• Aucun résultat trouvé

Adaptive mesh refinement for eddy current testing finite element computations

N/A
N/A
Protected

Academic year: 2021

Partager "Adaptive mesh refinement for eddy current testing finite element computations"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01547509

https://hal.archives-ouvertes.fr/hal-01547509

Submitted on 26 Jun 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Adaptive mesh refinement for eddy current testing finite element computations

Laurent Santandrea, Yayha Choua, Yann Le Bihan, Claude Marchand

To cite this version:

Laurent Santandrea, Yayha Choua, Yann Le Bihan, Claude Marchand. Adaptive mesh refinement for eddy current testing finite element computations. Sixth International Conference on Computation in Electromagnetics (CEM 2006), Apr 2006, Aachen, Germany. 2006, Proceedings - Sixth International Conference on Computational Electromagnetics, CEM 2006. �hal-01547509�

(2)

Laurent SANTANDREA, Yayha CHOUA, Yann LE BIHAN, Claude MARCHAND

Laboratoire de Génie Électrique de Paris / SPEE Labs, CNRS UMR 8507, Universités ParisVI et Paris XI, Supelec, Plateau de Moulon 91192 - Gif sur Yvette - France E-mail: santandrea@lgep.supelec.fr

Adaptive mesh refinement

for eddy current testing finite element computations

Introduction

This paper deals with an adaptive mesh refinement method applied to 3D eddy current non-destructive testing computations by finite element method. The principle of Ligurian is used as error estimator and applied in a general computation processing loop. This work takes place within the framework of the development of a non- destructive computer-aided numerical simulation environment. It has been applied to the TEAM Workshop Problem 15.

Conclusion

Computational time saving is quasi-proportional to processors number and can be better with a true multi-processors architecture. The proposed method can be used of course with a single hyper- threaded processor such as Pentium III and Pentium 4 processors to exploit parallelism. This technique is well adapted to the ECT problem which is easily divisible in independent problems.

Eddy Current Testing (ECT) Problem

Loop for probe displacement

computation with flaw

Computation without flaw

I = I + 1

Computational aspect ECT-NDT configuration

Ref ISEM

Excessive computational time

Error estimation

In harmonic linear case the energy density error λm is defined as

Ligurian approach

: minimize the error in the magnetic constitutive law which describes the relationship between B and H.

2 )

( 2

2

2 )

( 2

2

22 2 2

22 1

2 1 1

12

B H H B

B

H

B + H − + + −

= µ

µ µ

λ

m

µ

with H = H1 + iH2 and B = B1 + iB2

For each element, the local magnetic Ligurian estimator can be written as :

=

Ki

i m

mi

λ ( B , H ) dK

λ

Mesh

modification

The refinement indicator Li is computed as

Li=

0 if lmi ≤ lth element i is not split 1 if λmi > λth element i is split

Two general kinds of mesh modification are possible : h-type and p-type.

The list of elements to be split is then introduced in the ANSYS mesh generator which produces the refined mesh. The “erefine” command is then used in an ANSYS batch script.

Results

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this paper, we report a T-Ω formulation and a 3D numerical solution an eddy current system dealing with a pancake type coil, placed above a copper plate with

To prove the optimal convergence of the standard finite element method, we shall construct a modification of the nodal interpolation operator replacing the standard

2 or 3 dimensional (depending on the dimension of the test sample) finite differences space discretization is used for the resolution of the diffusion equation and dynamic

In this paper the use of the mortar element method (MEM) is presented to take into account the coil displacement in a three-dimensional finite element simulation of eddy

Neumann or Robin boundary conditions â First results with a mixed formulation Dynamic equation : heat equation. Michel Duprez Rule of the mesh in the Finite Element

• Alternative formulation for a good conditioning of the system matrix â Quasi optimal convergence.. • Necessary and sufficient geometrical conditions remain open â Inclusion

Mots clés: Canal, Milieux poreux, Refroidissement des blocs chauffés, Transfert, Masse, Chaleur, Volumes finis, Convection forcée, Convection mixte, Darcy,