• Aucun résultat trouvé

Sound source localization with data and model uncertainties using the EM and Evidential EM algorithms

N/A
N/A
Protected

Academic year: 2021

Partager "Sound source localization with data and model uncertainties using the EM and Evidential EM algorithms"

Copied!
144
0
0

Texte intégral

(1)

HAL Id: tel-01208211

https://tel.archives-ouvertes.fr/tel-01208211

Submitted on 2 Oct 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sound source localization with data and model uncertainties using the EM and Evidential EM

algorithms

Xun Wang

To cite this version:

Xun Wang. Sound source localization with data and model uncertainties using the EM and Evi-

dential EM algorithms. Other. Université de Technologie de Compiègne, 2014. English. �NNT :

2014COMP2164�. �tel-01208211�

(2)

Par Xun WANG

Thèse présentée

pour l’obtention du grade de Docteur de l’UTC

Sound source localization with data and model uncertainties using the EM and Evidential EM algorithms

Soutenue le 09 décembre 2014

Spécialité : Information Technologies and Systems

D2164

(3)

Université de Technologie de Compiègne Thesis

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Area of specialization: Information Technologies and Systems by

Xun WANG

Sound Source Localization with Data and Model Uncertainties Using the EM and

Evidential EM Algorithms

Heudiasyc Laboratory, UMR CNRS 7253 Roberval Laboratory, UMR CNRS 7337 Defended on December 9th, 2014.

Thesis Committee:

President: Thierry Denœux Université de Technologie de Compiègne Reviewers: Alain Appriou ONERA

Jean-Marc Girault Université François Rabelais de Tours Examiners: Charles Pézerat Université du Maine

Olivier Strauss Université Montpellier II Supervisors: Jérôme Antoni Université de Lyon

Benjamin Quost Université de Technologie de Compiègne

Jean-Daniel Chazot Université de Technologie de Compiègne

(4)
(5)

Abstract

This work addresses the problem of multiple sound source localization for both determin- istic and random signals measured by an array of microphones. The problem is solved in a statistical framework via maximum likelihood. The pressure measured by a microphone is interpreted as a mixture of latent signals emitted by the sources; then, both the sound source locations and strengths can be estimated using an expectation-maximization (EM) algorithm. In this thesis, two kinds of uncertainties are also considered: on the microphone locations and on the wavenumber. These uncertainties are transposed to the data in the be- lief functions framework. Then, the source locations and strengths can be estimated using a variant of the EM algorithm, known as Evidential EM (E2M) algorithm.

The f rst part of this work begins with the deterministic signal model without consider- ation of uncertainty. The EM algorithm is then used to estimate the source locations and strengths: the update equations for the model parameters are provided. Furthermore, ex- perimental results are presented and compared with the beamforming and the statistically optimized near-f eld holography (SONAH), which demonstrate the advantage of the EM algorithm.

The second part raises the issue of model uncertainty and shows how the uncertainties on microphone locations and wavenumber can be taken into account at the data level. In this case, the notion of the likelihood is extended to the uncertain data. Then, the E2M algorithm is used to solve the sound source estimation problem. In both the simulation and real experiment, the E2M algorithm proves to be more robust in the presence of model and data uncertainty.

The third part of this work considers the case of random signals, in which the amplitude is modeled by a Gaussian random variable. Both the certain and uncertain cases are investi- gated. In the former case, the EM algorithm is employed to estimate the sound sources. In the latter case, microphone location and wavenumber uncertainties are quantif ed similarly to the second part of the thesis. Finally, the source locations and the variance of the random amplitudes are estimated using the E2M algorithm.

Key words: sound source localization, holography, beamforming, acoustic imaging,

(6)

ii

statistical inference from imprecise data, belief functions, Evidential EM algorithm.

(7)

Résumé

Ce travail de thèse se penche sur le problème de la localisation de sources acoustiques à partir de signaux déterministes et aléatoires mesurés par un réseau de microphones. Le problème est résolu dans un cadre statistique, par estimation via la méthode du maximum de vraisemblance. La pression mesurée par un microphone est interprétée comme étant un mélange de signaux latents émis par les sources. Les positions et les amplitudes des sources acoustiques sont estimées en utilisant l’algorithme espérance-maximisation (EM).

Dans cette thèse, deux types d’incertitude sont également pris en compte: les positions des microphones et le nombre d’onde sont supposés mal connus. Ces incertitudes sont trans- posées aux données dans le cadre théorique des fonctions de croyance. Ensuite, les positions et les amplitudes des sources acoustiques peuvent être estimées en utilisant l’algorithme E2M, qui est une variante de l’algorithme EM pour les données incertaines.

La première partie des travaux considère le modèle de signal déterministe sans prise en compte de l’incertitude. L’algorithme EM est utilisé pour estimer les positions et les am- plitudes des sources. En outre, les résultats expérimentaux sont présentés et comparés avec le beamforming et la holographie optimisée statistiquement en champ proche (SONAH), ce qui démontre l’avantage de l’algorithme EM.

La deuxième partie considère le problème de l’incertitude du modèle et montre com- ment les incertitudes sur les positions des microphones et le nombre d’onde peuvent être quantif ées sur les données. Dans ce cas, la fonction de vraisemblance est étendue aux don- nées incertaines. Ensuite, l’algorithme E2M est utilisé pour estimer les sources acoustiques.

Finalement, les expériences réalisées sur les données réelles et simulées montrent que les algorithmes EM et E2M donnent des résultats similaires lorsque les données sont certaines, mais que ce dernier est plus robuste en présence d’incertitudes sur les paramètres du modèle.

La troisième partie des travaux présente le cas de signaux aléatoires, dont l’amplitude

est considérée comme une variable aléatoire gaussienne. Dans le modèle sans incertitude,

l’algorithme EM est utilisé pour estimer les sources acoustiques. Dans le modèle incertain,

les incertitudes sur les positions des microphones et le nombre d’onde sont transposées aux

données comme dans la deuxième partie. Enf n, les positions et les variances des amplitudes

(8)

iv

aléatoires des sources acoustiques sont estimées en utilisant l’algorithme E2M. Les résultats montrent ici encore l’avantage d’utiliser un modèle statistique pour estimer les sources en présence, et l’intérêt de prendre en compte l’incertitude sur les paramètres du modèle.

Mots clés: localisation de sources acoustiques, holographie, beamforming, imagerie

acoustique, inférence statistique à partir de données imprécises, fonctions de croyance, al-

gorithme E2M.

(9)

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors Prof. Jérôme Antoni, Dr. Benjamin Quost and Dr. Jean-Daniel Chazot. I would never have been able to f nish my dissertation without their patient guidance, advice, encouragement and careful modif cation of the manuscript they have provided throughout my Ph.D. study and research.

I would like to thank other members of staff at the laboratories Heudiasyc and Roberval, for the assistance they provided at all levels of the research work. In particular, I would like to thank the technicians at Roberval Jean-Marc Gherbezza and Félix Foucart for their helps during the experiments.

I would also like to acknowledge the f nancial support by Collegium UTC/CNRS for providing the funding which allows me to undertake this research and to attend the confer- ences.

Finally, I would like to thank my family. They were always supporting me and encour-

aging me with their best wishes.

(10)
(11)

Contents

Contents vii

List of Figures xi

List of Abbreviations and Symbols xv

1 Introduction 1

I Sound Sources Localization From Certain Measurements 3

2 State of Art 5

2.1 Background and Basic Description of Sound Source Localization Model . . 5

2.2 Review of Different Source Localization Methods . . . . 6

2.2.1 Beamforming . . . . 7

2.2.2 NAH . . . . 8

2.2.3 SONAH . . . . 9

2.3 EM Algorithm . . . 10

2.3.1 Introduction of the EM Algorithm . . . 11

2.3.2 Review of Existing Works on Source Estimation Via the EM Algo- rithm . . . 13

3 Sound Sources Localization Under the Deterministic Amplitude Assumption 15 3.1 Model . . . 15

3.2 Model Estimation Via the EM Algorithm . . . 16

3.3 Comparison of Maximum Likelihood and Beamforming . . . 19

3.4 Experiments . . . 20

3.5 Conclusion . . . 22

(12)

viii Contents

II Sound Source Localization in Presence of Uncertainty 29

4 State of Art: Uncertainties in Sound Source Localization Model 31

4.1 Uncertainties in the Model . . . 31

4.1.1 Microphone Location Uncertainty . . . 32

4.1.2 Medium Uncertainty . . . 33

4.1.3 Sound Source Localization Model with Uncertainties . . . 36

4.2 Fuzzy Sets, Belief Functions, and the Evidential EM Algorithm . . . 36

4.2.1 Fuzzy Sets . . . 37

4.2.2 Belief Functions . . . 37

4.2.3 Statistical Inference From Uncertain Data . . . 40

4.3 Uncertainty Quantif cation Methods . . . 42

5 Sound Source Estimation in Presence of Uncertainty: Deterministic Amplitude Case 49 5.1 Model . . . 49

5.2 Uncertainty Representation and Propagation . . . 50

5.2.1 Uncertain Data . . . 50

5.2.2 Likelihood Function of Uncertain Data . . . 53

5.3 Model Estimation Using the Evidential EM Algorithm . . . 55

5.4 Experiments . . . 61

5.4.1 Simulated Data . . . 61

5.4.2 Real Experiment . . . 63

5.5 Conclusion . . . 64

III Sound Source Localization for Random Signals 67 6 Sound Source Estimation Under the Random Amplitude Assumption 69 6.1 Sound Source Model With Random Amplitude . . . 69

6.2 Model Estimation Via the EM Algorithm . . . 70

6.3 Experiments . . . 75

6.4 Conclusion . . . 86

7 Sound Source Localization in Presence of Uncertainty: Random Amplitude

Case 87

7.1 Model . . . 87

(13)

Contents ix

7.2 Uncertainty Representation and Propagation . . . 88

7.2.1 Uncertain Data . . . 88

7.2.2 Likelihood Function of Uncertain Data . . . 89

7.3 Model Estimation Via the Evidential EM Algorithm . . . 89

7.4 Experiments . . . 93

7.4.1 Simulated Data . . . 94

7.4.2 Real Experiment . . . 95

7.5 Conclusion . . . 97

8 Conclusion and Perspectives 101 8.1 Conclusion . . . 101

8.2 Perspectives . . . 102

References 103

Appendix A Complex Gaussian Random Variables 109

Appendix B Output Variance Approximated By Taylor Expansion 111

Appendix C Computation of the Gradient Matrix in Section 5.2 113

Appendix D Computation of the Log-Likelihood of the Uncertain Data 119

Appendix E Computation of the Gradient Matrix in Section 7.2 121

(14)
(15)

List of Figures

2.1 Spherical waves emitted by a sound source r. . . . 6 3.1 Sound source estimation problem (2D case). The microphone locations are

represented by red crosses, the sound sources by blue crosses. The origin is assumed here to be the center of the array of microphones. . . 16 3.2 Experimental setup and microphone distribution. . . 20 3.3 Comparison between EM, beamforming and SONAH at f=525Hz. Black

crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane. . . 23 3.4 Comparison between EM, beamforming and SONAH at f=1325Hz. Black

crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane. . . 24 3.5 Comparison between EM, beamforming and SONAH at f=5025Hz. Black

crosses represent the loudspeaker center. Subf gure (a): Estimated source position. Subf gures (b-f): Estimated pressure f eld on the source plane. . . 25 3.6 Sound f eld on the microphone plane using (a) measurement (b) EM esti-

mates, S = 2 (c) EM estimates, S = 6 (d) EM estimates, S = 10. f=525Hz. . 26 3.7 Sound f eld on the microphone plane using (a) measurement (b) EM esti-

mates, S = 2 (c) EM estimates, S = 6 (d) EM estimates, S = 10. f=1325Hz. 27 3.8 Sound f eld on the microphone plane using (a) measurement (b) EM esti-

mates, S = 2 (c) EM estimates, S = 6 (d) EM estimates, S = 10. f=5025Hz. 28 5.1 Sound source estimation problem (2D case) with uncertain meta-parameters

(microphone locations and wavenumber). . . 53

(16)

[LL /LVW RI )LJXUHV ' VRXQG VRXUFH ORFDOL]DWLRQ H[DPSOH 7KH VRXQG VRXUFHV DUH UHSUHVHQWHG

E\ EOXH FURVVHV 7KH DFWXDO PLFURSKRQH ORFDWLRQV DUH UHSUHVHQWHG E\ UHG FURVVHV 7KH UHDO ORFDWLRQ RI WK PLFURSKRQH LV XQFHUWDLQ WDNLQJ SRVVLEOH YDOXHV RQ WKH SLQN OLQH VHJPHQW /RJOLNHOLKRRG RI S

W

D JHQHUDOL]HG ORJOLNHOLKRRG SO

W

EG IRU GLIIHUHQW [

FRRUGLQDWHV RI 6

DQG [FRRUGLQDWHV DFWXDO ORFDWLRQV RI PLFURSKRQH 0

7KH YDOXHV RI σ

LQ SO

W

DUH DQG LQ E F DQG G UHVSHFWLYHO\

,Q DOO FDVHV PLFURSKRQH 0

LV DVVXPHG WR KDYH D [FRRUGLQDWH P

[,

= 6RXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ WKH (0 EOXH FLUFOHV DQG (0

UHG FURVVHV DOJRULWKPV DQG FRUUHVSRQGLQJ FRQI GHQFH HOOLSVHV %ODFN FURVVHV VWDQG IRU WKH DFWXDO ORFDWLRQV RI WKH VRXUFHV σ

[

= σ

\

= σ

]

= .P σ

θ

= σ

θ

= σ

θ

=

π

σ

N

= .P

6RXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ WKH (0 EOXH FLUFOHV DQG (0

UHG FURVVHV DOJRULWKPV DQG FRUUHVSRQGLQJ FRQI GHQFH HOOLSVHV %ODFN FURVVHV VWDQG IRU WKH DFWXDO ORFDWLRQV RI WKH VRXUFHV σ

[

= σ

\

= σ

]

= .P σ

θ

= σ

θ

= σ

θ

=

π

σ

N

= .P

06( DQG FRQI GHQFH LQWHUYDOV IRU WKH VRXQG VRXUFH ORFDWLRQ HVWLPDWHV

&DVH D σ

N

= σ

[

= σ

\

= σ

]

= . O P σ

θ

= σ

θ

= σ

θ

= O

π

O = , , , , &DVH E σ

[

= σ

\

= σ

]

= σ

θ

= σ

θ

= σ

θ

= σ

N

= , . , . , . , P

6RXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ (0 EOXH SRLQWV DQG (0 UHG

FURVVHV DQG FRUUHVSRQGLQJ FRQI GHQFH HOOLSVHV RQ WKH [\ SODQH %ODFN FURVVHV UHSUHVHQW WKH DFWXDO VRXUFH ORFDWLRQV 6RXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ (0 OHIW DQG (0 ULJKW DQG

FRUUHVSRQGLQJ FRQI GHQFH HOOLSVRLGV LQ ' VSDFH %ODFN FURVVHV UHSUH VHQW WKH VRXUFH ORFDWLRQV 6RXQG VRXUFH HVWLPDWLRQ SUREOHP ' FDVH LQ WKH IDUI HOG FDVH &RPSDULVRQ EHWZHHQ (0 EHDPIRUPLQJ DQG 621$+ DW I +] %ODFN

FURVVHV UHSUHVHQW WKH ORXGVSHDNHU FHQWHU 6XEI JXUH D (VWLPDWHG VRXUFH SRVLWLRQ 6XEI JXUHV EI (VWLPDWHG SUHVVXUH I HOG RQ WKH VRXUFH SODQH &RPSDULVRQ EHWZHHQ (0 EHDPIRUPLQJ DQG 621$+ DW I +] %ODFN

FURVVHV UHSUHVHQW WKH ORXGVSHDNHU FHQWHU 6XEI JXUH D (VWLPDWHG VRXUFH

SRVLWLRQ 6XEI JXUHV EI (VWLPDWHG SUHVVXUH I HOG RQ WKH VRXUFH SODQH

(17)

/LVW RI )LJXUHV [LLL &RPSDULVRQ EHWZHHQ (0 EHDPIRUPLQJ DQG 621$+ DW I +] %ODFN

FURVVHV UHSUHVHQW WKH ORXGVSHDNHU FHQWHU 6XEI JXUH D (VWLPDWHG VRXUFH SRVLWLRQ 6XEI JXUHV EI (VWLPDWHG SUHVVXUH I HOG RQ WKH VRXUFH SODQH &RPSDULVRQ EHWZHHQ (0 EHDPIRUPLQJ DQG 621$+ DW I +] %ODFN

FURVVHV UHSUHVHQW WKH ORXGVSHDNHU FHQWHU 6XEI JXUH D (VWLPDWHG VRXUFH SRVLWLRQ 6XEI JXUHV EI (VWLPDWHG SUHVVXUH I HOG RQ WKH VRXUFH SODQH 6RXQG I HOG RQ WKH PLFURSKRQH SODQH XVLQJ D PHDVXUHPHQW E (0 HVWL

PDWHV 6 = F (0 HVWLPDWHV 6 = G (0 HVWLPDWHV 6 = I +]

6RXQG I HOG RQ WKH PLFURSKRQH SODQH XVLQJ D PHDVXUHPHQW E (0 HVWL PDWHV 6 = F (0 HVWLPDWHV 6 = G (0 HVWLPDWHV 6 = I +]

6RXQG I HOG RQ WKH PLFURSKRQH SODQH XVLQJ D PHDVXUHPHQW E (0 HVWL PDWHV 6 = F (0 HVWLPDWHV 6 = G (0 HVWLPDWHV 6 = I +]

6RXQG I HOG RQ WKH PLFURSKRQH SODQH XVLQJ D PHDVXUHPHQW E (0 HVWL PDWHV 6 = F (0 HVWLPDWHV 6 = G (0 HVWLPDWHV 6 = I +]

5DQGRP DPSOLWXGH VLJQDO VRXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ WKH (0 EOXH DQG (0 UHG DOJRULWKPV DQG FRUUHVSRQGLQJ FRQI GHQFH HO OLSVHV %ODFN FURVVHV VWDQG IRU WKH DFWXDO ORFDWLRQV RI WKH VRXUFHV σ

[

= σ

\

= σ

]

= . P σ

θ

= σ

θ

= σ

θ

=

π

σ

N

= . P

5DQGRP DPSOLWXGH VLJQDO VRXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ WKH (0

EOXH DQG (0 UHG DOJRULWKPV DQG FRUUHVSRQGLQJ FRQI GHQFH HO OLSVHV %ODFN FURVVHV VWDQG IRU WKH DFWXDO ORFDWLRQV RI WKH VRXUFHV σ

[

= σ

\

= σ

]

= .P σ

θ

= σ

θ

= σ

θ

=

π

σ

N

= .P

06( DQG FRQI GHQFH LQWHUYDOV IRU WKH UDQGRP DPSOLWXGH VRXUFH ORFD

WLRQ HVWLPDWHV &DVH D σ

N

= σ

[

= σ

\

= σ

]

= .O P σ

θ

= σ

θ

= σ

θ

= O

π

O = , , , , &DVH E σ

[

= σ

\

= σ

]

= σ

θ

= σ

θ

= σ

θ

= σ

N

= , . , . , . , P

5DQGRP DPSOLWXGH VRXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ (0 EOXH SRLQWV

DQG (0 UHG FURVVHV DQG FRUUHVSRQGLQJ FRQI GHQFH HOOLSVHV RQ WKH [\ SODQH %ODFN FURVVHV UHSUHVHQW WKH DFWXDO VRXUFH ORFDWLRQV 5DQGRP DPSOLWXGH VRXUFH ORFDWLRQ HVWLPDWHV REWDLQHG XVLQJ (0 OHIW DQG

(0 ULJKW DQG FRUUHVSRQGLQJ FRQI GHQFH HOOLSVRLGV LQ ' VSDFH

%ODFN FURVVHV UHSUHVHQW WKH VRXUFH ORFDWLRQV

(18)
(19)

/LVW RI $EEUHYLDWLRQV DQG 6\PEROV

6\PEROV

E 0DWKHPDWLFDO H[SHFWDWLRQ

&RY &RYDULDQFH RU FRYDULDQFH PDWUL[

,

0

0GLPHQVLRQDO LGHQWLW\ PDWUL[

[

F

FRQMXJDWH RI FRPSOH[ QXPEHU [

$

+

FRQMXJDWH WUDQVSRVH RI PDWUL[ $

$

7

WUDQVSRVH RI PDWUL[ $ GHW ( $ ) 'HWHUPLQDQW RI PDWUL[ $

WU ( $ ) 7UDFH RI PDWUL[ $

N ( μ , Σ) *DXVVLDQ GLVWULEXWLRQ ZLWK PHDQ μ DQG FRYDULDQFH PDWUL[ Σ

φ (·| μ , Σ) 3UREDELOLW\ GHQVLW\ IXQFWLRQ RI *DXVVLDQ UDQGRP YHFWRU ZLWK PHDQ μ DQG FRYDULDQFH PDWUL[ Σ

5H([) 5HDO SDUW RI FRPSOH[ QXPEHU [ ,P([) ,PDJLQDU\ SDUW RI FRPSOH[ QXPEHU [

GLDJ(D , ··· , D

Q

) 'LDJRQDO PDWUL[ ZLWK GLDJRQDO HQWULHV D

, ··· , D

Q

$EEUHYLDWLRQV

&5/% &UDPHU5DR ORZHU ERXQG 'R$ GLUHFWLRQ RI DUULYDO

(0 H[SHFWDWLRQPD[LPL]DWLRQ DOJRULWKP

(0 HYLGHQWLDO H[SHFWDWLRQPD[LPL]DWLRQ DOJRULWKP

(20)

xvi List of Abbreviations and Symbols FIM Fisher Information Matrix

LS least square

ML maximum likelihood

MLE maximum likelihood estimation (or estimate, estimator) NAH near-f eld acoustical holography

PDF probability density function

SONAH statistically optimized near-f eld acoustical holography

(21)

Chapter 1 Introduction

One of the crucial issues in acoustics engineering is to reduce the noise emitted by complex devices. In the automobile industry, for example, due to the requirements expressed by the users (in terms of acoustic comfort) as well as the legislation set by the European community to limit noise pollution, acoustic quality is now accepted as a decisive criterion to judge the performance of a vehicle, as well as its safeness or its fuel consumption. The f rst step of this task is to understand the acoustic behavior of the device in order to focus the efforts on the main sources and the most annoying frequency bands. However, the noise sources emitted by a machine are multiple and structurally complex. Thus, the need for tools allowing visualization, quantif cation and identif cation of noise sources has become signif cant in acoustics engineering.

In this thesis, we investigate the problem of multiple sound source localization. The sound signals are subdivided into two classes: deterministic and random signals. The for- mer assumes that the amplitude is a constant to be estimated, while in the latter case the amplitude is modeled as a random variable. The task of this work is to estimate the sound source locations and amplitudes for deterministic signals, or the sound source locations and variances of amplitudes for random signals, using sound pressures measured by an array of microphones.

Part I of this thesis studies the sound source localization problem for deterministic sig- nals in a maximum likelihood framework. The sound pressure measured by a microphone is interpreted as a mixture of signals emitted by the sources, and the contributions of this measurement from various sources are assumed as latent variables. In this case, the EM algorithm is used to solve the estimation problem.

However, contrary to the ideal experimental setting, different kinds of uncertainties may

pervade the sound propagation and measurement process. For example, sometimes the mi-

(22)

2 Introduction crophone array has to be placed on a vibrating object so that the microphone locations are never precisely measured. Moreover, the sound propagation medium can be uncertain as well. For instance, the sound speed, thus the wavenumber, may vary signif cantly due to changes of temperature. Therefore, in Part II, we take into account these two kinds of un- certainties in the estimation process. The uncertainties are f rst transposed to the data, via f rst-order approximations. The resulting uncertain pressures are then represented using contour functions, which are mathematical tools proposed within the framework of belief functions. Then, parameter estimation can be carried out using the Evidential EM (E2M) al- gorithm, which is a variant of the EM algorithm to perform maximum likelihood estimation from uncertain data.

Finally, in Part III, the source localization problem for random signals is investigated.

First, under the assumption of certain measurements, the source locations and variances of random amplitudes are estimated using the EM algorithm, as in Part I. Then, the uncertain- ties of the microphone locations and the wavenumber are considered. The parameters are estimated using the E2M algorithm as in Part II.

The simulated and real experiments are presented for both deterministic and random

signals. In the certain case, the EM algorithm is compared with beamforming and SONAH,

which are popular methods for identifying the sound sources. The results show that the EM

algorithm can clearly localize the sources while beamforming and SONAH are restricted to

the studied frequency. Moreover, when the data are pervaded with uncertainties, the EM

and E2M algorithm are compared to each other. The experimental results show that E2M

algorithm performs better than the EM in the sense of estimation error.

(23)

Part I

Sound Sources Localization From

Certain Measurements

(24)
(25)

&KDSWHU 6WDWH RI $UW

%DFNJURXQG DQG %DVLF 'HVFULSWLRQ RI 6RXQG 6RXUFH /RFDOL]DWLRQ 0RGHO

,Q WKLV WKHVLV ZH LQYHVWLJDWH WKH VRXQG VRXUFH ORFDOL]DWLRQ SUREOHP LQ D VWDWLVWLFDO IUDPH ZRUN 7KH VRXQG SUHVVXUH UDGLDWHG E\ SRLQW VRXUFHV LV GHVFULEHG E\ WKH IROORZLQJ PRGHO LQ WKH IUHTXHQF\ GRPDLQ

S

W

= *(U)$ + Q

W

.

+HUH S

W

= ( S

W

, ··· , S

0W

)

7

FRUUHVSRQGV WR WKH 0GLPHQVLRQDO YHFWRU RI SUHVVXUHV PHDVXUHG LQ WKH WWK VQDSVKRW W = , ··· , 7 DQG * LV DQ 0E\6 PDWUL[ GHVFULELQJ WKH VRXQG SURSD JDWLRQ SURFHVV 7KH ( P , V ) HOHPHQW RI WKLV PDWUL[ LV WKH SURSDJDWLRQ RSHUDWRU IURP WKH PWK PLFURSKRQH WR WKH VWK VRXUFH * ( U

V

| U

P

) =

πHMN|U|UV−UV−UP|

P|

ZKHUH U

V

DQG U

P

UHVSHFWLYHO\ VWDQG IRU WKH VRXQG VRXUFH DQG PLFURSKRQH ORFDWLRQV DQG N LV WKH ZDYHQXPEHU 7KH PHDVXUHPHQW QRLVH Q

W

= (Q

W

, ··· , Q

0W

)

7

LV DVVXPHG WR EH FRPSOH[ *DXVVLDQ

GLVWULEXWHG ZLWK PHDQ DQG FRYDULDQFH PDWUL[ Σ 7KH YHFWRU $ = ($ , ··· , $

6

)

7

FRQWDLQV WKH DPSOLWXGHV RI WKH VRXQG VRXUFHV WKDW ZLOO EH DVVXPHG DV GHWHUPLQLVWLF LQ &KDSWHUV DQG PRGHOHG E\ D UDQGRP YDULDEOH LQ &KDSWHUV ,Q WKH IRUPHU FDVH S

W

LV FDOOHG GHWHUPLQLVWLF DPSOLWXGH VLJQDO LQ WKH ODWWHU LW LV UHIHUUHG WR DV UDQGRP DPSOLWXGH VLJQDO

3OHDVH VHH $SSHQGL[ $ IRU FRPSOHWH GHI QLWLRQ RI FRPSOH[YDOXHG *DXVVLDQ UDQGRP YDULDEOH

(26)

6WDWH RI $UW

× × × × ×

PLFURSKRQH DUUD\

U

P

6RXQG 6RXUFH

UU

P

U

| U |− | UU

P

|

×

)LJ 6SKHULFDO ZDYHV HPLWWHG E\ D VRXQG VRXUFH U

5HYLHZ RI 'LIIHUHQW 6RXUFH /RFDOL]DWLRQ 0HWKRGV

%HDPIRUPLQJ > @ 1HDUI HOG $FRXVWLFDO +RORJUDSK\ 1$+ > @ DQG 6WDWLV WLFDOO\ 2SWLPL]HG 1HDUI HOG $FRXVWLFDO +RORJUDSK\ 621$+ > @ DUH WKH PRVW ZLGHO\ XVHG VRXQG VRXUFH ORFDOL]DWLRQ PHWKRGV 7KHVH DSSURDFKHV DUH EDVHG RQ SUHVVXUH PHDVXUHPHQWV REWDLQHG IURP DQ DUUD\ RI PLFURSKRQHV %HDPIRUPLQJ HVWLPDWHV WKH 'LUHF WLRQ RI $UULYDO 'R$ RI WKH SODQH ZDYHV LQ WKH IDUI HOG FDVH RU WKH SRLQW VRXUFH ORFDWLRQ LQ WKH QHDUI HOG FDVH E\ PD[LPL]DWLRQ RI WKH 'HOD\DQG6XP EHDPIRUPHU +RZHYHU EHDP IRUPLQJ LV VWLOO UHVWULFWHG LQ IUHTXHQF\ UDQJH GXH WR LWV OLPLWHG G\QDPLF UDQJH DQG PLQLPXP UHVROYDEOH VRXUFH VHSDUDWLRQ 2Q WKH RWKHU KDQG 1$+ LV XVHG WR UHWURSURSDJDWH WKH VRXQG SUHVVXUH RYHU D VXUIDFH QHDU WKH VRXQG VRXUFHV DQG HQVXUHV D KLJKHU VSDWLDO UHVROXWLRQ E\

DOVR WDNLQJ LQWR DFFRXQW WKH HYDQHVFHQW ZDYHV 621$+ LV VLPLODU WR 1$+ 7KH SUHVVXUH I HOG LV LQGHHG H[SDQGHG RYHU WKH VDPH SODQH ZDYH EDVLV LQ WKH WZR PHWKRGV EXW WKH DQD O\WLFDO IRUPDOLVP RI 621$+ DYRLGV WKH HUURUV FDXVHG E\ WKH XVH RI GLVFUHWH VSDWLDO )RXULHU WUDQVIRUP LQ 1$+ +RZHYHU 1$+ DQG 621$+ ERWK UHFRQVWUXFW WKH VRXQG I HOG RQ D VSH FLI F VXUIDFH VR WKD QRQSDUDOOHO SRLQW VRXUFHV FDQQRW EH ORFDOL]HG LQ D ' VSDFH ,Q D UHFHQW SDSHU >@ $QWRQL SUHVHQWHG D XQLI HG DSSURDFK RI WKHVH GLIIHUHQW DFRXVWLF LPDJLQJ PHWKRGV

%DVHG RQ D %D\HVLDQ IUDPHZRUN D VXSHUUHVROXWLRQ RI WKH UHFRQVWUXFWHG SUHVVXUH I HOG LV

PDGH SRVVLEOH E\ WDNLQJ LQWR DFFRXQW D SULRU LQIRUPDWLRQ RYHU WKH VRXUFH GLVWULEXWLRQ

(27)

5HYLHZ RI 'LIIHUHQW 6RXUFH /RFDOL]DWLRQ 0HWKRGV

%HDPIRUPLQJ

7KH FRQYHQWLRQDO RU %DUWOHWW EHDPIRUPLQJ LV EDVHG RQ WKH DVVXPSWLRQ WKDW WKH VLJQDOV DUH HPLWWHG E\ D VLQJOH VRXUFH ,Q WKLV VHFWLRQ RQO\ WKH SRLQW VRXUFH FDVH LV LQWURGXFHG ± FRUUHVSRQGLQJ UHVXOWV IRU SODQH ZDYH FDVH FDQ EH IRXQG LQ >@

7KH 'HOD\DQG6XP EHDPIRUPHU DSSOLHG WR WKH PHDVXUHG SUHVVXUHV S

W

LV GHI QHG DV

%

W

= Z

+

S

W

= ∑

0

P=

Z

P

S

PW

DQG WKH EHDPIRUPHU SRZHU RXWSXW LV

|%

W

|

= Z

+

S

W

S

W+

Z.

7KH LGHD EHKLQG HDFK EHDPIRUPHU LV WR VWHHU WKH PHDVXUHG SUHVVXUHV WR I QG WKH VRXUFH SR VLWLRQ 7KH VWHHULQJ YHFWRU Z GHSHQGV RQ WKH HVWLPDWHG VRXUFH ORFDWLRQ U DQG LWV H[SUHVVLRQ GHSHQGV RQ WKH NLQG RI VRXUFHV FRQVLGHUHG SODQH ZDYHV RU SRLQW VRXUFHV 7KH HVWLPDWHG SRVLWLRQ RI WKH VRXUFH LV WKHQ JLYHQ E\ WKH PD[LPXP RI WKH FKRVHQ EHDPIRUPHU 1RWH WKDW WKLV PHWKRG FRQVLGHUV RQH VRXUFH DW D WLPH WKXV D VHFRQGDU\ VRXUFH LV UHODWHG WR D VHFRQGDU\

ORFDO PD[LPXP RI WKH EHDPIRUPHU 7KH FKRLFH RI WKH VWHHULQJ YHFWRU Z DQG WKH PHWKRG WR I QG WKH VRXUFH SRVLWLRQ LV QRZ GHWDLOHG IRU D SUHVVXUH PRGHO (T ZLWK D VLQJOH VRXUFH 6 = ,Q WKH IDUI HOG FDVH S

W

FDQ EH DSSUR[LPDWHG E\

S

W

H

MN|U−U|

, ··· , H

MN|U−U0|

7

$ + Q

W

= $H

MN|U|

J ( U ) + Q

W

, ZLWK WKH IROORZLQJ RSHUDWRU J

J(U) =

H

−MN(|U|−|U−U|)

, ··· , H

−MN(|U|−|U−U0|)

7

.

$V VKRZQ LQ )LJXUH WKH RSHUDWRU J ( U ) UHSUHVHQWV WKH SKDVH GHOD\ EHWZHHQ WKH LQFRPLQJ ZDYH DW HDFK PLFURSKRQH DQG WKH SKDVH UHIHUHQFH DW WKH RULJLQ

%\ DVVXPLQJ WKDW WKH QRLVH FRYDULDQFH LV GLDJRQDO E(Q

W7

Q

W

) = σ

,

0

WKH VWHHULQJ YHFWRU LV WKHQ JLYHQ E\

PD[

Z

E

Z

+

S

W

S

+W

Z

= PD[

Z

E

|$|

Z

+

J

+ σ

|Z|

.

7R REWDLQ D QRQWULYLDO VROXWLRQ WKH VWHHULQJ YHFWRU Z LV FRQVWUDLQHG WR | Z | = 7KH VWHHULQJ

(28)

6WDWH RI $UW YHFWRU PD[LPL]LQJ WKH EHDPIRUPHU SRZHU RXWSXW GHQRWHG DV Z

%)

FDQ WKHQ EH REWDLQHG E\

Z

%)

= J

J

+

J . 6XEVWLWXWLQJ (T EDFN LQWR (T WKH VRXUFH ORFDWLRQ HVWLPDWHG E\ WKH EHDPIRUPHU SRZHU RXWSXW LV

Ö

U = DUJ PD[

U

S

+W

JJ

+

S

W

J

+

J = DUJ PD[

U

S

+W

JJ

+

S

W

.

2Q WKH RWKHU KDQG WKH 'HOD\DQG6XP EHDPIRUPHU

%

W

= Z

+%)

S

W

= 0

0 P=

H

jN(|U|−|U−UP|)

S

PW

FDQ EH LQWHUSUHWHG DV DQ RSHUDWRU WKDW ³VWHHUV´ ZLWK D VSHFLI F SKDVH GHOD\ DSSOLHG DW HDFK PL FURSKRQH EHIRUH WKH VXPPDWLRQ :KHQ WKLV GHOD\ PDWFKHV WKH UHDO GHOD\ UHODWHG WR WKH WLPH RI DUULYDO RI WKH ZDYH DW HDFK PLFURSKRQH WKHQ WKH 'HOD\DQG6XP UHDFKHV LWV PD[LPXP

1$+

7KH 1$+ PHWKRG LV XVHG WR EDFNSURSDJDWH WKH VRXQG SUHVVXUH RYHU D VXUIDFH QHDU WKH VRXQG VRXUFHV DQG HQVXUHV D KLJKHU VSDWLDO UHVROXWLRQ E\ DOVR WDNLQJ LQWR DFFRXQW WKH HYDQHVFHQW I HOG

$W D JLYHQ IUHTXHQF\ WKH VRXQG SUHVVXUH I HOG RQ WKH PLFURSKRQH DUUD\ SODQH GHQRWHG DV S

D

([, \) LV UHWURSURSDJDWHG WR WKH VRXUFH SDUDOOHO SODQH ,W LQFOXGHV WKUHH VWHSV

‡ 7KH WUDQVIRUP RI WKH VSDWLDO SUHVVXUH I HOG LQ WKH ZDYHQXPEHU GRPDLQ E\ D ' 6SDWLDO )RXULHU 7UDQVIRUP

T

D

(N

[

, N

\

) =

( π )

S

D

([, \)H

−j(N[[+N\\)

G[G\.

+HUH T

D

GHQRWH WKH VSDWLDO SUHVVXUH LQ WKH ZDYHQXPQHU GRPDLQ LQ WKH DUUD\ SODQH

‡ 7KH EDFNSURSDJDWLRQ RI WKH VRXQG SUHVVXUH LQ WKH ZDYHQXPEHU GRPDLQ WR WKH QHZ GHI QHG SODQH

T

G

(N

[

, N

\

) = T

D

(N

[

, N

\

)H

jN](]G−]D)

,

(YDQHVFHQW ZDYH D QHDUI HOG ZDYH ZLWK DQ LQWHQVLW\ WKDW H[KLELWV H[SRQHQWLDO GHFD\ ZLWKRXW DEVRUSWLRQ DV D IXQFWLRQ RI WKH GLVWDQFH IURP WKH ERXQGDU\ DW ZKLFK WKH ZDYH ZDV IRUPHG 0DWKHPDWLFDOO\ LW LV D ZDYH YHFWRU ZKHUH RQH RU PRUH RI WKH YHFWRU¶V FRPSRQHQWV KDV DQ LPDJLQDU\ YDOXH

(29)

5HYLHZ RI 'LIIHUHQW 6RXUFH /RFDOL]DWLRQ 0HWKRGV ZKHUH ]

G

DQG ]

D

DUH WKH ]FRRUGLQDWHV RI WKH QHZ GHI QHG SODQH DQG WKH PLFURSKRQH SODQH DQG T

G

GHQRWHV WKH VSDWLDO SUHVVXUH LQ WKH ZDYHQXPQHU GRPDLQ LQ WKH QHZ GHI QHG SODQH ,Q RUGHU WR RSWLPL]H WKH VSDWLDO UHVROXWLRQ HYDQHVFHQW ZDYHV N

<

N

[

+ N

\

KDYH WR EH LQFOXGHG

‡ 7KH WUDQVIRUP RI WKH VRXQG SUHVVXUH EDFN WR WKH VSDWLDO GRPDLQ E\ DQ ,QYHUVH ' 6SDWLDO )RXULHU 7UDQVIRUP

S

G

([, \) = T

G

(N

[

, N

\

)H

j(N[[+N\\)

GN

[

GN

\

.

:RXOG WKH ZKROH PLFURSKRQH SODQH EH H[DFWO\ PHDVXUDEOH WKH VRXQG I HOG FRXOG EH SHUIHFWO\ UHFRQVWUXFWHG XVLQJ 1$+ +RZHYHU RQO\ D I QLWH QXPEHU RI SRLQWV RQ WKH PLFUR SKRQH SODQH LV PHDVXUHG WKHUHIRUH ZLWK DQ XQDYRLGDEOH QRLVH 7KHUHIRUH (TV DQG KDYH WR EH UHSODFHG E\ WKH 'LVFUHWH )RXULHU 7UDQVIRUP ')7 RYHU D I QLWH GRPDLQ DQG FDXWLRQ QHHGV WR EH WDNHQ WR DYRLG WKH UHWURSURSDJDWLRQ RI EDFNJURXQG QRLVH

621$+

,Q 1$+ WKH XVH RI D VSDWLDO ')7 DQG D UHWURSURSDJDWLRQ RSHUDWRU LQ WKH ZDYHQXPEHU GRPDLQ LV FRPSXWDWLRQDOO\ HII FLHQW +RZHYHU WKH GLVFUHWL]DWLRQ DOVR FDXVHV VRPH HUURUV > @ 621$+ SHUIRUPV WKH SODQH WR SODQH WUDQVIRUPDWLRQ GLUHFWO\ LQ WKH VSDWLDO GRPDLQ LQVWHDG RI LQ WKH ZDYHQXPEHU GRPDLQ

7KH VRXQG SUHVVXUH DW DQ\ SRVLWLRQ LQ WKH VRXUFH SODQH U FDQ EH SUHGLFWHG DV D ZHLJKWHG VXP RI 0 PHDVXUHPHQWV DW SRVLWLRQ U

P

LQ WKH PLFURSKRQH DUUD\ SODQH

S(U) =

P=

0

F

P

(U) S(U

P

) = S

7

F(U).

7KH WUDQVIHU YHFWRU F(U) GRHV QRW GHSHQG RQ WKH PHDVXUHPHQWV EXW RQO\ RQ WKH SRVLWLRQ U DQG LV IRXQG DV WKH /HDVW 6TXDUH /6 VROXWLRQ RI WKH OLQHDU HTXDWLRQV

%F ( U ) = α ( U ),

ZKHUH % DQG α (U) DUH GHI QHG E\ WKH HOHPHQWDU\ ZDYH IXQFWLRQV Ψ

Q

(U) VXFK WKDW

% =

⎜ ⎜

Ψ (U ) ··· Ψ (U

0

)

Ψ

1

( U

) ··· Ψ

1

( U

0

)

⎟ ⎟

⎠ , α = (U)

⎜ ⎜

Ψ (U) Ψ

1

( U )

⎟ ⎟

⎠ .

(30)

6WDWH RI $UW

$V LQ WKH FODVVLFDO 1$+ WKH SUHVVXUH I HOG LV H[SDQGHG RYHU D SODQH ZDYH EDVLV ZLWK WKH IROORZLQJ HOHPHQWDU\ IXQFWLRQV

Ψ

Q

( U ) = H

−j(N[,Q[+N\,Q\+N],Q])

, Q = , ··· , 1 , 1 → ∞, ZKHUH

N

],Q

=

⎧ ⎨

N

N

[,Q

N

\,Q

, LI

N

[,Q

+ N

\,Q

≤ N

−j

N

[,Q

+ N

\,Q

N

, RWKHUZLVH ,

7KH /6 VROXWLRQ RI FDQ EH H[SUHVVHG E\

F(U) = (%

+

% + ε ,

0

)

%

+

α (U),

ZKHUH ε LV WKH 7LNKRQRY UHJXODUL]DWLRQ SDUDPHWHU DQG ,

0

LV WKH 0GLPHQVLRQDO LGHQWLW\

PDWUL[ )URP (T LW IROORZV WKDW WKH HOHPHQWV RI %

+

% DQG %

+

α ( U ) DUH JLYHQ E\

%

+

%

L M

= ∑

Q

Ψ

Q

(U

L

Q

(U

M

),

%

+

α (U)

L

= ∑

Q

Ψ

Q

(U

L

Q

(U).

%\ OHWWLQJ WKH VDPSOLQJ VSDFLQJ LQ WKH ( N

[

, N

\

) SODQH JR WR ]HUR 1 → ∞ WKH VXPPDWLRQV LQ (T EHFRPH LQWHJUDOV RYHU WKH ( N

[

, N

\

) SODQH >@ 7KLV OLPLW PHWKRG FDQ DYRLG WKH ZUDSDURXQG SUREOHP FDXVHG E\ WKH GLVFUHWH UHSUHVHQWDWLRQ LQ WKH ZDYHQXPEHU GRPDLQ

(0 $OJRULWKP

,Q WKLV WKHVLV ZH VROYH WKH VRXQG VRXUFH ORFDOL]DWLRQ SUREOHP LQ D SDUDPHWULF IUDPHZRUN

WKH PRGHO LV HVWLPDWHG WKURXJK WKH VRXQG VRXUFH ORFDWLRQV U DQG DPSOLWXGHV $ LQ (T

0RUH VSHFLI FDOO\ ZH SURSRVH D PD[LPXP OLNHOLKRRG DSSURDFK IRU WKLV VRXUFH HVWLPDWLRQ

SUREOHP ,Q WKH FDVH RI D VLQJOH VRXUFH WKH HVWLPDWHV RI WKHVH SDUDPHWHUV DUH REWDLQHG

E\ PD[LPL]LQJ WKH OLNHOLKRRG IXQFWLRQ RI WKH PHDVXUHG SUHVVXUH S

W

)RU PXOWLSOH VRXUFHV

KRZHYHU FRPSXWLQJ WKH 0/( RI WKH SDUDPHWHUV EHFRPHV GLII FXOW GXH WR WKH QXPEHU RI

SDUDPHWHUV WR EH HVWLPDWHG DQG WKH IRUP RI WKH OLNHOLKRRG IXQFWLRQ 7R RYHUFRPH WKLV SURE

OHP DQ LWHUDWLYH PHWKRG ZKLFK LV FDOOHG WKH ([SHFWDWLRQ0D[LPL]DWLRQ (0 DOJRULWKP LV

SURSRVHG WR I QG WKH PD[LPXP OLNHOLKRRG HVWLPDWHV 0/( RI WKH SDUDPHWHUV 7KH SUHV

VXUH PHDVXUHG E\ D PLFURSKRQH LV LQWHUSUHWHG DV D PL[WXUH RI VLJQDOV HPLWWHG E\ WKH YDULRXV

VRXUFHV 7KHQ WKH 0/( RI WKH YDULRXV VRXUFHV PD\ EH REWDLQHG XVLQJ WKH (0 DOJRULWKP ,Q

WKLV VHFWLRQ ZH I UVW EULHI \ LQWURGXFH WKH (0 DOJRULWKP DQG WKHQ ZH UHYLHZ VRPH H[LVWLQJ

(31)

(0 $OJRULWKP ZRUNV RQ SDUDPHWHU HVWLPDWLRQ RI VXSHULPSRVHG VLJQDOV EDVHG RQ WKLV SURFHGXUH

,QWURGXFWLRQ RI WKH (0 $OJRULWKP

7KH (0 DOJRULWKP >@ LV DQ LWHUDWLYH PHWKRG DOORZLQJ WR GHDO ZLWK LQFRPSOHWH RU PLVVLQJ GDWD VXFK GDWD FRUUHVSRQG WR SDUWLDO RU LPSUHFLVH LQIRUPDWLRQ ,QFRPSOHWH GDWD FDQ RFFXU EHFDXVH RI QRQUHVSRQVH QR LQIRUPDWLRQ LV SURYLGHG IRU VHYHUDO LWHPV RU D ZKROH XQLW )RU H[DPSOH UHVHDUFKHUV WHVW WKH VHUYLFH OLIH RI D JURXS RI SURGXFWV VXFK DV OLJKW EXOEV 6LQFH WKH WHVWLQJ WLPH LV YHU\ ORQJ WKH\ FDQ QRW VWD\ LQ WKH ODERUDWRU\ DW DQ\ WLPH $OWHUQDWLYHO\

WKH\ PD\ KDYH SHULRGLF FKHFNV HJ HYHU\ WZR RU WKUHH KRXUV IRU WKH QXPEHU RI IDLOXUH SURGXFWV 7KXV WKH SUHFLVH VHUYLFH OLIH RI EXOEV LV PLVVHG ,QVWHDG RQO\ LQFRPSOHWH GDWD LQ WKH IRUP RI LQWHUYDOV UHSUHVHQWLQJ LPSUHFLVH REVHUYDWLRQ DUH REWDLQHG 6RPHWLPHV LQFRP SOHWH GDWD DUH FDXVHG E\ UHVHDUFKHUV WKHPVHOYHV ZKHQ GDWD FROOHFWLRQ LV GRQH LPSURSHUO\

RU LQDSSOLFDEOH WR WKH UHVHDUFKHUV¶ QHHG )RU H[DPSOH LQ WKH PXOWLSOH VRXUFHV ORFDOL]DWLRQ SUREOHP WKH PHDVXUHG SUHVVXUH S

W

LV D SUHFLVH REVHUYDWLRQ EXW GRHV QRW RIIHU HQRXJK LQIRU PDWLRQ IRU WKH SDUDPHWHU HVWLPDWLRQ 7KHUHIRUH ZH VHH LW DV DQ LQFRPSOHWH GDWD DQG GHI QH WKH FRQWULEXWLRQV RI WKH YDULRXV VRXQG VRXUFHV WR WKHVH PHDVXUHG SUHVVXUHV DV D FRPSOHWH GDWD

/HW [ GHQRWH WKH LQFRPSOHWH RU REVHUYHG GDWD ZLWK 3') I

;

([|Φ) DQG \ VWDQG IRU WKH FRPSOHWH XQNQRZQ GDWD ZLWK 3') I

<

(\|Φ) ZKHUH Φ LV WKH SDUDPHWHU WR HVWLPDWH 7KH 0/

DSSURDFK FRQVLVWV LQ HVWLPDWLQJ WKH SDUDPHWHU Φ E\ PD[LPL]LQJ WKH ORJOLNHOLKRRG IXQFWLRQ RI WKH REVHUYHG GDWD RU REVHUYHG ORJOLNHOLKRRG

/(Φ|[) = ORJ I

;

([|Φ),

RYHU DOO WKH SRVVLEOH YDOXHV RI SDUDPHWHU Φ 7KH FRQGLWLRQDO SUREDELOLW\ RI WKH LQFRPSOHWH GDWD YDULDEOH \ JLYHQ [ LV

I (\|[, Φ) = I

<

( \ |Φ)

I

;

([|Φ) = I

<

( \ |Φ)

\([)

I

<

(\|Φ)G\ .

+HUH \([) = {\ [(\) = [} VWDQGV IRU DOO WKH SRVVLEOH YDOXHV RI WKH FRPSOHWH GDWD \ WKDW PD\

FRUUHVSRQG WR WKH LPSUHFLVH REVHUYDWLRQ LQFRPSOHWH GDWD [

)RU WKH SXUSRVH RI PD[LPL]LQJ (T WKH (0 DOJRULWKP SURFHHGV ZLWK WKH FRPSOHWH

ORJOLNHOLKRRG E\ LWHUDWLQJ EDFN DQG IRUWK EHWZHHQ WZR VWHSV ,Q WKH OWK LWHUDWLRQ

(32)

6WDWH RI $UW

‡ WKH (VWHS FRQVLVWV LQ FRPSXWLQJ WKH FRQGLWLRQDO H[SHFWDWLRQ

4(Φ|Φ

O

) = E(ORJ I

<

(\|Φ)|[, Φ

O

),

NQRZLQJ WKH SDUDPHWHU Φ

O

HVWLPDWHG DW WKH SUHYLRXV LWHUDWLRQ

‡ WKH 0VWHS FRQVLVWV LQ GHWHUPLQLQJ Φ

O+

E\ PD[LPL]LQJ 4(Φ|Φ

O

) Φ

O+

= DUJ PD[

Φ

4(Φ|Φ

O

).

/HW Φ

O

GHQRWH WKH SDUDPHWHU HVWLPDWHG DW OWK VWHS DQG WDNH ORJ DQG FRQGLWLRQDO H[SHFWD WLRQ ( (•|[, Φ

O

) DW (T ZH REWDLQ

E( ORJ I ( \ | [ , Φ)| [ , Φ

O

) = E( ORJ I

<

( \ |Φ)| [ , Φ

O

) − / (Φ| [ ).

/HW + (Φ|Φ

O

) = E(ORJ I (\|[, Φ)|[, Φ

O

) WKHQ

/ (Φ| [ ) = 4 (Φ|Φ

O

) − + (Φ|Φ

O

).

7KLV DOJRULWKP JXDUDQWHHV WKDW WKH OLNHOLKRRG LQFUHDVHV DW HDFK LWHUDWLRQ ,QGHHG /(Φ

O+

) ≥ /

O

) EHFDXVH

‡ LQ WKH 0VWHS 4(Φ

O+

O

) ≥ 4(Φ

O

O

) DQG

‡ E\ -HQVHQ¶V LQHTXDOLW\

+

O+

O

) − +

O

O

) = E

ORJ I (\|[, Φ

O+

) I (\|[, Φ

O

) | [ , Φ

O

≤ ORJ E

I (\|[, Φ

O+

) I ( \ | [ , Φ

O

) |[, Φ

O

= ORJ

I (\|[, Φ

O+

)G\ = .

%\ WKH 0RQRWRQH &RQYHUJHQFH 7KHRUHP WKH LQFUHDVLQJ VHTXHQFH /(Φ) ZKLFK LV ERXQGHG

DERYH FRQYHUJHV WR LWV OLPLW /

:X >@ VWXGLHG WKH FRQYHUJHQFH SURSHUWLHV RI /(Φ) DQG

FRQFOXGHG WKDW WKH OLPLW RI WKH REVHUYHG ORJOLNHOLKRRG /

LV D VWDWLRQDU\ YDOXH RI /(Φ) LI

4(Φ|Φ

O

) LV FRQWLQXRXV LQ ERWK Φ DQG Φ

O

ZKLFK LV D YHU\ ZHDN FRQGLWLRQ WKDW VKRXOG EH

VDWLVI HG LQ PRVW SUDFWLFDO VLWXDWLRQV 0RUHRYHU 7KHRUHP RI >@ JLYHV D GLVFULPLQDQW

IRU ORFDO PD[LPD RI Φ +RZHYHU LW LV W\SLFDOO\ KDUG WR YHULI\ *HQHUDOO\ VSHDNLQJ WKH

FRQYHUJHQFH WR D VWDWLRQDU\ SRLQW D ORFDO PD[LPXP RU D JOREDO PD[LPXP GHSHQGV RQ WKH

(33)

(0 $OJRULWKP FKRLFH RI WKH VWDUWLQJ SRLQWV 7KHUHIRUH LW LV ZHOODGYLVHG WR UXQ WKH (0 DOJRULWKP ZLWK GLIIHUHQW VWDUWLQJ SRLQWV WKDW DUH UHSUHVHQWDWLYH RI WKH SDUDPHWHU VSDFH DQG I QDOO\ UHWDLQ WKH UHVXOW ZLWK KLJKHVW ORJOLNHOLKRRG DPRQJ WKH YDULRXV (0 HVWLPDWHV

5HYLHZ RI ([LVWLQJ :RUNV RQ 6RXUFH (VWLPDWLRQ 9LD WKH (0 $O JRULWKP

)HGHU DQG :HLQVWHLQ >±@ ZHUH WKH I UVW WR XVH WKH (0 DOJRULWKP WR LQYHVWLJDWH WKH VRXUFH SDUDPHWHU HVWLPDWLRQ SUREOHP LQ WKH VXSHULPSRVHG VLJQDOV RU PXOWLSOH VRXUFHV VLJQDOV PRGHO ,Q SDUWLFXODU D ZLGH UDQJH RI PRGHOV LQYROYLQJ VXSHULPSRVHG VLJQDOV DUH JHQHU DOL]HG LQ >@

[(W) =

.

N=

V

N

(W|Φ

N

) + Q(W),

ZKHUH Φ

N

LV WKH XQNQRZQ SDUDPHWHU YHFWRU DVVRFLDWHG ZLWK WKH NWK VLJQDO FRPSRQHQW V

N

DQG Q(W) UHSUHVHQWV WKH DGGLWLYH QRLVH ,Q WKLV PRGHO HDFK PHDVXUHG VLJQDO [(W) LV D PL[WXUH RI YDULRXV VLJQDO FRPSRQHQWV RU FRQWULEXWLRQV 7KH SXUSRVH LV WR HVWLPDWH WKH SDUDPHWHUV RI HDFK VLJQDO FRPSRQHQW VHSDUDWHO\ 7KH DXWKRUV SURSRVHG WR LQWURGXFH ODWHQW YDULDEOHV

\

N

(W) = V

N

(W|Φ

N

) + Q

N

(W ), N = , ··· , . WR UHSUHVHQW HDFK XQNQRZQ FRQWULEXWLRQ WR WKH PHDVXUHPHQW QRWH WKDW WKH QRLVH Q ( W ) KDV EHHQ DUELWUDULO\ GHFRPSRVHG LQWR FRPSRQHQWV Q

N

( W ) DV ZHOO 2EYLRXVO\ VKRXOG WKHVH FRQ WULEXWLRQV EH NQRZQ HVWLPDWLQJ WKH SDUDPHWHUV RI WKH PRGHO ZRXOG EH HDV\ ,Q WKLV FDVH DSSO\LQJ WKH (0 DOJRULWKP FRQVLVWV LQ LWHUDWLQJ WKH IROORZLQJ VWHSV ,Q WKH (VWHS WKH H[

SHFWHG VRXUFH FRQWULEXWLRQV JLYHQ D FXUUHQW PRGHO HVWLPDWH Φ

O

DUH HVWLPDWHG 4 (Φ|Φ

O

) = (

\

N

( W )| [ ( W ), Φ

O

, N = , ··· , .

IRU GHWHUPLQLVWLF VLJQDOV RU 4 (Φ|Φ

O

) = (

\

N

( W ) \

+N

( W )| [ ( W ), Φ

O

, N = , ··· , .

IRU UDQGRP VLJQDOV 7KHQ WKH 0VWHS DPRXQWV WR XSGDWLQJ WKH PRGHO SDUDPHWHUV DFFRUGLQJ

WR WKH VRXUFH FRQWULEXWLRQV QHZO\ FRPSXWHG )HGHU DQG :HLQVWHLQ >@ DOVR DSSOLHG WKLV

DOJRULWKP WR WKH PXOWLSDWK WLPH GHOD\ SUREOHP DQG PXOWLSOH VRXUFH ORFDWLRQ HVWLPDWLRQ

SUREOHP :H KDYH WR QRWH WKDW LQ WKH ODWWHU SODQH ZDYHV ZLWK VSHFLI F DQJOHV RI DUULYDO ZHUH

(34)

14 State of Art considered, but the propagation operator was taken without attenuation, i.e., the propagation operator from m-th microphone to s-th source was assumed to be G(r

s

| r

m

) = e

jk|rs−rm|

.

Some researchers have investigated different kinds of superimposed signals using the EM algorithm. Cirpan and Cekli [11, 12] and Kabaoglu et al. [42, 43] used a similar EM approach to study the localization of near-f eld sources. Each of these four contributions addresses a specif c case, namely: deterministic signals in 2D space and 3D space, and Gaussian random signals in 2D and 3D space. However, note that the near-f eld was just taken into account with the Fresnel approximation of the source-microphone distance in the time delay (without the 1 /r spatial attenuation in Eq. (2.1)), and that even in the de- terministic case [11, 42] the signal strength depends on the snapshots (unlike in Eq. (2.1), where the strength A is a constant parameter). Lu et al. [46] and Yan et al. [73] studied the source localization of wideband signals, in which the basic assumption of the propagation operator is more or less same as in [11, 12, 42, 43]. Moreover, [46] solved the problem with a diagonal but non-identity noise covariance matrix, and [73] analyzed the computational complexity of the algorithm. Sheng and Hu [61] and Meng and Xiao [47] investigated the multiple source localization problem via acoustic energy measurement using the EM algo- rithm. In these two papers, only the strength and the attenuation of the sound (A and 1/r) are considered, but without regard to the phase (the term e

jkr

in Eq. (2.1)). Frenkel and Feder [31] applied the EM algorithm to the multiple target tracking problem. At each time interval, the sonar sends a signal that is ref ected from the moving targets and received by the sensors. The purpose of the algorithm is to estimate the locations and velocities of the multiple moving targets.

In the next chapter, we propose a solution of the multiple sound sources localization

problem presented in Section 1.1, using the EM algorithm. The methodology is very similar

to that described in Ref. [28], but the assumptions underlying our model differ from all the

works mentioned above.

(35)

&KDSWHU

6RXQG 6RXUFHV /RFDOL]DWLRQ 8QGHU WKH 'HWHUPLQLVWLF $PSOLWXGH $VVXPSWLRQ

0RGHO

,Q WKLV FKDSWHU ZH FRQVLGHU WKH VRXQG VRXUFH ORFDOL]DWLRQ SUREOHP XQGHU WKH DVVXPS WLRQ WKDW WKH DPSOLWXGH $ LV GHWHUPLQLVWLF

7KH WUDGLWLRQDO 0/(V RI U DQG $ DUH REWDLQHG E\ PD[LPL]LQJ WKH ORJOLNHOLKRRG ORJ / ( U , $ | S ) = − ∑

7

W=

| S

W

*$ |

.

:KHQ PXOWLSOH VRXUFHV DUH LQ SUHVHQFH 6 ≥ FRPSXWLQJ 0/ HVWLPDWHV QHFHVVLWDWHV WR VROYH D GLII FXOW RSWLPL]DWLRQ SUREOHP LQGHHG 6 SDUDPHWHUV QHHG WR EH HVWLPDWHG IRU HDFK VRXUFH WKH ' FRRUGLQDWHV U

V

DQG WKH VRXUFH DPSOLWXGH $

V

+RZHYHU E\ XVLQJ WKH (0 DOJRULWKP WKLV RSWLPL]DWLRQ SUREOHP FDQ EH ODUJHO\ VLPSOLI HG

)RU WKLV SXUSRVH WKH NH\ LV WR LQWHUSUHW WKH VLJQDO DV D PL[WXUH RI VHYHUDO FRQWUL EXWLRQV DV VXJJHVWHG E\ )HGHU DQG :HLQVWHLQ >@ )LJ VKRZV D ' H[DPSOH RI WKH SUREOHP ,Q WKLV H[DPSOH HDFK PHDVXUHPHQW PDGH E\ RQH RI WKH I YH PLFURSKRQHV LQFOXGHV WZR FRPSRQHQWV HDFK RQH UHSUHVHQWLQJ WKH FRQWULEXWLRQ IURP RQH RI WKH WZR VRXUFHV /HW XV UHZULWH (T LQ WKH IRUP RI VXSHULPSRVHG VLJQDOV

S

W

= *(U)$ + Q

W

= ∑

6

V=

*

V

(U

V

)$

V

+ Q

W

.

,Q WKLV HTXDWLRQ *

V

$

V

VWDQGV IRU WKH FRQWULEXWLRQ IURP WKH VWK VRXUFH 7KH YHFWRU *

V

ZKLFK

LV D IXQFWLRQ RI U

V

LV WKH VWK FROXPQ RI WKH PDWUL[ * LH ( * ( U

V

| U

), ··· , * ( U

V

| U

0

))

7

,Q WKLV

(36)

6RXQG 6RXUFHV /RFDOL]DWLRQ 8QGHU WKH 'HWHUPLQLVWLF $PSOLWXGH $VVXPSWLRQ

P ×

P ×

P ×

P ×

P ×

6

6

× ×

)LJ 6RXQG VRXUFH HVWLPDWLRQ SUREOHP ' FDVH 7KH PLFURSKRQH ORFDWLRQV DUH UHSUH VHQWHG E\ UHG FURVVHV WKH VRXQG VRXUFHV E\ EOXH FURVVHV 7KH RULJLQ LV DVVXPHG KHUH WR EH WKH FHQWHU RI WKH DUUD\ RI PLFURSKRQHV

FKDSWHU WKH VWUHQJWKV $

V

, V = , ··· , 6 DUH GHWHUPLQLVWLF 7KH QRLVH Q

W

LV DVVXPHG WR IROORZ DQ 0GLPHQVLRQDO *DXVVLDQ GLVWULEXWLRQ ZLWK PHDQ DQG FRYDULDQFH PDWUL[ Σ = σ

,

0

0RGHO (VWLPDWLRQ 9LD WKH (0 $OJRULWKP

)RU HDFK VQDSVKRW WKH ODWHQW YDULDEOHV DUH DVVXPHG WR EH WKH FRQWULEXWLRQV RI WKH VRXUFHV WR WKH PHDVXUHPHQW S

W

F

VW

= *

V

$

V

+ Q

VW

, V = , ··· , 6, ZKHUH WKH QRLVH YHFWRU Q

VW

LV REWDLQHG E\ DUELWUDULO\ GHFRPSRVLQJ WKH WRWDO QRLVH Q

W

LQWR 6 FRPSRQHQWV LH ∑

6

V=

Q

VW

= Q

W

7KXV S

W

WKH REVHUYHG LQFRPSOHWH SUHVVXUH LV UHODWHG WR WKH F

VW

WKH ODWHQW FRQWULEXWLRQV RI WKH VRXUFHV E\

S

W

=

V=

6

F

VW

.

/HW XV IXUWKHU DVVXPH WKDW Q

VW

, V = , ··· , 6 DUH PXWXDOO\ LQGHSHQGHQW *DXVVLDQ UDQGRP YDUL DEOHV ZLWK PHDQ DQG FRYDULDQFH PDWUL[ Σ

V

=

6

Σ 7KHQ WKH FRPSOHWH GDWD ORJOLNHOLKRRG LV

/(U, $|F) = − ∑

7

W=

6

V=

|F

VW

*

V

$

V

|

.

(37)

0RGHO (VWLPDWLRQ 9LD WKH (0 $OJRULWKP

*LYHQ WKH SDUDPHWHUV U

O

, $

O

HVWLPDWHG LQ WKH 0VWHS RI WKH OWK LWHUDWLRQ WKH (VWHS LQ WKH ( O + ) WK LWHUDWLRQ FRQVLVWV LQ FRPSXWLQJ

4 (Φ|Φ

O

) = E( / ( U , $ | F )| S

W

, U

O

, $

O

)

= G

W=

7 V=

6

−E(F

+VW

|S

W

, U

O

, $

O

)*

V

$

V

(*

V

$

V

)

+

E(F

VW

|S

W

, U

O

, $

O

) + |*

V

$

V

|

= G

− ∑

7

W=

6 V=

F Ö

OVW

*

V

$

V

, ZKHUH

Ö

F

OVW

= E( F

VW

| S

W

, U

O

, $

O

) DQG G

DQG G

DUH FRQVWDQWV LQGHSHQGHQW RI U DQG $ &RPSXWLQJ 4 (Φ|Φ

O

) WKXV DPRXQWV WR GHWHUPLQLQJ WKH H[SHFWHG VRXUFH FRQWULEXWLRQV )RU WKLV SXUSRVH OHW XV UHPLQG WKH IROORZLQJ WKHRUHP >@

7KHRUHP /HW ; DQG < EH QGLPHQVLRQDO *DXVVLDQ UDQGRP YHFWRUV ZLWK H[SHFWDWLRQ P

;

DQG P

<

DQG ZLWK FRYDULDQFH PDWUL[ Σ

;;

DQG Σ

<<

/HW Σ

;<

= &RY ( ; , < ) DQG Σ

<;

=

&RY(<, ;) WKH FRQGLWLRQDO SUREDELOLW\ GHQVLW\ IXQFWLRQ LV *DXVVLDQ I

<|;

(·|;) ∼ φ ·|P

<

+ Σ

<;

Σ

;;

(; − P

;

), Σ

<<

− Σ

<;

Σ

;;

Σ

;<

.

+HUH ( S

W

, F

VW

)

7

DUH MRLQWO\ *DXVVLDQ ZLWK H[SHFWDWLRQ ( ∑

6

V=

*

V

$

V

, *

V

$

V

)

7

DQG FRYDULDQFH PDWUL[

Σ

6

Σ

6

Σ

6

Σ

7KXV 7KHRUHP PDNHV LW SRVVLEOH WR FRPSXWH (T

Ö

F

OVW

= E(F

VW

|S

W

, U

O

, $

O

) = *

OV

$

OV

+ 6

S

W

V=

6

*

OV

$

OV

.

7KH 0VWHS FRQVLVWV LQ FRPSXWLQJ QHZ SDUDPHWHU HVWLPDWHV E\ PD[LPL]LQJ U

O+V

, $

O+V

= DUJ PLQ

UV,$V

7 W=

F Ö

OVW

*

V

$

V

. 7KH FRPSXWDWLRQ RI (T FDQ EH VLPSOLI HG DV IROORZV )RU DQ\ VRXQG VRXUFH ORFDWLRQ U

V

WKH XSGDWH HTXDWLRQ IRU WKH VRXUFH VWUHQJWK $

V

LV JLYHQ E\

$

O+V

= DUJ PLQ

$V

F Ö

OV

*

V

$

V

= *

+V

F Ö

OV

*

+V

*

V

,

(38)

6RXQG 6RXUFHV /RFDOL]DWLRQ 8QGHU WKH 'HWHUPLQLVWLF $PSOLWXGH $VVXPSWLRQ

LQ ZKLFK Ö F

OV

=

7

7 W=

Ö

F

OVW

.

7KHQ E\ VXEVWLWXWLQJ (T EDFN LQWR (T WKH VRXUFH ORFDWLRQ HVWLPDWH LV JLYHQ E\

U

O+V

= DUJ PLQ

UV

F Ö

OV

*

V

*

+V

*

+V

*

V

F Ö

OV

= DUJ PLQ

UV

F Ö

OV

+

,

0

*

V

*

+V

*

+V

*

V

+

,

0

*

V

*

+V

*

+V

*

V

F Ö

OV

= DUJ PLQ

UV

Ö F

OV

+

,

0

*

V

*

+V

*

+V

*

V

Ö F

OV

= DUJ PD[

UV

( F Ö

OV

)

+

*

V

*

+V

*

+V

*

V

F Ö

OV

.

:H FDQ VHH WKDW (T LV D SDUDPHWHU RSWLPL]DWLRQ SUREOHP ,I ZH DVVXPH IXUWKHU WKDW DOO WKH VRXUFHV DUH RQ D JLYHQ SODQH LW ERLOV GRZQ WR D SDUDPHWHU RSWLPL]DWLRQ SUREOHP ZKLFK LV PXFK HDVLHU WR VROYH WKDQ PD[LPL]LQJ (T

7KH VWUDWHJ\ IRU HVWLPDWLQJ WKH SDUDPHWHUV LQ WKH VRXQG VRXUFH ORFDOL]DWLRQ PRGHO XVLQJ WKH (0 DOJRULWKP LV VXPPDUL]HG E\ $OJRULWKP

$OJRULWKP (0 DOJRULWKP IRU VRXQG VRXUFHV ORFDOL]DWLRQ LQ WKH FDVH RI GHWHUPLQLVWLF DP SOLWXGH

)RU O = SLFN VWDUWLQJ YDOXHV IRU WKH SDUDPHWHUV U

, $

)RU OUHSHDW

HVWLPDWH WKH VRXUFH FRQWULEXWLRQ Ö F

OV

IURP (TV DQG IRU V = , ··· , 6 HVWLPDWH WKH QHZ VRXUFH ORFDWLRQ U

O+V

IRU V = , ··· , 6 ZLWK (T

HVWLPDWH WKH QHZ VRXUFH VWUHQJWK $

O+V

IRU V = , ··· , 6 E\ VXEVWLWXWLQJ WKH QHZ VRXUFH ORFDWLRQ U

O+V

EDFN WR (T

XQWLO WKH UHODWLYH LQFUHDVH RI WKH REVHUYHG GDWD ORJOLNHOLKRRG LV OHVV WKDQ D JLYHQ WKUHVKROG κ

/ ( U

O+

, $

O+

| S ) − / ( U

O

, $

O

| S )

/(U

O

, $

O

|S) < κ .

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In the future, such organizations could also include portals on their websites that use methods, such as scenario discovery and scenario diversity, to mine those

Aujourd’hui, il se peut que dans bien des murs le bardage ne soit pas léger et qu’il n’y ait pas de lame d’air drainée et aérée mais que l’on trouve un deuxième moyen

تارهاظ دجوت ىوصقلا ةلاحلا يفو لام.ب كلذ نع ربع امك اهتبكب مجرتيو .ةيقيقح ةيناهذ للاتخا ( ضفرلا نم تابارطضلاا نع لوؤسملا لامهلإا انايحأ برتقي دقو

The Power scale correlated positively with self-esteem, self-efficacy, social support, satisfaction with social support and negatively with chance perceived control of unemployment,

Automobile silence and luxury had long been associated (see Gartman 2004; Sheller 2004), and stressing both qualities was common in marketing campaigns and test reports of luxurious

City Pop intersects with these genres in genealogical terms: many Vaporwave and Future Funk artists have employed samples from old Japanese pop songs in their music, and modern

a) Todos los nuevos dirigentes del banco comprado manejan la lengua española. Como han sido nombrados por IBERBANCO, están totalmente de acuerdo con los objetivos de la