• Aucun résultat trouvé

Finite element method with local damage on the mesh

N/A
N/A
Protected

Academic year: 2021

Partager "Finite element method with local damage on the mesh"

Copied!
32
0
0

Texte intégral

(1)

Finite element method with local damage on the mesh

M. Duprez

1

, V. Lleras

2

, A. Lozinski

3

,

1Laboratoire Jacques-Louis Lions, Paris

2IMAG, Montpellier

3Laboratoire de Mathématiques de Besançon

2018 IPL Workshop Alsace

Breitenbach 22/11/18

(2)

Outline

1 Problematic and previous results

2 Local damage

3 Conditioning

4 Simulation

5 Conclusion

(3)

Outline

1 Problematic and previous results

2 Local damage

3 Conditioning

4 Simulation

5 Conclusion

(4)

Framework

Consider the equation

−∆u=f, inΩ u= 0, on∂Ω i.e.the problem

FinduH01(Ω)s.t. :

⇔(∇u,∇v)L2(Ω)= (f, v)L2(Ω)∀v∈H01(Ω).

General framework

FinduV s.t. : a(u, v) =l(v)∀v∈V where

l(·)linear and continuous :|l(v)|6C1kvk ∀v∈V

a(·,·)bilinear continuous :|a(u, v)|6C2kukkvk ∀u, v∈V

a(·,·)coercive :|a(v, v)|>Ckvk2∀v∈V

Michel Duprez Local damages on the mesh in FE method 1

(5)

Framework : Finite element method

LetVh=hφkV :k∈ {1, ..., N}i ⊂V. System (1) will be approximate by

FinduhVhs.t. :

a(uh, vh) =l(vh)∀vhVh

FindUh∈RNs.t. : AhUh=Fh

where

Ah=a(φk, φj)kj

Fh=l(φk)k

Thus

uh=X Uhkφk.

Question

â How choose the functionsφk?

2

(6)

Framework : Lagrange continuous finite element

Piecewise linear Lagrange FE order 1 (P1) Lagrange interpolation

Order 1 (P1), dimension 2

Michel Duprez Local damages on the mesh in FE method 3

(7)

Challenge

Questions

â Geometrical criterionon the mesh to ensure the convergence ? kuhuk −→

h→00 whereh:= max Cell

in mesh

diam(Cell) â Optimal order in thea prioriestimates

|uu

h|16Ch|u|2,

|u−uh|06Ch2|u|2.

4

(8)

Historic

• Minimum angle condition âdim 2 : Zlámal 68’

min{angle}> α >0

• Ciarlet condition âdim n : Ciarlet 78’

hK

ρK

< γ

hK

ρK

• Maximum angle condition

âdim 2 : Babuska-Aziz 76’, Barnhill-Gregory 76’, Jamet 76’

âdim 3 : Krizek 92’

max{angle}< β < π

Michel Duprez Local damages on the mesh in FE method 5

(9)

Idea of the proof

FinduV s.t. :

a(u, v) =l(v)∀v∈V (1)

FinduhVhs.t. :

a(uh, vh) =l(vh)∀vhVh (2) Lemma (Local interpolation)

For each cellK∈ ThanduH2(K)

|u− Ihu|1,K6Ch|u|K,2, whereIhis the Lagrange interpolation operator.

Lemma (Céa, see Ern-Guermond’s book) Letuanduhsolution to (1) and (2). Then

|u−uh|1,Ω6C inf

vh∈Vh|u−vh|1,Ω.

Thus

|u−uh|1,Ω6C inf

vh∈Vh|u−vh|1,Ω6C|u− Ihu|1,Ω6Ch|u|Ω,2.

6

(10)

Counter-example [Babuska-Aziz 1976]

LetA1= (−1,0),A2= (0,1)andA3= (0, ε).

Consideru(x1, x2) =x21. It holds

|u− Ihu|1,K> 1 ε.

→large interpolation error

Michel Duprez Local damages on the mesh in FE method 7

(11)

Inclusion of meshes [Hannukaimen-Korotov-Krizek 2012]

N2

N

TriangulationTh1

N2

N

TriangulationTh2

SinceVh1Vh2,

|u−uh|1,Ω6C inf

v2 h∈V2

h

|u−vh2|1,Ω6C inf

v1 h∈V1

h

|u−vh1|1,Ω6C|u−Ih1u|1,Ω6Ch|u|Ω,2.

TriangulationTh1 TriangulationTh2

8

(12)

Outline

1 Problematic and previous results

2 Local damage

3 Conditioning

4 Simulations

5 Conclusion

(13)

Local damage on the mesh

Assumption 1

LetK1deg, ..., KIdegbe the degen. cells

hKdeg i

Kdeg i

> c0.

Assume that hPiPi 6c1. hKi,jKi,j 6c1. hKnd

i Knd i 6c1. Pei∩Pej=∅

#Pei6M

Kind Kid

Ki,1 Ki,2

Ki,3

Ki,4

Ki,5

x0

Pi:=KidKind Pei:=PijKi,j

Theorem (D.-Lleras-Lozinski 2018)

LetuV anduhVhbe the solutions to continuous and discrete Systems.

Then, under Assumption 1,

|u−uh|1,ΩCh|u|2,Ω.

9

(14)

Sketch of proof

Modified Lagrange interpolation operator

Definition

ForvH2(Ω), definedeIh(v)∈Vhs.t.

Ieh=IhonK6∈P˜i

Ieh(x0) =Ext(Ih|Knd i )(x0) whereIhis the standard Lagrange interpolation operator.

Kind Kid

Ki,1 Ki,2

Ki,3

Ki,4

Ki,5

x0

Proposition (D.-Lleras-Lozinski 2018)

Under Assumption 1, we have for allvH2(Ω)∪H01(Ω)

|v−Ieh(v)|1,ΩCh|v|2,Ω. âUse the local interpolation estimate ofIhonPi

Michel Duprez Local damages on the mesh in FE method 10

(15)

Sketch of proof

Lemma (Céa, see Ern-Guermond’s book) Letuanduhsolution to (1) and (2). Then

|u−uh|1,Ω6C inf

vh∈Vh|u−vh|1,Ω.

Thus

|u−uh|1,Ω6C inf

vh∈Vh|u−vh|1,Ω6C|u−Iehu|1,Ω6Ch|u|Ω,2.

11

(16)

Outline

1 Problematic and previous results

2 Local damage

3 Conditioning

4 Simulations

5 Conclusion

(17)

Poor conditioning of the system matrix

Proposition (D.-Lleras-Lozinski 2018)

Suppose that the meshThcontains a degenerate cellKdeg

ρKdeg=ε, hKdeg>C1h.

Then theconditioning numberassociated to the bilinear formainVhsatisfies

κ(A)> C

Idea :

φk φj

ε

1 a(φkj) = 1/ε

12

(18)

An alternative scheme

We approximate

FinduV s.t. :

a(u, v) =l(v)∀v∈V (1) by the finite element formulation

FinduhVhs.t. :

ah(uh, vh) =l(vh)∀vhVh (2) where the bilinear formahis defined for alluh, vhVhby

ah(uh, vh) :=and h

(uh, vh)+X

i

aPi(Iehuh,Iehvh)

+X

i

1 h2P

i

((Id−Ieh)uh,(Id−Ieh)vh)Pi,

withΩndh := (∪Pi)c.

Michel Duprez Local damages on the mesh in FE method 13

(19)

A priori estimates and conditioning

Theorem (A prioriestimate, D.-Lleras-Lozinski 2018)

LetΩconvex anduV, uhVhbe the solutions to Systems (1) and (2).

Then, under Assumption 1, we have (ε= 0ifn= 3) |u

Iehuh|1,ΩCh1−ε|u|2,Ω, ku−uhk0,ΩCh2−ε|u|2,Ω.

Proposition (Conditioning, D.-Lleras-Lozinski 2018)

Suppose that Assumption 1 holds and the union of cellsωxattached to each nodex ofThsatisfies

c1hn≤ |ωx| ≤c2hn. Then, the conditioning number of the matrixAsatisfies

κ(A)6Ch−2.

14

(20)

Sketch of proof

Lemma (Coercivity ofah)

ah(vh, vh)>Ckvhk20,ΩvhVh.

Lemma (Continuity ofah)

ah(uh, vh)6(C/h2)kuhk0,Ωkvhk0,Ωuh, vhVh.

kAk2= sup

v∈RN

(Av,v)

|v|22 = sup

v∈RN

a(vh, vh)

|v|22 6Chn sup

vh∈Vh

a(vh, vh)

kvhk20 6Chn−2 kA−1k2= sup

v∈RN

|v|22

(Av,v) = sup

v∈RN

|v|22

a(vh, vh) 6Ch−n sup

vh∈Vh

kvhk20

a(vh, vh) 6Ch−n Thus

κ(A) :=kAk2kA−1k26C/h2.

Michel Duprez Local damages on the mesh in FE method 15

(21)

Outline

1 Problematic and previous results

2 Local damage

3 Conditioning

4 Simulations

5 Conclusion

(22)

Equivalent formulation

Kind

Kideg Fi

Example of patchPi=KindKideg.

Proposition (D.-Lleras-Lozinski 2018) For alluh, vhVh, it holds

ah(uh, vh) =and

h (uh, vh) +P

i

|Pi|

|Knd i |aKnd

i (uh, vh) +κnP

i

|Kdegi |3 h2P

i

|Fi|2[∇uh]Fi·[∇vh]Fi

withκn:=(n+1)(n+2)2n2 .

Michel Duprez Local damages on the mesh in FE method 16

(23)

Simulation

LetΩ := (0,1)×(0,1)andf(x, y) = 2π2sin(πx) sin(πy).

Consider the system

FinduH1 0(Ω)s.t. :

(∇u,∇v)L2(Ω)= (f, v)L2(Ω)∀v∈H01(Ω).

Exact solution :u(x, y) = sin(πx) sin(πy)∀(x, y)∈Ω.

Cartesian meshesThs.t. :

hKdeg =handρKdegh2.

17

(24)

Simulation

10−3 10−2 10−1

10−5 10−4 10−3 10−2 10−1

1 1

1 2

h

kuuhk0,Ω

|uuh|1,Ω

10−2 10−1

10−1 100 101

1 1

h

Conditioning×h12

2 degenerated cells, standard scheme

Michel Duprez Local damages on the mesh in FE method 18

(25)

Simulation

10−3 10−2 10−1

10−5 10−4 10−3 10−2 10−1 100

1 1

1 2

h

kuuhk0,Ω

|uuh|1,Ω

|uIehuh|1,Ω

10−2 10−1

10−1 100 101

h

Conditioning×h12

2 degenerated cells, alternative scheme

19

(26)

Simulation

10−3 10−2 10−1

10−6 10−5 10−4 10−3 10−2 10−1 100

1 1

1 2

h

kuuhk0,Ω

|uuh|1,Ω

10−3 10−2 10−1

10−4 10−3 10−2 10−1 100

h

kuuhk0,Ω

|uuh|1,Ω

|uIehuh|1,Ω

5.5 % of degenerated cells standard scheme (left), alternative scheme (right)

Michel Duprez Local damages on the mesh in FE method 20

(27)

Outline

1 Problematic and previous results

2 Local damage

3 Conditioning

4 Simulations

5 Conclusion

(28)

Conclusion

• New sufficient geometrical conditions âLocal damages : optimal convergence

• New operator of interpolation

âConvergence of a operator of interpol.6=convergence to the solution

• Alternative formulation for a good conditioning of the systemmatrix âQuasi optimal convergence

• Necessary and sufficient geometrical conditions remain open âInclusion of meshes ?

Michel Duprez Local damages on the mesh in FE method 21

(29)

Work in progress

Application in biomechanics : generation of patient specific meshes

Collaborations A. Lozinski

âLMB, Besançon C. Lobos

âChile M. Bucki

âTexisence, Grenoble V. Lleras

âIMAG, Montpellier

[Bijar-Rohan-Perrier-Payan 2016]

22

(30)

Work in progress

Fictitious domain method

ConsiderΩgiven by the levelsetΩ ={ϕ <0}and −∆u=f in Ω

u= 0 on ∂Ω Consider the finite element approximation

Z

h

∇(ϕ˜uh)· ∇(ϕvh)− Z

∂Ωh

∂n(ϕ˜uh)ϕvh+ Stab.

Term = Z

h

f ϕvh ∀vhVh,

Thenuh:= ˜uhφ.

Advantage

âNo need to mesh

âIntegration in the whole cells Collaboration

A. Lozinski, LMB (Besançon)

Michel Duprez Local damages on the mesh in FE method 23

(31)

23

(32)

Thanks for your attention !

Michel Duprez Local damages on the mesh in FE method 23

Références

Documents relatifs

The LeBrun-Salamon conjecture has been proved by Hitchin, Poon-Salamon and LeBrun-Salamon in dimension ≤ 8. Hayde´ e and Rafael Herrera [6] showed that any 12-dimensional

We have proposed a new adaptive algorithm for conforming finite elements based on an adaptive marking strategy and an adaptive stopping criterion for iterative solution.. In

Wilson's nonconformmg element One could perform a direct analysis by means of the usual techniques for nonconformmg éléments (cf [9]) However, we prefer to statically condense

— A higher order accurate shock-capturing streamline diffusion fïnite element method for gênerai scalar conservation laws is analysed ; convergence towards the unique solution is

Abstract — When finite element methods are used to solve the statwnary Stokes problem there is a compatibüity condition between the subspaces used to approximate'lhe velocity u and

We establish some optimal a priori error estimate on some variants of the eXtended Finite Element Method (Xfem), namely the Xfem with a cut-off function and the stan- dard Xfem with

Our result is a sufficient condition for the convergence of a finite state nonhomogeneous Markov chain in terms of convergence of a certain series.. Definition

We shall, conversely, consider the problem of characterizing the lower order terms one m a y add to a homogeneous hyperbolic polynomial without loss of the