• Aucun résultat trouvé

Tractable Lineages on Treelike Instances: Limits and Extensions

N/A
N/A
Protected

Academic year: 2022

Partager "Tractable Lineages on Treelike Instances: Limits and Extensions"

Copied!
77
0
0

Texte intégral

(1)

Tractable Lineages on Treelike Instances:

Limits and Extensions

Antoine Amarilli1, Pierre Bourhis2, Pierre Senellart1,3 June 29th, 2016

1T ´el ´ecom ParisTech

2CNRS CRIStAL

3National University of Singapore

(2)

Tuple independent databases (TID)

• Probabilistic databases:modeluncertaintyabout data

• Simplest model:tuple independent databases(TID)

• Arelational databaseI

• Aprobability valuationπmapping each fact ofIto[0,1]

• Semanticsof a TID(I, π): aprobability distributiononI0I:

• Each factFIis eitherpresentorabsentwith probabilityπ(F)

• Assumeindependenceacross facts

(3)

Example: TID

S

a a 1

b v .5 b w .2

This TID(I, π)represents the followingprobability distribution: .5×.2

S a a b v b w

.5×(1−.2) S

a a

b v

(1−.5)×.2 S

a a

b w

(1−.5)×(1−.2) S

a a

(4)

Example: TID

S

a a 1

b v .5 b w .2

This TID(I, π)represents the followingprobability distribution:

.5×.2 S a a b v b w

.5×(1−.2) S

a a

b v

(1−.5)×.2 S

a a

b w

(1−.5)×(1−.2) S

a a

(5)

Example: TID

S

a a 1

b v .5 b w .2

This TID(I, π)represents the followingprobability distribution:

.5×.2 S a a b v b w

.5×(1−.2) S

a a

b v

(1−.5)×.2 S

a a

b w

(1−.5)×(1−.2) S

a a

(6)

Example: TID

S

a a 1

b v .5 b w .2

This TID(I, π)represents the followingprobability distribution:

.5×.2 S a a b v b w

.5×(1−.2) S

a a

b v

(1−.5)×.2 S

a a

b w

(1−.5)×(1−.2) S

a a

(7)

Example: TID

S

a a 1

b v .5 b w .2

This TID(I, π)represents the followingprobability distribution:

.5×.2 S a a b v b w

.5×(1−.2) S

a a

b v

(1−.5)×.2 S

a a

b w

(1−.5)×(1−.2) S

a a

(8)

Example: TID

S

a a 1

b v .5 b w .2

This TID(I, π)represents the followingprobability distribution:

.5×.2 S a a b v b w

.5×(1−.2) S

a a

b v

(1−.5)×.2 S

a a

b w

(1−.5)×(1−.2) S

a a

(9)

Probabilistic query evaluation (PQE)

Let us fix:

• Relational signatureσ

• ClassI ofrelational instancesonσ (e.g., acyclic, treelike)

• ClassQofBoolean queries(e.g., CQs, acyclic CQs)

Probabilistic query evaluation(PQE) problem forQandI:

• Fix aqueryq∈ Q

• Read aninstanceI∈ I and aprobability valuationπ

• Compute theprobabilitythat(I, π)satisfiesq

• Data complexity:measured as a function of(I, π)

(10)

Probabilistic query evaluation (PQE)

Let us fix:

• Relational signatureσ

• ClassI ofrelational instancesonσ (e.g., acyclic, treelike)

• ClassQofBoolean queries(e.g., CQs, acyclic CQs)

Probabilistic query evaluation(PQE) problem forQandI:

• Fix aqueryq∈ Q

• Read aninstanceI∈ I and aprobability valuationπ

• Compute theprobabilitythat(I, π)satisfiesq

• Data complexity:measured as a function of(I, π)

(11)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(12)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(13)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(14)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(15)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(16)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃xyR(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(17)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃xyR(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(18)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(19)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(20)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(21)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:

.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(22)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×

(1−(1−.5×.3)×(1−.2×.7)) =.1076

(23)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−

(1−.5×.3)×(1−.2×.7)) =.1076

(24)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)

×(1−.2×.7)) =.1076

(25)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7))

=.1076

(26)

Example: PQE

Signatureσ, classQofconjunctive queries, classI ofall instances.

q:∃x y R(x)S(x,y)T(y)

R a 1 b .4 c .6

S

a a 1

b v .5 b w .2

T v .3 w .7 b 1

• The query is true iffR(b)is here and one of:

S(b,v)andT(v)are here

S(b,w)andT(w)are here

→ Probability:.4×(1−(1−.5×.3)×(1−.2×.7)) =.1076

(27)

Complexity of probabilistic query evaluation (PQE)

Question:what is thecomplexityof PQE

depending on the classQofqueriesand classI ofinstances?

• Existingdichotomy resultonQ[Dalvi and Suciu, 2012]

Qare unions of CQs,Iis all instances

• There is a classS ⊆ Qofsafe queries

PQE isPTIMEfor anyq∈ Son all instances

PQE is#P-hardfor anyq∈ Q\Son all instances

q:∃x y R(x)S(x,y)T(y)isunsafe!

(28)

Complexity of probabilistic query evaluation (PQE)

Question:what is thecomplexityof PQE

depending on the classQofqueriesand classI ofinstances?

• Existingdichotomy resultonQ[Dalvi and Suciu, 2012]

Qare unions of CQs,Iis all instances

• There is a classS ⊆ Qofsafe queries

PQE isPTIMEfor anyq∈ Son all instances

PQE is#P-hardfor anyq∈ Q\Son all instances

q:∃x y R(x)S(x,y)T(y)isunsafe!

(29)

Complexity of probabilistic query evaluation (PQE)

Question:what is thecomplexityof PQE

depending on the classQofqueriesand classI ofinstances?

• Existingdichotomy resultonQ[Dalvi and Suciu, 2012]

Qare unions of CQs,Iis all instances

• There is a classS ⊆ Qofsafe queries

PQE isPTIMEfor anyq∈ Son all instances

PQE is#P-hardfor anyq∈ Q\Son all instances

q:∃x y R(x)S(x,y)T(y)isunsafe!

(30)

Complexity of probabilistic query evaluation (PQE)

Question:what is thecomplexityof PQE

depending on the classQofqueriesand classI ofinstances?

• Existingdichotomy resultonQ[Dalvi and Suciu, 2012]

Qare unions of CQs,Iis all instances

• There is a classS ⊆ Qofsafe queries

PQE isPTIMEfor anyq∈ Son all instances

PQE is#P-hardfor anyq∈ Q\Son all instances

q:∃x y R(x)S(x,y)T(y)isunsafe!

(31)

Complexity of probabilistic query evaluation (PQE)

Question:what is thecomplexityof PQE

depending on the classQofqueriesand classI ofinstances?

• Existingdichotomy resultonQ[Dalvi and Suciu, 2012]

Qare unions of CQs,Iis all instances

• There is a classS ⊆ Qofsafe queries

PQE isPTIMEfor anyq∈ Son all instances

PQE is#P-hardfor anyq∈ Q\Son all instances

q:∃x y R(x)S(x,y)T(y)isunsafe!

(32)

Instance-based dichotomy

→ We show adichotomy resultonIinstead:

Qare Boolean monadic second-order queries (includes all UCQs)

PQE is inlinear timeforQon anybounded-treewidthclassI up to arithmetic costs [Same authors, ICALP’15]

This talk:PQE isintractableforQ

on anyunbounded-treewidthclassI (under some assumptions)

→ Treewidthmeasures how much data is close to atree

Treeshave treewidth1

Cycleshave treewidth2

k-cliquesand(k1)-gridshave treewidthk1

(33)

Instance-based dichotomy

→ We show adichotomy resultonIinstead:

Qare Boolean monadic second-order queries (includes all UCQs)

PQE is inlinear timeforQon anybounded-treewidthclassI up to arithmetic costs [Same authors, ICALP’15]

This talk:PQE isintractableforQ

on anyunbounded-treewidthclassI (under some assumptions)

→ Treewidthmeasures how much data is close to atree

Treeshave treewidth1

Cycleshave treewidth2

k-cliquesand(k1)-gridshave treewidthk1

(34)

Instance-based dichotomy

→ We show adichotomy resultonIinstead:

Qare Boolean monadic second-order queries (includes all UCQs)

PQE is inlinear timeforQon anybounded-treewidthclassI up to arithmetic costs [Same authors, ICALP’15]

This talk:PQE isintractableforQ

on anyunbounded-treewidthclassI (under some assumptions)

→ Treewidthmeasures how much data is close to atree

Treeshave treewidth1

Cycleshave treewidth2

k-cliquesand(k1)-gridshave treewidthk1

(35)

Instance-based dichotomy

→ We show adichotomy resultonIinstead:

Qare Boolean monadic second-order queries (includes all UCQs)

PQE is inlinear timeforQon anybounded-treewidthclassI up to arithmetic costs [Same authors, ICALP’15]

This talk:PQE isintractableforQ

on anyunbounded-treewidthclassI (under some assumptions)

→ Treewidthmeasures how much data is close to atree

Treeshave treewidth1

Cycleshave treewidth2

k-cliquesand(k1)-gridshave treewidthk1

(36)

Main result: hardness of PQE

Theorem

For any arity-2 signatureσ, there is afirst-orderqueryqsuch that for any constructibleunbounded-treewidthclassI,

the PQE problem forQ={q}andIis#P-hardunder RP reductions

• Arity-2: Relations have arity≤2(and one has arity2), i.e.,graphs

• Unbounded-treewidth: for allk∈N, there isIk ∈ I of treewidth≥k

• Constructible: givenk, we cancomputesuch an instanceIkin PTIME

• #P-hard under RP reductions: reduce in PTIME with high probability from the problem of counting accepting paths of a PTIME machine

(37)

Table of contents

Introduction

Proof sketch

Extensions Conclusion

(38)

Idea: Topological minors

Gis atopological minorofHif:

G H

(39)

Idea: Topological minors

Gis atopological minorofHif:

G H

(40)

Idea: Topological minors

Gis atopological minorofHif:

3 1

2

4 3 4

2 1

maps vertices to vertices maps edges to vertex-disjoint paths

Embedding:

G H

(41)

Topological minor extraction results

Theorem [Robertson and Seymour, 1986]

For any planar graphGof degree≤3,

for any graphHofsufficiently high treewidth, Gis a topological minor ofH.

More recently:

Theorem [Chekuri and Chuzhoy, 2014] There is a certain constant c∈Nsuch that

for any planar graphGof degree≤3and graphHoftreewidth≥ |G|c, we can embedGas atopological minorofHin PTIME with high proba

(42)

Topological minor extraction results

Theorem [Robertson and Seymour, 1986]

For any planar graphGof degree≤3,

for any graphHofsufficiently high treewidth, Gis a topological minor ofH.

More recently:

Theorem [Chekuri and Chuzhoy, 2014]

There is a certain constant c∈Nsuch that

for any planar graphGof degree≤3and graphHoftreewidth≥ |G|c, we can embedGas atopological minorofHin PTIME with high proba

(43)

Proof sketch

• Choose aproblemfrom which to reduce:

• Must be#P-hardon planar degree-3 graphs

• Must be encodable to anFO queryq

We use the problem of countinggraph matchings

• Given aninput graphG, computek··=|G|c

• Compute in PTIME aninstanceIk ofI of treewidth≥k

• Compute in randomized PTIME anembeddingofGinIk

• Construct aprobability valuationπofIk such that:

• Unneccessary edges ofIkare removed

• PQE forqgives the answerto the hard problem

Easy for MSO buttrickierfor FO

(44)

Proof sketch

• Choose aproblemfrom which to reduce:

• Must be#P-hardon planar degree-3 graphs

• Must be encodable to anFO queryq

We use the problem of countinggraph matchings

• Given aninput graphG, computek··=|G|c

• Compute in PTIME aninstanceIk ofI of treewidth≥k

• Compute in randomized PTIME anembeddingofGinIk

• Construct aprobability valuationπofIk such that:

• Unneccessary edges ofIkare removed

• PQE forqgives the answerto the hard problem

Easy for MSO buttrickierfor FO

(45)

Proof sketch

• Choose aproblemfrom which to reduce:

• Must be#P-hardon planar degree-3 graphs

• Must be encodable to anFO queryq

We use the problem of countinggraph matchings

• Given aninput graphG, computek··=|G|c

• Compute in PTIME aninstanceIk ofI of treewidth≥k

• Compute in randomized PTIME anembeddingofGinIk

• Construct aprobability valuationπofIk such that:

• Unneccessary edges ofIkare removed

• PQE forqgives the answerto the hard problem

Easy for MSO buttrickierfor FO

(46)

Proof sketch

• Choose aproblemfrom which to reduce:

• Must be#P-hardon planar degree-3 graphs

• Must be encodable to anFO queryq

We use the problem of countinggraph matchings

• Given aninput graphG, computek··=|G|c

• Compute in PTIME aninstanceIk ofI of treewidth≥k

• Compute in randomized PTIME anembeddingofGinIk

• Construct aprobability valuationπofIk such that:

• Unneccessary edges ofIkare removed

• PQE forqgives the answerto the hard problem

Easy for MSO buttrickierfor FO

(47)

Proof sketch

• Choose aproblemfrom which to reduce:

• Must be#P-hardon planar degree-3 graphs

• Must be encodable to anFO queryq

We use the problem of countinggraph matchings

• Given aninput graphG, computek··=|G|c

• Compute in PTIME aninstanceIk ofI of treewidth≥k

• Compute in randomized PTIME anembeddingofGinIk

• Construct aprobability valuationπofIk such that:

• Unneccessary edges ofIkare removed

• PQE forqgives the answerto the hard problem

Easy for MSO buttrickierfor FO

(48)

Table of contents

Introduction Proof sketch Extensions

Conclusion

(49)

Non-probabilistic evaluation

Apply [Chekuri and Chuzhoy, 2014] to method of [Ganian et al., 2014]

for MSOnon-probabilisticquery evaluation (QE):

Theorem

For any arity-2 signatureσ and levelΣPi of the polynomial hierarchy, there is aMSOqueryqi such that,

for any constructible,subinstance-closed,unbounded-twclassI, the QE problem forQ={qi}andI isΣPi-hardunder RP reductions

Variant:we also show a result like in [Ganian et al., 2014], with:

• weakerconstructibilityrequirement onI:

I isdensely unbounded poly-logarithmically

• strongercomplexity hypothesis:

PH does not admit2o(n)-sized circuits

(50)

Non-probabilistic evaluation

Apply [Chekuri and Chuzhoy, 2014] to method of [Ganian et al., 2014]

for MSOnon-probabilisticquery evaluation (QE):

Theorem

For any arity-2 signatureσ and levelΣPi of the polynomial hierarchy, there is aMSOqueryqi such that,

for any constructible,subinstance-closed,unbounded-twclassI, the QE problem forQ={qi}andI isΣPi-hardunder RP reductions Variant:we also show a result like in [Ganian et al., 2014], with:

• weakerconstructibilityrequirement onI:

I isdensely unbounded poly-logarithmically

• strongercomplexity hypothesis:

PH does not admit2o(n)-sized circuits

(51)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃x y R(x)∧S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

0

1

0 1

1

0

1 0

1

0 1

(52)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃x y R(x)∧S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

0

1

0 1

1

0

1 0

1

0 1

(53)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃xy R(x)S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

. . .

0

1

0 1

1

0

1 0

1

0 1

(54)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃xyR(x)S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

s2?

0

1

. . . . . .

0 1

1

0

1 0

1

0 1

(55)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃xyR(x)S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

s2?

0

1

t1? . . .

0 1

1

0

1

0

1

0 1

(56)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃xyR(x)S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

s2?

0

1

t1? s3?

0 1

1

0

1

. . .

0

1

0 1

(57)

Lower bound on OBDD representations OBDDfor a queryqon instanceI:

ordered decision diagram on the facts ofIto decide whetherqholds

q:∃xyR(x)S(x,y)T(y)

R a r1

b r2

c r3

S a a s1

b v s2

b w s3

T v t1

w t2

b t3

r2?

0

s2?

0

1

t1? s3?

0 1

1

0

1

t2?

0

1

0 1

(58)

Lower bound on OBDD representations (result)

• If we find anOBDDofqonIin PTIME, thenPQEofqonIalso is

→ Showinexistence of poly-size OBDDs(rather thanPQE hardness)

Theorem

For any arity-2 signatureσ, there is aUCQ with inequalities qs.t. for anyIof treewidthdensely unbounded poly-logarithmically, qhasno OBDDs of polynomial sizeon instances ofI

→ Meta-dichotomyon the connected UCQ6=for which this holds

(59)

Lower bound on OBDD representations (result)

• If we find anOBDDofqonIin PTIME, thenPQEofqonIalso is

→ Showinexistence of poly-size OBDDs(rather thanPQE hardness) Theorem

For any arity-2 signatureσ, there is aUCQ with inequalities qs.t.

for anyIof treewidthdensely unbounded poly-logarithmically, qhasno OBDDs of polynomial sizeon instances ofI

→ Meta-dichotomyon the connected UCQ6=for which this holds

(60)

Lower bound on OBDD representations (result)

• If we find anOBDDofqonIin PTIME, thenPQEofqonIalso is

→ Showinexistence of poly-size OBDDs(rather thanPQE hardness) Theorem

For any arity-2 signatureσ, there is aUCQ with inequalities qs.t.

for anyIof treewidthdensely unbounded poly-logarithmically, qhasno OBDDs of polynomial sizeon instances ofI

→ Meta-dichotomyon the connected UCQ6=for which this holds

(61)

Also in paper

• Hardness results for MSOmatch counting:

Count how many subsetsXare such thatIsatisfiesq(X)

• Connect thetractability resultof MSO on treelike TID to the study oftractable lineages:

d-DNNFs, OBDDs, formulae, etc.

• Connect the same result totractability of safe queries:

Inversion-freequeries: subclass of safe queries, tractable OBDDs

We can alwaysrewritetheir input instances totreelike instances in alineage-preservingway (hence, probability-preserving)

(62)

Table of contents

Introduction Proof sketch Extensions Conclusion

(63)

Summary of our dichotomy

Upper. PQE forMSOontreelike instances

haslineardata complexity up to arithmetic costs

Lower. PQE forFOonanyconstructible, arity-2, unbounded-tw instance family is#P-hardunder RP reductions

→ Bounded treewidth isthe right notionfor tractability of PQE

(64)

Summary of our dichotomy

Upper. PQE forMSOontreelike instances

haslineardata complexity up to arithmetic costs Lower. PQE forFOonanyconstructible, arity-2, unbounded-tw

instance family is#P-hardunder RP reductions

→ Bounded treewidth isthe right notionfor tractability of PQE

(65)

Summary of our dichotomy

Upper. PQE forMSOontreelike instances

haslineardata complexity up to arithmetic costs Lower. PQE forFOonanyconstructible, arity-2, unbounded-tw

instance family is#P-hardunder RP reductions

→ Bounded treewidth isthe right notionfor tractability of PQE

(66)

Future work

• Can we show #P-hardness underusual P reductions?

Depends on [Chekuri and Chuzhoy, 2014]

• Can we extend the result toarbitrary aritysignatures?

• Can we extend the result to weakerquery languageslikeUCQ6=? Conjecture

PQE is hard on any constructible unbounded-tw family for: q: (E(x,y)E(y,x))∧(E(y,z)E(z,y))x6=z

This query is alerady hard in terms ofOBDDs

Thanks for your attention!

(67)

Future work

• Can we show #P-hardness underusual P reductions?

Depends on [Chekuri and Chuzhoy, 2014]

• Can we extend the result toarbitrary aritysignatures?

• Can we extend the result to weakerquery languageslikeUCQ6=? Conjecture

PQE is hard on any constructible unbounded-tw family for: q: (E(x,y)E(y,x))∧(E(y,z)E(z,y))x6=z

This query is alerady hard in terms ofOBDDs

Thanks for your attention!

(68)

Future work

• Can we show #P-hardness underusual P reductions?

Depends on [Chekuri and Chuzhoy, 2014]

• Can we extend the result toarbitrary aritysignatures?

• Can we extend the result to weakerquery languageslikeUCQ6=? Conjecture

PQE is hard on any constructible unbounded-tw family for:

q: (E(x,y)E(y,x))∧(E(y,z)E(z,y))x6=z

This query is alerady hard in terms ofOBDDs

Thanks for your attention!

(69)

Future work

• Can we show #P-hardness underusual P reductions?

Depends on [Chekuri and Chuzhoy, 2014]

• Can we extend the result toarbitrary aritysignatures?

• Can we extend the result to weakerquery languageslikeUCQ6=? Conjecture

PQE is hard on any constructible unbounded-tw family for:

q: (E(x,y)E(y,x))∧(E(y,z)E(z,y))x6=z

This query is alerady hard in terms ofOBDDs

Thanks for your attention!

(70)

References I

Amarilli, A., Bourhis, P., and Senellart, P. (2015).

Provenance circuits for trees and treelike instances.

InProc. ICALP, LNCS, pages 56–68.

Chaudhuri, S. and Vardi, M. Y. (1992).

On the equivalence of recursive and nonrecursive Datalog programs.

InPODS.

Chekuri, C. and Chuzhoy, J. (2014).

Polynomial bounds for the grid-minor theorem.

InSTOC.

(71)

References II

Dalvi, N. and Suciu, D. (2012).

The dichotomy of probabilistic inference for unions of conjunctive queries.

JACM, 59(6):30.

Ganian, R., Hlinˇen`y, P., Langer, A., Obdrˇz´alek, J., Rossmanith, P., and Sikdar, S. (2014).

Lower bounds on the complexity of MSO1 model-checking.

JCSS, 1(80).

Robertson, N. and Seymour, P. D. (1986).

Graph minors. V. Excluding a planar graph.

J. Comb. Theory, Ser. B, 41(1).

(72)

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N a b b c c d d e e f

S a c b e

Gaifman graph: a

b

c d

e f

Tree decomp.:

a b c b c e c d e e f

Tree encoding:

N(a1,a2) N(a2,a3) S(a1,a3) S(a2,a4) N(a3,a1) N(a1,a4)

N(a4,a1)

(73)

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N a b b c c d d e e f

S a c b e

Gaifman graph:

a

b

c d

e f

Tree decomp.:

a b c b c e c d e e f

Tree encoding:

N(a1,a2) N(a2,a3) S(a1,a3) S(a2,a4) N(a3,a1) N(a1,a4)

N(a4,a1)

(74)

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N a b b c c d d e e f

S a c b e

Gaifman graph:

a

b

c d

e f

Tree decomp.:

a b c b c e c d e e f

Tree encoding:

N(a1,a2) N(a2,a3) S(a1,a3) S(a2,a4) N(a3,a1) N(a1,a4)

N(a4,a1)

(75)

Encoding treelike instances [Chaudhuri and Vardi, 1992]

Instance:

N a b b c c d d e e f

S a c b e

Gaifman graph:

a

b

c d

e f

Tree decomp.:

a b c b c e c d e e f

Tree encoding:

N(a1,a2) N(a2,a3) S(a1,a3) S(a2,a4) N(a3,a1) N(a1,a4)

N(a4,a1)

(76)

Defining the query

G Ik

1 21 2

• In the embedding, edges ofGcan becomelong pathsinIk

qmust answer the hard problem onGdespite subdivisions

Easy in MSO but tricky inFO!

→ Ourqrestricts to asubset of the worldsof known weight and gives the right answerup to renormalization

(77)

Defining the query

G Ik

1 21 2

• In the embedding, edges ofGcan becomelong pathsinIk

qmust answer the hard problem onGdespite subdivisions

Easy in MSO but tricky inFO!

→ Ourqrestricts to asubset of the worldsof known weight and gives the right answerup to renormalization

Références

Documents relatifs

For example, the function S ⊥ that always returns an empty set of finite po- sitions, WChS(S ⊥ ) is the class of sticky programs, because stickiness must hold no matter what

It is known that large fragments of the class of dense Minimum Constraint Sat- isfaction (MIN-CSP) problems do not have polynomial time approximation schemes (PTASs) contrary to

So, dðÞ is a lower bound on the distance of the resulting permutation and, since dðÞ is also an upper bound on that distance (Lemma 4.2), the proof follows.t u Although we are unable

Blondel and Canterini [1] used undecidability of the halting problem of the Turing machine and proved that the ωPCP is undecidable for instances of size 105, or in short, ωPCP(105)

If the termination problem is undecidable for n-rule semi–Thue sys- tem, then it is undecidable for instances of the PCP size n + 3 whether or not there exists an infinite solution

To counter what had now become a clear and present danger from generic drug-makers, innovator pharmaceutical companies would adopt two paradigms that would

Probabilistic query evaluation of MSO queries on treelike pc-tables is in linear time up to arithmetic operations. “Tree-like” refers to the underlying instance, adding facts

Proof idea: extract instances of a hard problem as topological minors using recent polynomial bounds [Chekuri and Chuzhoy, 2014]..