• Aucun résultat trouvé

An HPLC–MS/MS method for the separation of α-retinyl esters from retinyl esters

N/A
N/A
Protected

Academic year: 2021

Partager "An HPLC–MS/MS method for the separation of α-retinyl esters from retinyl esters"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: hal-02631924

https://hal.inrae.fr/hal-02631924

Submitted on 27 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

α-retinyl esters from retinyl esters

Hilary J. Goetz, Rachel Kopec, Ken M. Riedl, Jessica L. Cooperstone, Sureshbabu Narayanasamy, Robert W. Curley, Steven J. Schwartz

To cite this version:

Hilary J. Goetz, Rachel Kopec, Ken M. Riedl, Jessica L. Cooperstone, Sureshbabu Narayanasamy,

et al.. An HPLC–MS/MS method for the separation of α-retinyl esters from retinyl esters. Journal

of Chromatography B - Analytical Technologies in the Biomedical and Life Sciences, Elsevier, 2016,

1029-1030, pp.68-71. �10.1016/j.jchromb.2016.06.043�. �hal-02631924�

(2)

Version postprint M anus cr it d ’a ut e ur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

Journal homepage : http://www.elsevier.com/locate/chromb

Short communication

An HPLC–MS/MS method for the separation of ␣ -retinyl esters from retinyl esters

Hilary J. Goetz

a

, Rachel E. Kopec

a,b

, Ken M. Riedl

a

, Jessica L. Cooperstone

a

, Sureshbabu Narayanasamy

c

, Robert W. Curley Jr.

c

, Steven J. Schwartz

a,∗

aDepartmentofFoodScience&Technology,TheOhioStateUniversity,Columbus,OH,UnitedStates

bINRA,UMR408SécuritéetQualitédesProduitsd’OrigineVégétale,Avignon,France

cDepartmentofMedicinalChemistry,TheOhioStateUniversity,Columbus,OH,UnitedStates

Keywords:

␣-Retinylpalmitate

␣-Retinol Retinylesters

ProvitaminAcarotenoids Synthesis

HPLC–MS/MS

a b s t r a c t

EnzymaticcleavageofthenonsymmetricprovitaminAcarotenoid␣-caroteneresultsinonemoleculeof retinal(vitaminA),andonemoleculeof␣-retinal,abiologicallyinactiveanalogoftruevitaminA.Dueto structuralsimilarities,␣-retinylestersandvitaminAesterstypicallycoelute,resultingintheoverestima- tionofvitaminAoriginatingfrom␣-carotene.Herein,wepresentasetoftoolstoidentifyandseparate

␣-retinolproductsfromvitaminA.␣-Retinylpalmitate(␣RP)standardwassynthesizedfrom␣-ionone followingaWittig-Hornerapproach.Ahigh-performanceliquidchromatography–tandemmassspec- trometry(HPLC–MS/MS)methodemployingaC30columnwasthendevelopedtoseparatethespecies.

Authenticstandardsofretinylestersandthesynthesized␣-RPconfirmedrespectiveidentities,while other␣-retinylesters(i.e.myristate,linoleate,oleate,andstearate)wereevidencedbytheirpseudo- molecularionsobservedinelectrosprayionization(ESI)mode,fragmentation,andelutionorder.For quantitation,anatmosphericpressurechemicalionization(APCI)sourceoperatedinpositiveionmode wasused,andretinol,thepredominantin-sourceparentionwasselectedandfragmented.Theapplica- tionofthismethodtoachylomicron-richfractionofhumanplasmaisdemonstrated.Thismethodcan beusedtobetterdeterminethequantityofvitaminAderivedfromfoodscontaining␣-carotene.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

VitaminAdeficiencyremainsasignificantproblemworldwide, with deficient regions obtaininga majority of their vitamin A needsfromprovitaminAcarotenoidsfoundinfruitsandvegeta- bles[1,2].ThevitaminAcapacityofcarotenoidsisdictatedbythe presenceofanunsubstituted␤-iononeringinconjugationwitha polyenechain[3].Whilenumerousanalyticalmethodshavebeen developedforthedeterminationofvitaminAdeliveryfromaprovi- tamin A rich meal [4–6],most studiesfocus onthe provitamin Acarotenoid␤-carotene.Thesymmetricstructureof␤-carotene yieldstwomolecules ofretinalaftercentralcleavagemaking it

Abbreviations: ␣RP,␣-retinylpalmitate;APCI,atmosphericpressurechemical ionization;ESI,electrosprayionization;HPLC,highperformanceliquidchromatog- raphy;MeOH,methanol;MTBE,methyltert-butylether;NMR,nuclearmagnetic resonance;PDA,photodiodearray;RP,retinylpalmitate;MS/MS,tandemmass spectrometry.

Correspondingauthorat:235ParkerFoodScience&TechnologyBuilding,2015 FyffeCtColumbus,OH43210,UnitedStates.

E-mailaddress:schwartz.177@osu.edu(S.J.Schwartz).

themostpotentprovitaminAprecursor.Howeverinnature,␤- caroteneisoftenfoundconcurrentwithnonsymmetricprovitamin Acarotenoidslike␣-carotene.Analogousto␤-carotene,␣-carotene isenzymaticallycleavedatthecentraldoublebond,yetonlypro- ducesonemoleculeofretinal.Theremainingproduct,␣-retinal, containsan␧-ring,andpossessesonly2%ofthebioactivityofvita- minA in animal models[7–10]. Both␣-retinaland retinalare reducedto␣-retinoland retinol,respectively,then esterifiedto fattyacids,beforebeingpackagedandreleasedinbloodchylomi- crons.Thestructuralsimilaritybetweentheisobars␣-retinoland retinol,withonlyadifferenceintheplacementofasingledou- blebond,causesdifficultyresolving␣-retinol/␣-retinylestersfrom analogousretinol/retinylesters,respectively,usingtraditionalC18 reversed-phasechromatography.Duetothiscoelution,itislikely thatreportedlevelsofnewlyformedvitaminAaftertheconsump- tionofan␣-carotene-richmealhavebeenoverestimated.

Afewarticleshavereportedtentativeidentificationof␣-retinyl estersinanimaltissuesandbloodafterthefeedingof␣-carotene or␣-retinol[11–15].Collectively,thesestudiesidentified␣-retinyl esters based upon anticipated retention time, expected UV–vis spectra,anddisappearanceaftersamplesaponification[11–15].In

(3)

Version postprint M anus cr it d ’a ut e ur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

Journal homepage : http://www.elsevier.com/locate/chromb

onestudy,thepresumedresulting␣-retinolwasisolatedfromtis- suesandthen usedtoquantify␣-retinol fromthesametissues [11].Anotherstudyrequireddouble-analysisofbothasaponified andunsaponifiedsample,inadditiontoacalculation,toestimate

␣-retinylestercontribution[12].Saponificationofretinolspecies priortoanalysisrequiresmorepreparatorytime,increasespoten- tialfordegradationofthesesensitivecompounds,and doesnot allowforthedifferentiationofthecirculatingesters[12,14].Addi- tionally,withoutauthenticstandards,reportsofintact␣-retinyl esters in animal tissues are tentative [15]. Indeed, the lack of authenticstandards hasprevented unequivocalidentificationof

␣-retinylestersforthepast20years.

The objective of this work was to provide a tool to better measurethevitaminApotentialof␣-carotene-containingfoods.

␣-Retinolwassynthesizedandesterifiedtopalmiticacid(␣RP,the presumedpredominateacylatedformof␣-retinol[16]).Together with retinyl palmitate (RP), and other authentic retinyl ester standards,ahigh-performanceliquidchromatography-photodiode array-tandemmassspectrometry(HPLC-PDA-MS/MS)methodwas developed.Themethodwasthenappliedtodifferentiate␣-retinyl estersfromretinylestersfoundinthechylomicron-containingfrac- tionofhumanbloodplasma.

2. Materialsandmethods 2.1. Reagents

AmmoniumacetatewaspurchasedfromJ.T.Baker(Phillipsburg, NJ,USA).HPLCgrademethyltert-butylether(MTBE),Optimagrade water,methanol (MeOH)and formic acidwerepurchasedfrom FisherScientific(Pittsburgh,PA,USA).

2.2. Synthesisandpurificationofall-trans˛RPstandard

Adetaileddescriptionof␣RPsynthesisandpurificationispro- videdinthesupplementary materialand issummarized inFig.

S1.

2.3. HPLC–MS/MSmethodforseparationof˛RPandRP

Separationof␣RPandRPstandardswasachievedusingaC30 column (4.6mm×250mm,3␮mparticlesize,YMC, Allentown, PA)).A1200SLseriesHPLCsystemwitha60mmpathlength1260 PDA(AgilentTechnologies,SantaClara,CA)wasemployed.Agra- dientofsolventA:90:10MeOH/H2Owith0.1%formicacid(v/v), and solventB:78:20:2MTBE/MeOH/H2O with0.1% formic acid

(v/v)wasasfollows:30%B,followedbyalineargradientto50%

Bover 18min,holdingat100%Bfor2min,andre-equilibrating at30%Bfor3.5min.Thecolumnwasheldat40C,withaflow rateof1.3mL/min,and 40␮Linjectionvolumes.TheHPLC-PDA wasinterfacedwithaQTRAP5500massspectrometer(ABSciex, FosterCity,CA)usinganAPCIsourceinpositiveionmodefor␣RP andRPquantitation.Thesourceparameterswereasfollows:cur- taingas:30psi,heatednebulizertemperature:450C,nebulizer gas:45psi,declusteringpotential:100V,entrancepotential:10V, andcollisioncellexitpotential:11V.Bothestersaffordedstrong in-sourceretinolfragmentsthatwereutilizedforMS/MSdetection.

Theparent-daughtertransitionswhichboth(1)displayeddistinctly differentMRMratiosfor␣-retinylandretinylestersand(2)pro- videdoptimalintensitiesforquantitationwerechosen(Table1).

PeakareaswereintegratedwithAnalyst1.5.1(ABSciex).

2.4. Biologicalsamplepreparation

Triglyceride-richlipoprotein(TRL)fractionsofhumanplasma containing newly formed chylomicronswere isolated [17] and extractedaspublishedpreviously[18].

2.5. HPLC-PDA-MS/MSmethodtoseparatetotal˛-retinylesters andretinylestersinbiologicalsamples

Todistinguishthenon-palmitateestersof␣-retinolandretinol foundinbiologicalsamples(i.e.myristate,linoleate,oleate,and stearate),theHPLCgradientdescribedabovewasextendedasfol- lows:beginningat30%B,followedbyalinearincreaseto55.6%B over23min,holdingat100%Bfor2min,andre-equilibratingat 30%Bfor3.5min.Todetecttheintactparent␣-retinylestersand retinylesters,theHPLCwasinterfacedwiththemassspectrometer viaanESIprobeoperatedinpositiveionmode.Sourceparameters, asdescribedinSection2.3,wereapplied,withtheexceptionofthe sourcetemperaturewhichwasincreasedto525Candcollision energies of17.5and 40Vfor the␣- andretinyl esters,respec- tively.Identificationof␣RPandretinylestersintheTRLsamplewas baseduponparentionmasses,UV–visspectra,andretentiontime coincidentwithauthenticstandards(Table1).Thenon-palmitate

␣-retinylestersweretentativelyidentifiedbyexpectedretention orderrelativetothecorrespondingretinylester,UV–visspectra, parentionmass,andexpecteddaughterratiosofthein-source␣- retinolparent.AnAPCIsource(withparametersprovidedinSection 2.3)wasusedforanalytequantitation.ForallMS/MSexperiments, MRMmodewasusedwithmaximized70msdwelltimespertransi- tion.All␣-retinylesterswerequantitatedusing␣RP,andallretinyl

Table1

MS/MSparametersusedfortheidentificationandquantitationof␣-retinylestersandretinylesters.

No. Retention time(min)

Compound identity

HPLC-PDA spectrum(nm)

HPLC-APCI(+)-MS/MS m/zparention>m/z daughterion

APCIcollision energies(volts)e

HPLC-ESI(+)-MS/MS m/zparention>m/z daughterion

ESIcollision energies(volts)e

1 12.8 ␣-Retinylmyristate 298,311a,325 269.2>123.1b 27.5 496.6>145.0 17.5

2 13.2 Retinylmyristate 325a 269.2>239.1c,d,145.1d 35.0,25.0 496.6>197.0 40

3 13.2 ␣-Retinyllinoleate 298,311a,325 269.2>123.1b 27.5 548.6>145.0 17.5

4 13.9 Retinyllinoleate 325a 269.2>239.1c,d,145.1d 35.0,25.0 548.6>197.0 40

5 15.4 ␣-Retinyloleate 298,311a,325 269.2>123.1b 27.5 550.6>145.0 17.5

6 15.9 Retinyloleate 325a 269.2>239.1c,d,145.1d 35.0,25.0 550.6>197.0 40

7 16.9 ␣-Retinylpalmitate 298,311a,325 269.2>123.1b 27.5 524.6>145.0 17.5

8 17.3 Retinylpalmitate 325a 269.2>239.1c,d,145.1d 35.0,25.0 524.6>197.0 40

9 21.0 ␣-Retinylstearate 298,311a,325 269.2>123.1b 27.5 552.6>145.0 17.5

10 21.6 Retinylstearate 325a 269.2>239.1c,d,145.1d 35.0,25.0 552.6>197.0 40

aDenotesmax.

bDaughterwiththestrongesttransitionfor␣-retinolderivatives,chosenforquantitation.

c Daughtersuniquetoretinolderivativesonly.

d Daughterschosenforquantitationofretinolderivatives.

eCollisionenergyusedforeachrespectivedaughterfollowstheorderinwhichtheyarelistedinthepreviouscolumn.

(4)

Version postprint M anus cr it d ’a ut e ur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

Journal homepage : http://www.elsevier.com/locate/chromb

esterswerequantitatedusingRP.Thefattyacidmoietyofeach esterislostin-sourceprovidingthesameparention(andthussame response)for␣-retinolandretinol,respectively(aspreviouslycon- firmedwiththeauthenticretinylestersusedforidentification).

3. Resultsanddiscussion

3.1. HPLC–MS/MSmethoddevelopment

Identificationand quantitation of␣-retinyl ester and retinyl ester pairs presents an analytical challenge due to theirstruc- turalsimilarityandisobaricnature.BycouplingHPLCandMS/MS, wewere abletochromatographand useunique fragmentation patternstodifferentiatethe␣-retinylproductsfromtheirretinyl counterparts.

Chromatographicseparation of␣RPandRPwasachievedby modifyingthegradient and increasing thepolarity ofthe non- elutingsolventofthemethodoutlinedbyKopecetal.[18].Asa result,␣RPelutedimmediatelybeforeRP,whilestillmaintaining peakresolution.Thiselutionpatternwasobservedforallesters of␣-retinolandretinol.C30columns,widelyusedforcarotenoid andretinoidseparation,weretestedatvaryinglengths(150mm, 250mm)andparticlesizes(3␮m,5␮m)toimproveresolution.A columnlengthof250mmwith3␮mparticlesizegave thebest separation.

UV–visspectralcharacteristicswerealsohelpfulindistinguish- ing␣-retinylestersfromretinylesters.Themovementofadouble bondoutofconjugationinthe␧-ringof␣RPcausesahypsochromic shift,resultingina␭maxof311nm(ascompareda␭maxof325nm forRP)(Fig.S2)[19].␣RPretainsthe3-prongedfine-structurechar- acteristicofcarotenoids,withshouldersclearlyvisibleat298and 325nm,while RPhasnofinestructure (ascommonly observed forshort␤-ringapo-carotenoidsandothervitaminAderivatives) [19].Furthermore,fattyacidacylationhasnoimpactonthe␭maxof

␣-retinolandretinol[20].␣-Retinolandretinolelutedat3.62and 3.76minrespectively.

Byextendingthegradient,weobservedandseparatedmyris- tate,linoleate, oleate,and stearateesters ofboth ␣-retinol and retinolinadditiontopalmitateintheTRLextracts(Fig.1).Iden- titieswereconfirmedinESIpositivemode(Fig.S3),whereeachof theestersformedaradicalcationwhichfragmentedtoyieldadehy- dratedretinolfragmentatm/z269.2.Thesamepseudomolecular ionhasbeendescribedpreviouslyforretinylesters[4].Transitions monitoredarelistedinTable1andamasschromatogramisshown inthesupplementarymaterial.

AnAPCIsourceoperatedinpositiveionmodeprovedtobemore sensitiveforthedetectionof␣RPandother␣-retinylestersascom- paredtoanESIsource,confirmingpreviousreportsforretinoids [5,18,21].Furthersignalenhancementwasachievedbyreplacing themobilephase additiveammoniumacetate withformic acid.

␣RPandretinylesterstandardsolutionsconfirmedAPCIin-source fragmentationtoproduceaparentionat269.2m/z(representing theneutral lossofthefattyacidmoiety and water,[M+H-fatty acid-H2O]+).Thisobservationisconsistentwithotherreportsof retinylpalmitateanalysisbyMS[5,18,21,22].Notably,thedehy- drated␣-retinolspecies(containingan␧-ring)andretinolspecies (containinga␤-ring)havedifferentfragmentationpatterns,which simplifiedtheidentificationofthe␣-analoguesintheTRLextracts.

Inaddition,thesefragmentationpatternsmirrorthefragmenta- tionoftheparentprovitaminAcarotenoids␣-carotene(containing an␧-ringanda␤-ring)and␤-carotene(containingtwo␤-rings) [19,23].Theparent-daughterpairm/z269.2>123.1,characteris- tic of␧-ringcarotenoids, wasthestrongest transitionobserved for␣-retinolspeciesand isthoughttocorrespondtothe␧-ring moietyitself[19,23].Thisdaughterwasalsoobservedforretinol, but atlower levels,and thuswasselected forquantification of

␣RP.Incontrast,m/z269.2>239.1showedexceptionalselectivity fortheretinylestersandwasnotproduced fromfragmentation of ␣-retinol. Thisfragment was summed with m/z 145.1 (also

Fig.1. HPLC–MS/MSchromatogramofaTRLextractfromarepresentativesubject6hpost-prandial,utilizingtheHPLCmethodseparatingallestersandtheMSequippedwith anAPCI+source.MRMtransitionsspecificfor␣-retinoland␣-retinylesters(269m/z>123m/z—)andretinolandretinylestersRP(269m/z>145m/z----,269m/z>239m/z

···)aredisplayed.PeaknumberscorrespondtothosedetailedinTable1.

(5)

Version postprint M anus cr it d ’a ut e ur / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt M anus cr it d ’a ut eu r / A ut hor m anus cr ipt

Journal homepage : http://www.elsevier.com/locate/chromb

representative of retinol) for quantitation. Fig. 1 demonstrates a mass chromatogram of a TRL extract withthese characteris- tic transitionsselected. Usingthese aforementionedtransitions, thismethodwasdeterminedtohavealimitofquantitation(LOQ, definedassignaltonoise=10)of4.8and29.5nMfor␣RPandRP, respectively,and a limitof detection(LOD,definedassignalto noise=3)of1.4and8.9nMfor␣RPandRP,respectively.Intotal, the3MS/MStransitionschosenwerecontinuouslymonitoredto providemoreconfidenceintheidentitiesof␣-retinylandretinyl estersbycomparingratiointensities.

4. Conclusions

Withoutpropertools,thecontributionof ␣-retinylestersto thenewlycirculatingretinylesterpoolcanbeeasilyoverlooked.

Herein,wehaveprovidedadescriptivemethodof␣-retinoland

␣RPsynthesis,anddetailedHPLC–MS/MSmethodsthatallowfor thedirect characterizationand quantificationof␣-retinylesters (bothintactandfragmented)inbiologicalsamples.Weanticipate thatthesemethodswillaidintheaccuratequantificationofvita- minAderivedfrom␣-carotenesources,tobetterassessitsvitamin Apotential.

Authordisclosures

Theauthorshavenoconflictsofinteresttodisclose.

Acknowledgements

This work was supported by a seed grant from The Ohio StateUniversityFoodInnovationCenter,andbytheNutrientand PhytochemicalSharedResourceofTheOhioStateUniversityCom- prehensiveCancerCenter(NIHP30CA016058).Wewouldalsolike tothankDr.EarlH.Harrisonforhisgenerouscontributionofthe retinylesterstandards.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.jchromb.2016.

06.043.

References

[1]M.F.Zeitlin,R.Megawangi,E.M.Kramer,H.C.Armstrong,Am.J.Clin.Nutr.56 (1992)136.

[2]U.Ramakrishnan,R.Martorell,M.C.Latham,R.Abel,J.Nutr.129(1999)2021.

[3]E.H.Harrison,Biochim.Biophys.Acta1821(2012)70.

[4]G.Tang,Am.J.Clin.Nutr.91(2010)1468.

[5]M.K.Fleshman,K.M.Riedl,J.A.Novotny,S.J.Schwartz,E.H.Harrison,J.Lipid Res.53(2012)820.

[6]M.vanLieshout,C.E.West,R.B.vanBreemen,Am.J.Clin.Nutr.77(2003)12.

[7]G.A.J.Pitt,Am.J.Clin.Nutr.22(1969)1045.

[8]D.S.Goodman,J.E.Smith,R.M.Hembry,J.T.Dingle,J.LipidRes.15(1974)406.

[9]S.R.Ames,W.J.Swanson,P.L.Harris,J.Am.Chem.Soc.77(1955)4136.

[10]W.D.Sneider,G.C.Rosso,aE.Rogers,G.Wolf,J.E.Dowling,M.J.Callahan,J.

Nutr.104(1974)1662.

[11]S.A.Tanumihardjo,J.A.Howe,J.Nutr.53706(2005)2622.

[12]J.T.Dever,R.L.Surles,C.R.Davis,S.a.Tanumihardjo,J.Nutr.141(2011)42.

[13]N.Riabroy,S.A.Tanumihardjo,J.Nutr.1(2014).

[14]N.Riabroy,J.T.Dever,S.a.Tanumihardjo,Br.J.Nutr.111(2014)1373.

[15]S.Yap,Y.Choo,N.Hew,S.Goh,Nutr.Res.17(1997)1721.

[16]A.C.Ross,E.H.Harrison,in:R.B.Rucker,J.Zempleni,J.W.Suttie,D.B.

McCormick(Eds.),Handb.Vitam.,4thed.,CRCPress,2010,pp.1–40.

[17]R.E.Kopec,J.L.Cooperstone,R.M.Schweiggert,G.S.Young,E.H.Harrison,D.M.

Francis,S.K.Clinton,S.J.Schwartz,J.Nutr.144(2014)1158.

[18]R.E.Kopec,R.M.Schweiggert,K.M.Riedl,R.Carle,S.J.Schwartz,Rapid Commun.MassSpectrom.27(2013)1393.

[19]Carotenoids,in:G.Britton,S.Liaaen-Jensen,H.Pfander(Eds.),Spectroscopy, vol.1B,BirkhauserVerlag,Basel,Switzerland,1996.

[20]H.C.Furr,A.B.Barua,J.A.Olson,in:M.B.Sporn,A.B.Roberts,D.S.Goodman (Eds.),TheRetinoids,Biology,ChemistryandMedicine,2ndedition,Raven Press,Ltd.,NewYork,NY,1994,pp.179–209.

[21]R.B.vanBreemen,D.Nikolic,X.Xu,Y.Xiong,M.vanLieshout,C.E.West,A.B.

Schilling,J.Chromatogr.A794(1998)245.

[22]G.Britton,S.Liaaen-Jensen,H.Pfander(Eds.),CarotenoidsHandbook, BirkhauserVerlag,Basel,Switzerland,1996.

[23]R.B.vanBreemen,L.Dong,N.D.Pajkovic,Int.J.MassSpectrom.312(2012) 163.

Références

Documents relatifs

Purification by flash chromatography (hexane:ether =.. The 1H NMR spectrum matched the published spectrum.. Absolute Configuration Assignment for Table 2, entry 3:

In Maspero-Robert [31], the authors study linear Schr¨ odinger operators, obtain global well- posedness results and prove very precise polynomial bounds on the possible growth

Approche couplée expérimentation - modélisation multi-échelle pour la détermination du comportement mécanique des graves routières traitées aux liants : Application à la

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

ّنأ ةشششفرعم ىلع يملشششسلا نيّدشششلاب هشششتقلع ترشششصتقا دشششقل ،نآرششقلا وه سّدقملا مهباتك ّنأو ريزنخلا محل نولكأي ل نيملسملا يف نيأد

In Supplementary Table: Closest interatomic contacts between neighbouring hemes, inter-iron distances, and angles between

Ensemble methods and online learning for creation and update of prognostic scores in..