• Aucun résultat trouvé

Corrigendum for the paper

N/A
N/A
Protected

Academic year: 2022

Partager "Corrigendum for the paper"

Copied!
2
0
0

Texte intégral

(1)

Corrigendum for the paper

The geometry of random minimal factorizations of a long cycle via biconditioned bitype random trees

Ann. Henri Lebesgue 1, pp. 149-226, 2018.

Valentin Féray and Igor Kortchemski June 28, 2021

The last display in the proof of Lemma 4.12 is incorrect; the authors are grateful to Victor Dubach for pointing out this mistake. As a consequence, Propositions 4.8, Lemmas 4.12, Lemma 4.13, Corollary 4.14 and Proposition 4.15 are incorrect as stated in the article due to a missing constant. We explain here how to correct them.

Most importantly, we emphasize that the corrections do not affect the proof of Theorem 1.3 (iii).

The correct statements are the following.

PROPOSITION4.8.Assume thatKnn → ∞and Knn →γ∈[0,1)asn→ ∞. SetDn=p

n)2Kn. Then

Bnbu(n−K

n)c( ˜Tn) q1 +α2γ·Dn

: 0≤u≤1

−→(d) n→∞ e

for a certain constantαγ ≥0. In addition, ifγ >0, then

sup

0≤u≤1

Hnbu(n−K

n)c( ˜Tn) Kn

−u

(P)

n→∞−→ 0 and 1 n max

1≤i≤n`•,ni −→(P)

n→∞ 0.

The last display in the proof of Lemma 4.12 should read

Hb1(n),Bnn−K

nn−KK n

n+1Hb1(n)Dn Dn

!

n→∞−→ (W1, X1),

whereW1,X1are independent standard Gaussian random variables. Accordingly, one needs to modify the defini- tion ofBb(n)in the following way (the factorDnwas forgotten in the article):

Bbu(n)= Bnbu(n−Kn)cn−KK n

n+1DnHbu(n)

Dn .

The statements of Lemma 4.12 and Lemma 4.13 are then correct with this modified definition ofBb(n). However, the statement of Corollary 4.14 should be modified as follows.

COROLLARY 4.14. Assume that, asn → ∞, we have Knn → ∞and Knn → γ withγin[0,1). There is a constantαγ ≥0 such that conditionally given the event{Hnn−Kn = Kn+ 1, Bnn−Kn =−1}, the following convergence in distribution holds jointly

Bnbu(n−K

n)c

Dn

!

0≤u≤1

−→(d)

n→∞ XbrγWbr, sup

0≤u≤1

Hnbu(n−K

n)c

Kn

−u

n→∞−→ 0.

1

(2)

Proof. We have

Bnbu(n−Kn)c

Dn =Bb(n)u +(n−Kn)Dn (Kn+ 1)Dn Hbu(n) Whenγ >0, we have

Dn(n−Kn)

Dn(Kn+ 1) ∼1−γ γ3/2

σn σn.

In the regimeγ >0, the quantitiesσnandσn have positive limits asntends to+∞, so that DDn(n−Kn)

n(Kn+1) tends to a positive limit denoted byαγ. Whenγ= 0, DDn(n−Kn)

n(Kn+1) →α0:= 0. The first part of Corollary 4.14 (convergence of B

n bu(n−Kn)c

Dn ) then follows from Lemma 4.13. The proof of the convergence ofsup0≤u≤1

Hnbu(n−Kn)c Kn −u

is unchanged.

Using the fact thatXbrγ·Wbrhas the same distribution asq

1 +α2γ·Xbr, Proposition 4.15 is modified as follows.

PROPOSITION4.15. Assume that Knn → ∞and Knn → γ ∈[0,1)asn → ∞. There is a constantαγ ≥0 such that the following convergences hold jointly in distribution

Bbu(n−Kn)c(Tn) q1 +α2γ·Dn

: 0≤u≤1

−→(d)

n→∞ e, sup

0≤u≤1

Hbu(n−Kn)c(Tn) Kn

−u

n→∞−→ 0.

The multiplicative constantq

1 +α2γ does not affect the proof of Theorem 1.3 (ii).

2

Références

Documents relatifs

[r]

[r]

[r]

[r]

[r]

Dans chacun des cas, écris une expression permettant de calculer ces longueurs.. Dans chacun des cas, écris une expression permettant de calculer

Considerando además que, según lo dispuesto por la 22 a Asamblea Mundial de la Salud en la resolución WHA22.6, las contribuciones de los nuevos Miembros para los ejercicios de 1968

Exercice 4 : Écris sous forme de fractions les