• Aucun résultat trouvé

Some results associated with fractional integrals involving the extended Chebyshev functional

N/A
N/A
Protected

Academic year: 2021

Partager "Some results associated with fractional integrals involving the extended Chebyshev functional"

Copied!
8
0
0

Texte intégral

(1)

SOME RESULTS ASSOCIATED WITH FRACTIONAL INTEGRALS INVOLVING THE EXTENDED CHEBYSHEV FUNCTIONAL

Zoubir DAHMANI

Abstract. In this paper, the Riemann-Liouville fractional integral is used to establish a new class of inequalities for the extended Chebyshev functional.

2000 Mathematics Subject Classification: 26D10, 26A33. 1. Introduction

Let us consider the functional [3] T (f, g, p, q) := Z b a q(x)dx Z b a p(x)f (x)g (x) dx + Z b a p(x)dx Z b a q(x)f (x) g (x) dx −Rb aq(x)f (x) dx  Rb ap(x)g (x) dx  −Rb ap(x)f (x) dx  Rb aq(x)g (x) dx  , (1) where f and g are two integrable functions on [a, b] and p, q are two positive inte-grable functions on [a, b].

In the case of f0, g0 ∈ L∞(a, b), S.S. Dragmir [9] proved that

|S(f, g, p)| ≤ ||f0||∞||g0||∞ hZ b a p(x)dx Z b a x2p(x)dx − Z b a xp(x)dx2i, (2) where S(f, g, p) := 1 2T (f, g, p, p) = Z b a p (x) Z b a p(x)f (x) g (x) dx −Rb ap(x)f (x) dx Rb ap(x)g (x) dx. (3) If f is M -g-Lipschitzian on [a, b] : i.e.

(2)

Dragomir proved that |S(f, g, p)| ≤ Mh Z b a p(x)dx Z b a g2(x)p(x)dx − Z b a g(x)p(x)dx2i. (5) Many researchers have given considerable attention to (1) and (3) and several in-equalities related to these functionals have appeared in the literature, to mention a few, see [1,2,4-12,14-18]and the references cited therein.

The main aim of this paper is to establish some new generalizations for the extended Chebyshev functional (1) by using the Riemann-Liouville fractional integrals. We give our results in the case of differentiable functions whose derivative belong to L∞([0, ∞[. Then, under the condition (4), we give another class of inequalities.

2. Basic Definitions of the Fractional Integrals

Definition 1. A real valued function f (t), t ≥ 0 is said to be in the space Cµ, µ ∈ IR, if there exists a real number p > µ such that f (t) = tpf1(t), where f1(t) ∈ C([0, ∞[). Definition 2. A function f (t), t ≥ 0 is said to be in the space Cµn, µ ∈ IR, if f(n)∈ Cµ.

Definition 3. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a function f ∈ Cµ, (µ ≥ −1) is defined as

Jαf (t) = Γ(α)1 Rt 0(t − τ )α−1f (τ )dτ ; α > 0, t > 0, J0f (t) = f (t), (6) where Γ(α) :=R∞ 0 e −uuα−1du.

For the convenience of establishing the results, we give the semigroup property: JαJβf (t) = Jα+βf (t), α ≥ 0, β ≥ 0, (7) which implies the commutative property

JαJβf (t) = JβJαf (t). (8) More details, one can consult [13].

3. Main Results

Theorem 3.1. Let p, q be two positive integrable functions on [0, ∞[ and let f and g be two differentiable functions on [0, ∞[. If f0, g0 ∈ L∞([0, ∞[), then for all t > 0, α > 0, we have:

(3)

J αq(t)Jαpf g(t) + Jαp(t)Jαqf g(t) − Jαqf (t)Jαpg(t) − Jαpf (t)Jαqg(t) ≤ ||f0||∞||g0||∞ h Jαq(t)Jαt2p(t) + Jαp(t)Jαt2q(t) − 2(Jαtq(t))(Jαtp(t))i. (9)

Proof. Let f and g be two functions satisfying the conditions of Theorem 3.1 and let p, q be two positive integrable functions on [0, ∞[.

Define

H(τ, ρ) := (f (τ ) − f (ρ))(g(τ ) − g(ρ)); τ, ρ ∈ (0, t), t > 0. (10) Multiplying (10) by (t−τ )Γ(α)α−1p(τ ); τ ∈ (0, t) and and integrating the resulting iden-tity with respect to τ from 0 to t, we obtain

1 Γ(α) Z t 0 (t − τ )α−1p(τ )H(τ, ρ)dτ = Jαpf g(t) − f (ρ)Jαpg(t) − g(ρ)Jαpf (t) + f (ρ)g(ρ)Jαp(t). (11)

Multiplying (11) by (t−ρ)Γ(α)α−1q(ρ); ρ ∈ (0, t) and integrating the resulting identity with respect to ρ over (0, t), we can write

1 Γ2(α) Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1p(τ )q(ρ)H(τ, ρ)dτ dρ = Jαq(t)Jαpf g(t) − Jαqf (t)Jαpg(t) − Jαpf (t)Jαqg(t) + Jαp(t)Jαqf g(t). (12)

On the other hand, we know that H(τ, ρ) = Z ρ τ Z ρ τ f0(y)g0(z)dydz, (13)

From the hypothesis f0, g0 ∈ L∞([0, ∞[), it follows |H(τ, ρ)| ≤ Z ρ τ f0(y)dy Z ρ τ g0(z)dz ≤ ||f 0|| ∞||g0||∞(τ − ρ)2. (14) Hence, 1 Γ2(α) Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1p(τ )q(ρ)|H(τ, ρ)|dτ dρ ≤ ||f0||∞||g0||∞ Γ2(α) Rt 0 Rt 0(t − τ )α−1(t − ρ)α−1(τ2− 2τ ρ + ρ2)p(τ )q(ρ)dτ dρ. (15)

(4)

Thus, we obtain the following inequality 1 Γ2(α) Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1p(τ )q(ρ)|H(τ, ρ)|dτ dρ ≤ ||f0||∞||g0||∞ h Jαq(t)Jαt2p(t) − 2(Jαtp(t))(Jαtq(t)) + Jαp(t)Jαt2q(t)i. (16)

By the relations (12), (16) and using the properties of the modulus, we get the desired inequality (9).

Remark 3.2. Applying Theorem 3.1 for α = 1, p(x) = q(x); x ∈ [0, ∞[, we obtain the inequality (2) on [0, t].

The second result is the following theorem.

Theorem 3.3. Let p, q be two positive integrable functions on [0, ∞[ and let f, g be two differentiable functions on [0, ∞[. If f0, g0 ∈ L∞([0, ∞[), then for all t > 0, α > 0, β > 0, we have J αp(t)Jβqf g(t) + Jβq(t)Jαpf g(t) − Jαpf (t)Jβqg(t) − Jβqf (t)Jαpg(t) ≤ ||f0||∞||g0||∞ h Jαp(t)Jβt2q(t) − 2(Jαtp(t))(Jβtq(t)) + Jβq(t)Jαt2p(t)i. (17)

Proof. The relation (11) implies that 1 Γ(α)Γ(β) Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1p(τ )q(ρ)H(τ, ρ)dτ dρ = Jβq(t)Jαpf g(t) + Jαp(t)Jβqf g(t) − Jβqf (t)Jαpg(t) − Jαpf (t)Jβqg(t). (18)

From the relation (13), it follows 1 Γ(α) Z t 0 (t − τ )α−1p(τ )|H(τ, ρ)|dτ ≤ ||f0||∞||g0||∞ h Jαt2p(t) − 2ρJαtp(t) + ρ2Jαp(t)i. (19)

The inequality (19) implies that 1 Γ(α)Γ(β) Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1p(τ )q(ρ)|H(τ, ρ)|dτ dρ ≤ ||f0|| ∞||g0||∞ h Jβq(t)Jαt2p(t) − 2(Jαtp(t))(Jβtq(t)) + Jαp(t)Jβt2q(t)i. (20)

(5)

Using (18), (20) and the properties of modulus, we finally obtain (17). Remark 3.4 (i) Applying Theorem 3.3 for α = β we obtain Theorem 3.1.

(ii) Applying Theorem 3.3 for α = β = 1, p(x) = q(x), x ∈ [0, ∞[, we obtain the inequality (2) on [0, t].

Theorem 3.5.Let p, q be two positive integrable functions on [0, ∞[ and let f, g be two integrable functions on [0, ∞[ satisfying the condition (4) on [0, ∞[. Then for all t > 0, α > 0, we have: J αq(t)Jαpf g(t) + Jαp(t)Jαqf g(t) − Jαqf (t)Jαpg(t) − Jαqf (t)Jαpg(t) ≤ MhJαp(t)Jαqg2(t) + Jαq(t)Jαpg2(t) − 2Jαpg(t)Jαqg(t)i. (21)

Proof. Let f and g be two functions satisfying the condition (4) on [0, ∞[. Then for every τ, ρ ∈ [0, t]; t > 0, we have

|f (τ ) − f (ρ)| ≤ M |g(τ ) − g(ρ)|. (22) This implies that

H(τ, ρ) ≤ M  g(τ ) − g(ρ)2, τ, ρ ∈ [0, t]. (23) Hence, it follows that

1 Γ(α) Z t 0 (t − τ )α−1p(τ )|H(τ, ρ)|dτ ≤ MJαpg2(t) − 2g(ρ)Jαpg(t) + g2(ρ)Jαp(t). (24) Consequently, 1 Γ2(α) Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1p(τ )q(ρ)|H(τ, ρ)|dτ dρ ≤ MhJαq(t)Jαpg2(t) − 2Jαqg(t)Jαpg(t) + Jαp(t)Jαqg2(t)i. (25)

Using (12) and (25), we finally get the desired fractional inequality (21).

Remark 3.6 Applying Theorem 3.5 for α = 1, p(x) = q(x); x ∈ [0, ∞[, we obtain the inequality (5) on [0, t].

(6)

Another estimation depending on two fractional parameters is the following the-orem:

Theorem 3.7. Let f and g be two integrable functions on [0, ∞[ satisfying the con-dition (4) on [0, ∞[ and let p, q be two positive integrable functions on [0, ∞[. Then the inequality J αp(t)Jβqf g(t) + Jβq(t)Jαpf g(t) − Jαpf (t)Jβqg(t) − Jβqf (t)Jαpg(t) ≤ MhJβq(t)Jαpg2(t) + Jαp(t)Jβqg2(t) − 2Jαpg(t)Jβqg(t)i. (26)

is valid for all all t > 0, α > 0, β > 0. Proof. Using the relation (24), we obtain

1 Γ(α)Γ(β) Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1p(τ )q(ρ)|H(τ, ρ)|dτ dρ ≤ M Γ(β) Rt 0  (t − ρ)β−1q(ρ)hJαpg2(t) − 2g(ρ)Jαpg(t) + g2(ρ)Jαp(t)idρ. (27) Consequently, 1 Γ(α)Γ(β) Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1p(τ )q(ρ)|H(τ, ρ)|dτ dρ ≤ MhJβq(t)Jαpg2(t) − 2Jβqg(t)Jαpg(t) + Jβqg2(t)Jαp(t)i. (28)

Theorem 3.7 is thus proved.

Remark 3.8. (i) Applying Theorem 3.7 for α = β, we obtain Theorem 3.5. (ii) Applying Theorem 3.7 for α = β = 1, p(x) = q(x); x ∈ [0, ∞[, we obtain the inequality (5) on [0, t].

(7)

Acknowledges: This paper is supported by l’ ANDRU, Agence Nationale pour le Developpement de la Recherche Universitaire and UMAB University of Mosta-ganem, ( PNR Project 2011-2013).”

References

[1] M. Biernacki, Sur une inegalite entre les integrales due Tchebysheff, Ann. Univ. Marie Curie-Sklodowska. Sect.1, A5, (1951), 23-29.

[2] H. Burkill and L. Mirsky, Comments on Chebysheff ’s inequality, Period. Math. Hungar. 6, ( 1975), 3-16.

[3] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov 2, (1882), 93-98.

[4] Z. Dahmani, New inequalities in fractional integrals, International Journal of Nonlinear Sciences, Vol. 9, N 4, (2010), 493-497.

[5] Z. Dahmani, New Inequalities For A Class of Differentiable Functions , Accepted paper in Int. J. Nonlinear Anal. Appl. ( 2011).

[6] Z. Dahmani, L. Tabharit, On weighted Gruss type inequalities via fractional in-tegration, J.A.R.P.M. ( IASR), Volume 2, Issue 4, (2010), 31- 38.

[7] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear Science Letters A, Vol. 02, N 01, (2010), 155-160.

[8] Z. Dahmani, L. Tabharit, S. Taf, New inequalities via Riemann-Liouville frac-tional integration, J. Advanc. Research Sci. Comput., Volume 2, Issue 1, (2010), 40-45.

[9] S.S. Dragomir, Some integral inequalities of Gruss type, Indian J. Pur. Appl. Math. Vol. 31, N4, (2002), 397-415.

[10] A. EL farissi, Z. Dahmani, Y. Bouraoui, Chebyshev like inequalites via fractional integrals, to appear in T.J.N.S.A.

[11] N. Elezovic, Lj. Marangunic, J. Pecaric, Some improrement of Gruss type in-equality, J. Math. Inequal. Vol. 1, N 3, (2007), 425-436.

[12] I. Gavrea, On Chebyshev type inequalities involvin functions whose derivatives belog to Lp spaces via isotanic functional, J. Inequal. Pure and Appl. Math. Vol. 7, N 4, (2006), Art. 121.

[13] R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien (1997), 223-276.

[14] A. McD Mercer, An improvement of the Gruss inequality, J.I.P.A.M, Vol. 10, Iss. 4, (2005), Art.93.

[15] A. McD Mercer, P. Mercer, New proofs of the Gruss inequality, Aust. J. Math. Anal. Appl. 1(2) (2004), Art. 12.

(8)

Anal-ysis, Kluwer Academic Publishers, Dordrecht, 1993.

[17] B.G. Pachpatte, On multidimensional Gruss type integral inequalities, J.I.P.A.M, Vol. 03, Iss. 2, (2002), Art. 27.

[18] M.Z. Sarikaya, N. Aktan, H. Yildirim, On weighted Chebyshev- Gruss like in-equalities on time scales, J. Math. Inequal. Vol. 2, N 2, ( 2008), 185-195.

Zoubir DAHMANI,

Laboratory LMPA, Faculty SESNV, UMAB, University of Mostaganem Mostaganem, Algeria

Références

Documents relatifs

1 2.3.1 - :ينيطنسقلا ملاس يلع نب رمع ركب وبأ " وه وبأ رمع نب ركب أشنو ةئامتسو عبس ةنس دلو ،يعفاشلا يوحنلا ،ملاس نب يلع نب ثيدحلا عمس ،ةرهاقلاب

Mots clés — Arlequin method, Multi model, Structural dynamics, Explicit time integration, Stability..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Elle est également incluse en grande quantité dans la matrice osseuse (Schinke et al. Il se peut donc que l’uranium transporté soit lié à cette protéine dans le sang.. Figure

D’autre part, je démontre ce que l’organisation industrielle peut apporter au champ de l’économie de la culture, non seulement dans le cadre de l’analyse des politiques

In conclusion, the goal of this PhD dissertation is to bring together an analysis of employment responses to cash transfer programs in South Africa to draw lessons about the

The comparison of ratios between europium 2+ and 3+ species in salts of di fferent origins by means of core level photoemission and X-ray absorption matches the di fferences observed

Shift operation can be implemented in the proposed memory circuit by adding latches in the array periphery in order to implement a conventional CMOS shifter