t o r s . 3 . S e l e c t design values of modal damping and s t r u c t u r a l d u c t i l i t y ,

following the recommendations given i n Commentary K .

4. S c a l e recommended spectrum values f o r t h e a p p r o p r i a t e ground a c c e l e r a t i o n and p l a s t i c behaviour, and compute probable response by combining t h e modal c o n t r i b u t i o n s .

5 . Design t h e s t r u c t u r a l members and connections f o r expected performance. This g e n e r a l l y means p r o v i s i o n s f o r t h e d u c t i l e behaviour assumed i n t h e a n a l y s i s .

I t i s expected t h a t t h e recommended dynamic procedure w i l l be used f o r b u i l d i n g s having l a r g e t o r s i o n a l e c c e n t r i c i t i e s , major s e t b a c k s i n p l a n dimensions, unusual mass o r s t i f f n e s s d i s t r i b u t i o n s , unusual

foundation c o n d i t i o n s , and g e n e r a l l y f o r c a s e s where t h e Code p r o v i s i o n s can b e expected t o be i n a p p l i c a b l e o r too crude. The dynamic procedure i s n o t intended t o r e p l a c e t h e s t a t i c Code p r o v i s i o n s , b u t r a t h e r t o supplement them.

RECOMMENDED RESPONSE SPECTRUM

The b a s i s o f t h e recommended procedure l i e s i n t h e p r e s c r i b e d response spectrum. A s e i s m i c response spectrum i s t h e envelope o f maximum responses o f single-degree-of-freedom o s c i l l a t o r s o f d i f f e r e n t n a t u r a l f r e q u e n c i e s o r p e r i o d s when s u b j e c t e d t o a given ground motion. A s every earthquake w i l l have d i f f e r e n t s p e c t r a , and because t h e

c h a r a c t e r i s t i c s of a p o t e n t i a l earthquake cannot be p r e d i c t e d , a

s t a t i s t i c a l e v a l u a t i o n o f t h e s p e c t r a o f a number o f p r e v i o u s l y recorded earthquakes h a s r e s u l t e d i n t h e p r e s e n t a t i o n o f various average s p e c t r a . These f a l l i n t o two main c a t e g o r i e s :

1) an a l g e b r a i c average, i . e . , t h e mean o f various s p e c t r a of earthquakes,

(7)

2) a s c a l e d average, o r t h e mean p l u s some f r a c t i o n o f t h e s t a n d a r d

d e v i a t i o n from t h e mean o f t h e c o n t r i b u t i n g s p e c t r a .

I t i s important t o understand t h e b a s i s f o r t h e d e r i v a t i o n s o f t h e v a r i o u s s p e c t r a and t h e subsequent d i f f e r e n c e s i n t h e r e s u l t s .

Included i n t h e f i r s t c a t e g o r y i s t h e well-known average spectrum

by Housner, ( 4 ) reproduced i n Figure 3 with o t h e r information. This

spectrum was o b t a i n e d by averaging t h e computed s p e c t r a l responses corresponding t o 7 C a l i f o r n i a earthquake r e c o r d s . The r e s u l t i s a mean response spectrum, i . e . , t h e r e i s a 50 p e r c e n t chance of t h e response being g r e a t e r o r s m a l l e r than t h e average curves p r e s e n t e d .

Among t h e s p e c t r a i n t h e second category i s t h e spectrum advanced by Newmark, Blume and Kapur, (5) i l l u s t r a t e d i n Figures 4 and 5 f o r

h o r i z o n t a l and v e r t i c a l d i r e c t i o n s , r e s p e c t i v e l y . These s p e c t r a r e s u l t e d from t h e s t a t i s t i c a l e v a l u a t i o n o f about 30 earthquake r e c o r d s

-

mostly ( b u t n o t e x c l u s i v e l y ) from C a l i f o r n i a

.

They r e p r e s e n t t h e maximum

response a t one s t a n d a r d d e v i a t i o n from t h e mean o f a log-normal d i s t r i - b u t i o n . This means t h a t t h e r e i s a p r o b a b i l i t y o f 84 p e r c e n t t h a t t h e response o f a given single-degree-of-freedom system t o a p a r t i c u l a r earthquake used i n t h a t s t u d y would be l e s s than t h e proposed spectrum. Conversely, t h e r e i s a 16 p e r c e n t p r o b a b i l i t y t h a t i t would be exceeded.

I t w i l l be e v i d e n t t h a t t h e average s p e c t r a o f t h e second category, e . g . , one s t a n d a r d d e v i a t i o n above t h e mean, a r e a t a . h i g h e r l e v e l and t h u s more c o n s e r v a t i v e than t h e s p e c t r a d e r i v e d from t h e a l g e b r a i c mean. COMPARISON OF SPECTRA

The spectrum i n t h e recommended procedure i s c l o s e l y r e l a t e d t o t h e spectrum o f t h e second category, and s p e c i f i c a l l y t o t h e one from Ref. ( 5 ) . Comparisons o f t h e 5 p e r c e n t damping curve with v a r i o u s types of s p e c t r a a r e p r e s e n t e d i n Figures 4 , s and 6. Except where otherwise

s t a t e d , a l l s p e c t r a a r e s c a l e d t o 1.0 g peak ground a c c e l e r a t i o n i n o r d e r t o f a c i l i t a t e comparisons.

Figure 4 shows t h e spectrum curve f o r 5 p e r c e n t damping drawn on t h e h o r i z o n t a l spectrum from Ref. ( 5 ) . I t can be s e e n t h a t t h e

recommended spectrum a g r e e s reasonably w e l l with t h e corresponding one from Ref. (5)

.

The recommended spectrum can t h e r e f o r e be s a i d t o have s i m i l a r p r o b a b i l i t i e s of exceedance of maximum response. A s i m i l a r comparison f o r t h e v e r t i c a l component i s p r e s e n t e d i n Figure 5.

Figure 6 shows a comparison with t h e spectrum advanced by Newmark

and H a l l . ( 6 ) Again, t h e recommended spectrum curve f o r 5 p e r c e n t

damping agrees reasonably we1 1.

From t h e previous d i s c u s s i o n on t h e v a r i o u s average s p e c t r a i t

might be a n t i c i p a t e d t h a t t h e recommended spectrum would be s u b s t a n t i a l l y

(8)

i n Figure 3. The o r d i n a t e s f o r t h e 5 p e r c e n t damped recommended spectrum a r e about twice a s l a r g e a s t h e corresponding ones on t h e

Housner spectrum. The major p a r t o f t h e d i f f e r e n c e can be a t t r i b u t e d t o t h e d i f f e r e n t c r i t e r i a f o r exceedance o f response t h a t were employed i n d e r i v i n g t h e s e two s p e c t r a .

I n Figure 7 t h e recommended average spectrum f o r 5 p e r c e n t damping i s compared with t h e response spectrum f o r t h e E l Centro earthquake, 1940, N-S component. The s p e c t r a correspond t o a peak ground a c c e l e r a - t i o n o f 0.33 g. I t may be observed t h a t t h e recommended design spectrum provides almost a n envelope t o t h e peak values f o r t h e E l Centro e a r t h - quake spectrum. In t h e r e g i o n o f long p e r i o d s o r low frequency, however, i . e . , t h e displacement bounds, t h e recommended v a l u e s a r e s u b s t a n t i a l l y l a r g e r . This i n d i c a t e s t h a t i f a time h i s t o r y a n a l y s i s is c a r r i e d o u t using t h i s p a r t i c u l a r earthquake record, s c a l i n g f a c t o r s s l i g h t l y l a r g e r than those based merely on peak ground a c c e l e r a t i o n s should b e used i n o r d e r t o a r r i v e a t answers t h a t a r e reasonably compatible w i t h t h e r e s u l t s o b t a i n e d from t h e recommended dynamic procedure i n Commentary K . COMPARISON BETWEEN S AND RECOMMENDED SPECTRUM

The s e i s m i c c o e f f i c i e n t S = 0.5/T i n S e c t i o n 4.1.9 o f t h e 1975 NBC i s p l o t t e d i n Figure 8 a l o n g with t h e recommended e l a s t i c spectrum. Also shown i s t h e corresponding e l a s t i c - p l as t i c response spectrum f o r a c c e l e r a t i o n ( o r f o r c e ) f o r damping r a t i o A = 5 p e r c e n t and d u c t i l i t y f a c t o r p = 3 . A d i r e c t comparison can be made between t h e e l a s t i c - p l a s t i c a c c e l e r a t i o n design spectrum and S only f o r systems t h a t a r e p h y s i c a l l y w e l l modelled by a single-degree-of-freedom o s c i l l a t o r . Under t h e assumption t h a t f o r such a s t r u c t u r e , p = 3 and A = 5 p e r c e n t corresponds roughly t o s t r u c t u r a l response f a c t o r K = 1.0 i n t h e Code, t h e Code i s seen t o give design f o r c e s roughly one-half those obtained from t h e dynamic procedure a t p e r i o d T = 0 . 3 s . On t h e o t h e r hand, f o r p e r i o d s above about 1 s t h e Code f o r c e s a r e s u b s t a n t i a l l y l a r g e r than those from t h e dynamic procedure.

For water towers on cross-braced s t e e l columns, t h e 1975 NBC

r e q u i r e s K = 3.0, with SKI between 1.2 and 2.5 ( I = importance f a c t o r . ) The corresponding curve o f SK i s p l o t t e d i n Figure 8 . The r e s u l t i n g

design f o r c e s a r e seen t o demand l i t t l e p l a s t i c a c t i o n i n t h e s h o r t - p e r i o d range; they a r e g r e a t e r than t h e e l a s t i c dynamic requirements i n t h e p e r i o d range above 0 . 8 s .

For multi-degree-of-freedom s t r u c t u r e s t h e comparison i s n o t a s s t r a i g h t f o r w a r d . Both modes h i g h e r than t h e fundamental and modal masses have t o be taken i n t o c o n s i d e r a t i o n . A d e t a i l e d t r e a t m e n t o f t h i s a s p e c t

w i l l not be p r e s e n t e d h e r e , although numerical comparisons f o r t h r e e s p e c i f i c b u i l d i n g s a r e given i n t h e next s e c t i o n .

COMPARISON OF SHEAR AND MOMENTS WITH COIIE VALUES

The s t a t i c e q u i v a l e n t s e i s m i c load requirements i n most b u i l d i n g codes have been derived from r u l e - o f - thumb p r i n c i p l e s , experience gained

(9)

from p r e v i o u s e a r t h q u a k e s , and t h e o r e t i c a l and economic c o n s i d e r a t i o n s . With t h e i n t r o d u c t i o n o f e x p e c t e d maximum ground a c c e l e r a t i o n a s a b a s i s f o r s e i s m i c zoning and i t s use i n t h e l a t e r a l s e i s m i c l o a d c a l c u l a t i o n s o f t h e 1975 NBC, t h e p o s s i b i l i t y p r e s e n t s i t s e l f o f a c h i e v i n g a r a t i o n a l c o n s i s t e n c y between t h e s t a t i c and dynamic p r o c e d u r e . I n o r d e r t o

a s s e s s such a p o s s i b l e agreement, s e i s m i c l o a d c a l c u l a t i o n s were

performed on t h r e e d i f f e r e n t b u i l d i n g s , u s i n g t h e p r o v i s i o n s o f t h e 1975

NBC 'and t h e recommended dynamic procedure i n Commentary K

.

The b u i l d i n g s were :

- A 1 4 - s t o r e y r e i n f o r c e d c o n c r e t e s h e a r - w a l l b u i l d i n g w i t h a e l l i p t i c a l p l a n s e c t i o n . The s h e a r w a l l s r e s i s t

t h e e n t i r e l a t e r a l l o a d and a r e assumed t o b e d u c t i l e f l e x u r a l w a l l s . F u r t h e r s t r u c t u r a l d e t a i l s a r e g i v e n i n Ref. ( 9 ) . The

foundation was assumed r i g i d .

B u i l d i n g No. 2 . - A 1 5 - s t o r e y r e i n f o r c e d c o n c r e t e s t r u c t u r e of combined s h e a r - w a l l and frame s y s tem, w i t h s t r u c t u r a l d e t a i l s d e s c r i b e d i n Ref. (8)

.

B u i l d i n g No. 3 . - A h y p o t h e t i c a l d e s i g n example o f a 2 5 - s t o r e y r e i n f o r c e d c o n c r e t e frame b u i l d i n g , a s given i n Ref. ( 7 ) .

A summary o f t h e p r o p e r t i e s o f t h e t h r e e b u i l d i n g s i s p r e s e n t e d i n Table 1.

A l l c a l c u l a t i o n s were c a r r i e d o u t f o r a peak d e s i g n ground a c c e l e r a - t i o n o f 1 . 0 g. The Code f o r c e s were determined a c c o r d i n g t o t h e f o l l o w - i n g formula from t h e 1975 NBC, S e c t i o n 4 . 1 . 9 . : V = ASKIFW ( 1 where V = b a s e s h e a r A = d e s i g n ground a c c e l e r a t i o n , a s a f r a c t i o n o f g r a v i t a t i o n a l a c c e l e r a t i o n K = s t r u c t u r a l r e s p o n s e f a c t o r S = s e i s m i c c o e f f i c i e n t = 0 . 5 / T I = importance f a c t o r F = f o u n d a t i o n f a c t o r W = weight o f s t r u c t u r e

The b a s e s h e a r V was t h e n d i s t r i b u t e d throughout t h e b u i l d i n g h e i g h t a s p r e s c r i b e d by t h e Code. A summary o f numerical v a l u e s i s p r e s e n t e d i n Table 2 .

The o v e r t u r n i n g moments were determined s i m i l a r l y u s i n g t h e a p p l i c - abl c v a l u e o f J , t h e o v e r t u r n i n g moment r e d u c t i o n c o e f f i c i e n t ; t h e s e and t h e r e s u l t i n g b a s e o v e r t u r n i n g moments a r e a l s o p r e s e n t e d i n Table 2 .

(10)

RESULTS

The r e s u l t s f o r t h e s h e a r d i s t r i b u t i o n s of t h e t h r e e b u i l d i n g s a r e p r e s e n t e d i n F i g u r e s 9 , 10 and 11. I n a d d i t i o n t o t h e Code v a l u e s and t h o s e from t h e recommended dynamic procedure, r e s u l t s from e l a s t i c a n a l y s i s and t h o s e from o t h e r methods of modal s u p e r p o s i t i o n s a r e given. The l a t t e r a r e p r e s e n t e d f o r p u r p o s e s o f comparison o n l y . S i m i l a r r e s u l t s a r e p r e s e n t e d f o r o v e r t u r n i n g moments i n F i g u r e s 12, 1 3 and 1 4 .

I t should b e noted t h a t t h e p e r i o d T r e q u i r e d f o r t h e c a l c u l a t i o n o f S and c o n s e q u e n t l y o f V was t h a t o f t h e fundamental mode a n d n o t t h a t c a l c u l a t e d by t h e Code formula.

DISCUSSION OF RESULTS

a) Design Forces

The r e s u l t s o f d e s i g n s t o r e y s h e a r s (Figure 9) f o r b u i l d i n g No. 1

i n d i c a t e t h a t t h e Code b a s e s h e a r s f o r

K

= 1.00 a r e a p p r o x i m a t e l y 40 p e r c e n t s m a l l e r t h a n t h o s e from t h e dynamic method. A comparison of t h e s h e a r d i s t r i b u t i o n o v e r t h e b u i l d i n g h e i g h t shows a s i m i l a r v a r i a t i o n , w i t h t h e p e r c e n t a g e d i f f e r e n c e s

i n

t h e upper 213 of t h e b u i l d i n g b e i n g s l i g h t l y l a r g e r t h a n a t t h e b a s e .

A comparison o f t h e b a s e o v e r t u r n i n g moments i n Figure 12 shows t h a t t h e Code y i e l d s v a l u e s 17 p e r c e n t h i g h e r t h a n t h e dynamic a n a l y s i s . The d i f f e r e n c e becomes 1 a r g e r , however, above t h e midheigh t o f t h e b u i 1 ding, r e a c h i n g between 30 t o 40 p e r c e n t .

The s t o r e y s h e a r s f o r b u i l d i n g No. 2 ( F i g u r e 10) show s u b s t a n t i a l agreement between t h e 1975 NBC and t h e dynamic procedure f o r t h e b a s e o f t h e s t r u c t u r e . Near midheight, t h e s h e a r s c a l c u l a t i o n from t h e Code r e q u i r e m e n t s a r e l a r g e r , whereas i n t h e upper 2/3 o f t h e b u i l d i n g they a r e s m a l l e r by about 40 p e r c e n t than t h o s e from t h e dynamic method. The o v e r t u r n i n g moments b a s e d on t h e Code f o r b u i l d i n g No. 2 and

p r e s e n t e d i n Figure 1 3 a r e s e e n t o b e about 20 p e r c e n t l a r g e r t h a n t h e dynamic procedure a t t h e b a s e , b u t t h e t r e n d r e v e r s e s i n t h e upper h a l f o f t h e s t r u c t u r e .

For b u i l d i n g No. 3 t h e s h e a r s based on t h e Code ( F i g u r e 11) a r e seen t o b e 1 . 6 times a s l a r g e a s t h o s e from t h e dynamic p r o c e d u r e . T h i s d i f f e r e n c e p e r s i s t s i n t h e lower h a l f o f t h e b u i l d i n g b u t g r a d u a l l y t h e y approach each o t h e r a t t h e t o p o f t h e s t r u c t u r e . For t h e o v e r t u r n i n g moments i n Figure 14 a s i m i l a r d i f f e r e n c e e x i s t s between t h e Code v a l u e s and t h e dynamic p r o c e d u r e .

b) E l a s t i c R e s u l t s

The e l a s t i c * r e s u l t s from t h e dynamic a n a l y s i s shown i n F i g u r e s 9

through 14 a r e s u b s t a n t i a l l y l a r g e r t h a n t h e d e s i g n v a l u e s o b t a i n e d from t h e recommended dynamic procedure o r from t h e i n f o r m a t i o n i n t h e Code.

(11)

T h i s i s due, o f c o u r s e , t o t h e f a c t t h a t t h e design f o r c e s a r e o b t a i n e d from t h e e l a s t i c modal s h e a r s and o v e r t u r n i n g moments by d i v i d i n g by a d u c t i l i t y c o e f f i c i e n t t o account f o r p l a s t i c a c t i o n i n t h e s t r u c t u r e .

Also shown i n F i g u r e s 10 and 1 3 f o r b u i l d i n g No. 2 a r e comparisons o f d i f f e r e n t ways o f combining t h e modal c o n t r i b u t i o n s . For t h e e l a s t i c r e s u l t s t h e root-sum-square (R .S . S .) method g i v e s v a l u e s f o r t h e s h e a r s s u b s t a n t i a l l y s m a l l e r t h a n t h e maximum o f any two modes; t h e

a b s o l u t e maximum o f a l l c o n t r i b u t i n g modes i s i n t u r n s u b s t a n t i a l l y

l a r g e r than t h e maximum o f any two modes. The maximum o f any two modes

emphasizes t h e c o n t r i b u t i o n s o f t h e second mode, whereas i n t h e R.S .S. r e s u l t s t h e c o n t r i b u t i o n s o f t h e modes h i g h e r t h a n t h e fundamental a r e reduced and smoothed.

The e l a s t i c r e s u l t s f o r t h e o v e r t u r n i n g moments f o r b u i l d i n g No. 2 shown i n Figure 1 3 a r e s e e n t o vary l e s s among t h e methods o f modal combinations t h a n t h o s e f o r t h e s h e a r s i n F i g u r e 10. This c a n b e e x p l a i n e d by t h e f a c t t h a t t h e fundamental mode c o n t r i b u t e s a g r e a t e r p r o p o r t i o n t o t h e t o t a l o v e r t u r n i n g moments than t o t h e s t o r e y s h e a r s . SUWRY AND CONCLUSIONS

The spectrum i n t h e recommended dynamic procedure given i n

Commentary K o f Supplement No. 4 t o t h e 1975 NBC a g r e e s s u b s t a n t i a l l y

w i t h t h e spectrum recommended by Newmark, Blume and Kapur. (5) The

given spectrum d i f f e r s ~ ' u b s t a n t i a l l ~ i n amplitude b u t n o t i n shape, from t h e a v e r a g e spectrum p r e s e n t e d by Housner. ( 4 j This c a n b e

a t t r i b u t e d t o t h e d i f f e r e n t methods employed i n d e r i v i n g t h e s p e c t r a . The comparison o f s h e a r s and o v e r t u r n i n g moments between t h e p r o v i s i o n s o f t h e 1975 NBC and t h e recommended dynamic procedure i n d i c a t e s t h e - f o l l o w i n g t r e n d s :

1. For t h e b u i l d i n g w i t h a n a t u r a l p e r i o d i n t h e o r d e r o f 1 s, t h e two methods a r e i n s u b s t a n t i a l agreement, w i t h s m a l l d i f f e r e n c e s

o c c u r r i n g through t h e h e i g h t o f t h e b u i l d i n g .

2 . For t h e s h o r t - p e r i o d s t r u c t u r e , i n t h e o r d e r o f 0.5 s , t h e recom- mended dynamic procedure 'gives f o r c e s t h a t a r e approximately 30 p e r c e n t l a r g e r t h a n t h a t o f t h e Code.

3 . For t h e l o n g p e r i o d s t r u c t u r e , o f about 2 s , t h e Code g i v e s l a r g e r f o r c e s a t t h e b a s e t h a n t h e recommended dynamic procedure, b u t comparable f o r c e s n e a r t h e t o p .

I t i s b e l i e v e d t h a t t h e t r e n d s e s t a b l i s h e d i n t h e s e r e s u l t s a r e g e n e r a l l y v a l i d f o r s i m i l a r t y p e s o f b u i l d i n g s . A d d i t i o n a l examples would b e needed, however, t o c o r r o b o r a t e t h i s .

(12)

SUGGESTED CHANGES OF ?HE DYNAMIC PROCEDURE

1. The spectrum, a s p r e s e n t e d i n Supplement No. 4 t o t h e 1975 E d i t i o n o f t h e National Building Code, ranges from a p e r i o d o f 0.1 s t o 15 s . Although t h i s should be adequate f o r most s t r u c t u r a l a p p l i c a t i o n s , t h e need may a r i s e f o r an e x t e n s i o n i n t h e s h o r t - p e r i o d range. I n t h a t c a s e i t i s suggested t h a t a procedure s i m i l a r t o t h a t given i n Ref. (5) be followed, namely, t h a t a s t r a i g h t l i n e be drawn j o i n i n g the spectrum l i n e a t 0 . 1 s t o t h e peak ground a c c e l e r a t i o n bound a t 0.03

s

.

T h e r e a f t e r t h e spectrum follows t h e peak ground a c c e l e r a t i o n bound. This i s i l l u s t r a t e d i n Figure 8 .

2. I t i s suggested t h a t a t l e a s t t h r e e modes be used i n t h e recom- mended dynamic a n a l y s i s .

(13)

REFERENCES

A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code, N a t i o n a l B u i l d i n g Code o f Canada 1975, p u b l i s h e d by t h e N a t i o n a l Research Council o f Canada, Ottawa. (NRC 13982)

A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code, Commentaries on P a r t 4 , 1975, Supplement No. 4 t o t h e N a t i o n a l B u i l d i n g Code o f Canada 1975, pub1 i s h e d by t h e N a t i o n a l Research Council o f Canada, Ottawa. (NRC 13989)

A s s o c i a t e Committee on t h e N a t i o n a l B u i l d i n g Code, C l i m a t i c I n f o r m a t i o n f o r B u i l d i n g Design i n Canada 1975, Supplement No. 1 t o t h e N a t i o n a l B u i l d i n g Code o f Canada 1975, p u b l i s h e d by t h e N a t i o n a l Research Council o f Canada, Ottawa. (NRC 13986)

Housner, G.W. Design Spectrum. C h a p t e r 5, i n Earthquake

E n g i n e e r i n g , Wiegel, Ed., P r e n t i c e - H a l l , I n c . , Englewood C I i f f s ,

N . J . , 1970.

Newmark,

N.M.,

Blume, J . A . and Kapur, K . K . S e i s m i c Design S p e c t r a f o r N u c l e a r Power P l a n t s . J o u r n a l o f Power D i v i s i o n , ASCE, Vo1.99, No. P02, November 1973, p . 287-303.

Newmark, N . M . and H a l l , W . J . P r o c e d u r e s a n d C r i t e r i a f o r Earthquake R e s i s t a n t Design. B u i l d i n g S c i e n c e s S e r i e s 46, N a t i o n a l Bureau o f S t a n d a r d s , Washington, D.C., February 1973, p

.

209-236.

Newmark, N . M . , Blume, J . A . and Corning, L . H . Design o f M u l t i s t o r y R e i n f o r c e d Concrete B u i l d i n g s f o r Earthquake Motions. P o r t l a n d Cement A s s o c i a t i o n , Chicago I l l . , 1961.

Ward, H.S. Dynamic C h a r a c t e r i s t i c s o f a Mu1 t i - S t o r e y C o n c r e t e B u i l d i n g . P r o c e e d i n g s , I n s t i t u t i o n o f C i v i l E n g i n e e r s , Vol

.

43, August 1969, p . 553-572. ( P r e p r i n t e d a s NRC 11461)

Ward, H .S

.

and R a i n e r , J .H. Experimental D e t e r m i n a t i o n o f S t r u c t u r e and Foundation P a r a m e t e r s Using Wind-Induced V i b r a t i o n s .

P r o c e e d i n g s , I n s t i t u t i o n o f C i v i l E n g i n e e r s , Vol. 53, September 1972, p . 305-322. ( P r e p r i n t e d a s NRC 13026)

(14)

TABLE I

PROPERTIES OF EXAMPLE BUILDINGS

Assumed Duct- Damp- P a r t i c i - i l i t y i n g Bldg H e i g h t , No. o f P e r i o d s , p a t i o n v F a c t o r R a t i o No. f t S t o r e y s Modes s F a c t o r s * i n . / s K u A, % * f o r mode shapes n o r m a l i z e d t o 1 . 0 a t t h e t o p s t o r e y TABLE 2 SUMMARY OF RESULTS

Recommended Dynamic Procedure 1975 N a t i o n a l B u i l d i n g Code Commentary K (1975 NBC)

Bldg Base Base Base Base

No. S h e a r Moment S h e a r Moment

V M V M

F t / V J x l o 6 l b x 10' i n . / l b x l o 6 l b x l o 9 i n . / l b

3 Assumed 0.80 24.2 4 0 . 8 1 5 . 3 2 6 . 2

(15)

F I G U R E 1

(16)

P E R I O D T, S E C

F I G U R E

2

A V E R A G E G R O U N D M O T I O N A N D E L A S T I C A V E R A G E R E S P O N S E S P E C T R U M F O R 1 . 0 9 M A X I M U M G R O U N D A C C E L E R A T I O N ( C O M M E N T A R Y

K , 1 9 7 5

N B C )

(17)

P E R I O D , S E C

F I G U R E

3

(18)

FREQUENCY, CPS

F I G U R E 4

H O R I Z O N T A L D E S I G N R E S P O N S E S P E C T R A

-

S C A L E D

T O

l g

H O R I Z O N T A L G R O U N D A C C E L E R A T I O N ( N E W M A R K ,

(19)

0.1 0.2 0.5 1 2 5 10 20 50 100 FREQUENCY, cp

F I G U R E

5

V E R T I C A L D E S I G N R E S P O N S E S P E C T R A

-

S C A L E D T O

l g H O R I Z O N T A L G R O U N D A C C E L E R A T I O N ( N E W M A R K ,

B L U M E A N D K A P U R , 1 9 7 3 )

(20)

Velocity , in./sec.

z m

-

0

"If,

(21)

P E R I O D

T, S E C

F I G U R E

8

E L A S T I C A N D E L A S T I C - P L A S T I C S P E C T R U M F O R 1 . 0 ~ ~

M A X I M U M G R O U N D

A C C E L E R A T I O N A N D S E I S M I C C O E F F I C I E N T S ( 1 9 7 5 N B C )

(22)

-

D Y N A M I C P R O C E D U R E P = 3 - A B S M A X I M U M 5 - - - R . S . S . 5 M O D E S

1

S H E A R F O R C E , L B x l o 6 F I G U R E 1 0 C O M P A R I S O N O F S T O R E Y S H E A R S F O R B U I L D I N G 2 D Y N A M I C P R O C E D U R E p * 3

---

1 9 7 5 N B C F t

.

0 . 0 9 4 K * 1 . 0 0

-

A B S . M A X I M U M 3 M O D E S E L A S T I C

---

R . S . S . 3 M O D E S

1

-

1 . 0 -

-

0.8

-

0

-

I- < - 0 . 6

1

+ I

-

0 - w - 0 . 4

=

- - 0 . 2

-

I I I

-

0 0 10 20 30 40 5 0 S H E A R F O R C E , L B x l o 6 F I G U R E 9 C O M P A R I S O N O F S T O R E Y S H E A R S F O R B U I L D I N G 1 4

(23)

-

D Y N A M I C P R O C E D U R E p - 4

---

1 9 7 5 N B C K = 0. 7 R . S . S . E L A S T I C 0 1 0 2 0 3 0 4 0 5 0

.,

S H E A R F O R C E , L B x l o 6 F I G U R E 11 C O M P A R I S O N O F S T O R E Y S H E A R S F O R B U I L D I N G 3

-

D Y N A M I C P R O C E D U R E p=3

---

1 9 7 5 N B C K = 1 . 0 0 , J = 1. 0 0

---

R . S . S . 3 M O D E S

-

1 . 0

-

-

0 , 8 -

-

0 . 6 - - 0 . 4

-

- 0 . 0 0 0 1 0 20 3 0 O V E R T U R N I N G M O M E N T . I N . L B x 1 0 9 F I G U R E 1 2 C O M P A R I S O N O F O V E R T U R N I N ( ; M O M E N T S FOR B U I L D I N G 1

(24)

I

- D Y N A M I C P R O C E D U R E p = 3

- - -

1 9 7 5 N B C K = 0 . 8 0 . J = 0 . 8 7 2 A B S . M A X I M U M 5 M O D E S - - - R.S.S. 5 M O D E S

-

1 . 0 - - 0 . 8 - - 0 . 6 -

-

0 . 4 -

-

0 . 2 - 0 0 10 2 0 30 4 0 5 0 F I G U R E 13 C O M P A R I S O N OF O V E R T U R N I N G M O M E N T S F O R B U I L D I N G 2

-

D Y N A M I C P R O C E D U R E p-4

- - -

1 9 7 5 N B C K = 0 . 7 , J = 0 . 8 0 - - - R.S.S. E L A S T I C F I G U R E 1 4 C O M P A R I S O N O F O V E R T U R N I N G M O M E N T S F O R B U I L D I N G 3

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers