• Aucun résultat trouvé

Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure

N/A
N/A
Protected

Academic year: 2022

Partager "Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure"

Copied!
8
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Energy and Buildings

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure

Mohamad Ramadan

a,∗

, Thierry lemenand

b

, Mahmoud Khaled

a,c

aEnergyandThermo-FluidGroup,SchoolofEngineering,LebaneseInternationalUniversityLIU,P.O.Box146404,Beirut,Lebanon

bLARISEA7315,ISTIA,UniversityofAngers,Angers,France

cUnivParisDiderot,SorbonneParisCité,InterdisciplinaryEnergyResearchInstitute(PIERI),Paris,France

a r t i c l e i n f o

Articlehistory:

Received8February2016

Receivedinrevisedform26May2016 Accepted6July2016

Availableonline6July2016

Keywords:

Heatrecovery Energymanagement Drainwater Prototype Heattransfer Calculationprocedure

a b s t r a c t

Inthelastdecade,atremendousefforthasbeenmadetofindsolutionspermittingtodecreasethecon- sumptionoffossilenergy.Energyrecoveryisoneoftheemergingsolutions.Itconsistsinrecuperating thewasteenergythatexistsinmanysystemsandreutilizingitinausefulway.Heatrecoveryfromhot waterdrainisoneofenergyrecoverysystemsthatistakingitsreputationnowadaysduetothemajor partoftheelectricbilloccupiedbyheatingdomesticwater.Thispaperreportsacalculationprocedure thatcanbeappliedtomanydrainheatrecoverysystems.Itcanbeutilizedasapre-calculationtoolto evaluateandanalyzedrainheatrecoverysystemsorasanoptimizationtechniquetoenhanceanexisting system.Toproceed,agenericexperimentalsetupisdevisedandaparametricexperimentalanalysisis performedusingthedevelopedsetup.Experimentshaveshownthatthesystemcanconsiderablyincrease thetemperatureofthecoldsupplywaterforsomeconfigurations.Basedonexperimentalresults,many drainsystemscanbepreliminaryevaluatedandanalyzedusinganewsuggestedsystematiccalculation procedurebasedonexperimentallydeterminedparameters.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Thehighdemandonenergyistremendouslyincreasingdueto threemainreasonsthataretheexpansionoftheindustrialdomain, thedepletionofthefuelresourceandtherapidpopulationgrowth.

Hugeeffortsarebeingmadetoovercomethisseverecrisis.Solu- tionscanbeclassifiedintothreecategories:

Usingrenewableenergyresourcessuchaswindenergy[1,2], solarenergy[3,4]andgeothermalenergy[5,6].

Improvingenergymanagement[7,8]whichconsistsinorganiz- ingenergyresourcessothatthelossofenergyisminimizedand theuseofenergyisoptimized.

Developingenergyrecovery[9,10]whichconsistsinrecovering thelostheatinenergysystemsandusingitinotherapplications.

Indeedenergyrecoverymaytakeseveralforms.Themostdevel- opedoneisheatrecovery[11–13]wheretherecoveredenergyis heat.Inotherterms,thelostheatofasystemcanbere-usedas heatsourceforanotherapplication.Heatrecoverystudiescover widerangeofenergydomains.Industrialapplicationsaresourcesof

Correspondingauthor.

E-mailaddresses:dr.ramadan.mohamad@gmail.com, mahmoudkhaled21@hotmail.com(M.Ramadan).

hugeheatlossthatexplainwhymanyworkshaveinvestigatedheat recoveryfromindustrialmachines[14].Heatrecoveryfrominter- nalcombustionengines[15]hasalsobeenstudied.Otherworks concernheatrecoveryinbuildingapplications[16–18].Heating waterinresidentialbuildingrepresentsthehighercontributionin thetotalamountofenergyconsumption.Ontheotherhand,drain waterisarichsourceofheatlossthatcanberecovered.

Inoneofthefirstworksonheatrecoveryfromdrainwater[19], theconsumptionofenergyforwaterheatingisstudiedintermsof thelife-styleofoccupants.Authorsshowedthatanenergysaving upto10%canbeobtainedinsomeconfigurations.Inanotherwork [20],studyofrecoveringheatfromwastewaterindyeingprocessis presentedandenergysavingisreportedbytheauthors.Heatrecov- eryfromdishwashersisinvestigatedin[21].Theauthorspresented anexperimentalstudyandshowedthatthesystemiseconomically beneficial.Recoveringwasteheatfromsystemsusinghotwater suchassauna,tobeusedinaheatpumpasheatsourceisstud- iedand analyzedin[22].Wasteheatrecoveryfromdrainwater inhighrisebuildingisinvestigatedin[23]:ahorizontalcounter flowheatexchangerisutilizedtoextractheatanduseittoheat coldwater.Authorsshowthatbyinstallingheatrecoverysystem upto15%ofthewastewaterheatcanberecovered.Enhancingheat pumpusedinpublicshowerfacilitiesusingheatrecoverysystem andsolarsystemisstudiedin[24].Beforeheatingwaterbyaheat http://dx.doi.org/10.1016/j.enbuild.2016.07.017

0378-7788/©2016ElsevierB.V.Allrightsreserved.

(2)

Fig.1.Drainwaterheatrecoverysystem(DWHRS)workingprinciple.

pump,itisheatedbysolarsystemthenbymeanofheatrecov- erysystem.Itismentionedthatusingsuchasystemreducesthe energyconsumptionaswellasthepollutionlevelandithaslower operatingcost.Heatrecoveryfromhorizontaldrainisinvestigated in[25].Authorsmentionthatusinghorizontalheatrecoverysys- temisapplicableandcanbeefficient; itsefficiencydependson severalfactors.Itisreportedthattheutilizationofsuchasystem reducehighlytheemissionofcarbondioxide.Benntjesetal.[26]

showedthattheeffectivenessofheatrecoverysystemdeceases withtheflowrateandthatthereisacriticalflowratebelowwhich theperformancecannotbeextrapolated.In[27],astudyonverti- calheatrecoverysystemwithheatpumpshowsthatthecontact resistancebetweenthecopperpipesandtheheatresistanceonthe insideofthedrainwaterhasthehighercontributiontotheheat resistance.Ithasbeenshownthatusingsucha heatpump,25%

oftheheatcanberecovered.Afinancialstudyontheutilizationof drainwaterheatrecoverysystemispresentedin[28].Authorspre- sentedamodelallowingestimatingthefinancialefficiencyofthe system.Thestudycoversseveralheatrecoveryconfigurationsand differentinstallationparameters.Utilizationofsewerwaterasheat sourceisstudiedin[29,30]andacasestudyconcerningthecityof Bologna(Italy)isconsidered.Monitoringdataareusedtoobtaina correlationbetweenthewastewaterflowrateanditstemperature.

Parametricstudyondrainwaterheatrecoveryusinginlinevertical heatexchangerforseveralflowscenariosisperformedin[31]:the authorsshowedthattheamountofrecoveredheathighlydepends onthesizingoftheheatrecoverysystem.Heatrecoveryfromwaste wateroftherapysystemsinspaispresentedin[32].Theeffectof theangleoftheheatrecoverysystemwithrespecttothevertical isstudiedin[33]:authorsshowedthattheeffectivenessdecreases whentheanglewithrespecttotheverticalincreases.

Theworkscitedabovecoverawiderangeofapplicationsrelated todrainheatrecovery.Eachstudypresentsananalysisfocusedona specificparameter.However,noneofthesestudiespresentsagen- eralapproachthatcanbeusedasareferencefordrainheatrecovery calculation.Thatiswhyitisessentialtoproposeageneralizedpro- cedureofstudyfordrainheatrecoverysystemthatcanbeadopted independentlyfromtheconfiguration,theapplicationandthesys- temparameters.Inthiscontext,thispaperpresentsacalculation procedurethatmaybeappliedtogenerallymanydrainheatrecov- erysystemsprovidingthatsomepreliminarytestsaredoneforthe drainsystemconsideredandforcorrespondingrealscenarios.Itcan beutilizedasapre-calculationtooltoevaluatedrainheatrecov- erysystemsorasanoptimizationtechniquetoenhanceanexisting system.

Theoriginalityofthepresentworkresidesinthegenericexper- imentalsetupdevelopedandtheanalysisperformedbasedonthe obtainedresults. Moreover,theexperimentalanalysis wasper- formedinsuchawaythathaspermittosuggestanewsystematic calculationprocedureinordertoevaluateandanalyzedrainheat recoverysystemsbasedonpreliminaryexperimentaltests.

Theremainingofthispaperiscomposedoffourparts.Parttwo isdedicatedtopresenttheexperimentalapproach.Inpartthree,

resultsarediscussed.Newcalculationprocedureispresentedin partfourandfinallypartfiveisreservedtotheconclusions.

2. Materialsandmethods

In this section, the principle of the heat recovery concept (Section2.1), theprototypeimplemented(Section2.2), andthe experimentalsetup(Section2.3)arepresented.

2.1. Principle

Theprincipleofthedrainwaterheatrecoverysystem(DWHRS) consistsin heating/preheatingthesupplywater beforeitenters thewaterheater,bytheheatcontainedinthedrainwater.Indeed, thewatertemperatureafteranydrainagetypeisrelativelyhigh.In othertermsthedrainwatertemperatureisclearlyhigherthanthe watersupplytemperaturewhichmaybebelow5Cincoldregions.

Froma heattransfer pointof view,thistemperature difference betweenthedrainwaterandthesupplywatermaybetransformed toaheatratethatcanheatthesupplywater.TheDWHRS(Fig.1) canbeviewedasaheatexchanger,inwhichthehotfluidisthe drainwaterandthecoldfluidisthesupplywater.Severaltypes of(DWHRS)canbeobtainedaccordingtotheheatexchangertype whichistheheartofthesystem.Themostcommonlyusedheat exchangersarethecoiledandconcentrictubeheatexchangersthat areusedinthisstudy.

2.2. Prototype

Tostudytheheatrecoveryfromdrainagesystemandanalyzeits performance,aprototypeisconstructed,asshownschematicallyin Fig.2.

Theprototypeiscomposedoffivemainparts:watersupplytank, waterpump,drainbox,electricheater,andcoiledheatexchanger.

Thewatersupplytankisaplastictankof60Lvolume,utilizedto supplythesystem.Thewaterpumpinsuresthenecessarywater pressuresothatwaterflowsinthesystem.Acontrolvalveisused

Fig.2.Schematicoftheconstructedprototype.

(3)

Fig.3.Glassboxsimulatingthedrainagetyperegion.

Fig.4.Coiledheatexchangerusedintherecoverysystem.

directlydownstreamofthepumpinordertocontrolaprescribed flowrateinthecircuit.

Thedrainboxrepresentstheregionofagiventypeofdrainage carryingthehotwaterbeforeitsdrainage.Asillustration,thisbox canbeashowerchamber,asink,adishwasher,awashingmachine, etc.Itconsistsofaglassbox(Fig.3)of3mmthicknessfixedby aluminumrodsatitscorners.Ithasalengthandwidthof40cm,a heightof60cmandatotalsurfaceareaof1.28m2.

Aninsulatedboilerof50Lsizeisusedtoheatthewaterafter passingthroughtheheatexchangertube.Thecoiledheatexchanger isconstructedusingasinglecoppercoilof12.7mminnerdiameter and0.6mmthicknesswrappedaroundacircularcopperpipeof 41.3mminnerdiameter,1.2mmthicknessanda70cmlength,as showninFig.4.Thecircularcopperpipeservesasdrainagepipeand isconnecteddirectlytothedrainageboxbase.Fiberglassinsulation of37.5mmthicknessisutilizedtoreduceheatlosses.

2.3. Experimentalsetup

Inordertotestthethermalperformanceofthesystem,mea- surementsoftemperaturesandflowratesarerequired.FourK-type thermocouplesareusedtomeasuretemperaturesTc,iandTc,oat respectivelytheinletandoutletofthecoiledsupplypipe(coldside oftheexchanger)and Th,i and Th,o atrespectivelytheinletand outletofthedrainagepipe(hotsideoftheexchanger).

Waterflowrates aremeasuredusing thestopwatchmethod tofillagiventankvolume.Themassflowrateisthencalculated accordingtothefollowingrelation:

m˙ =V

t (1)

whereisthewaterdensity,V thefilledvolumeandtthetime requiredtofillthevolumeV.Whenthedifferenttemperaturesand flowratesaremeasuredforagiventestedconfiguration,different performanceparametersoftherecoverysystemcanbecalculated.

Therecoveredheatcanbecalculatedfromthefollowingrelation:

R=m˙cCp,c

Tc,o−Tc,i

(2) where ˙mcandCp,carerespectivelythemassflowrateandspecific heatofthecoldwater(waterfromthesupplytank).

Theefficiencyoftherecoverysystem,whichrepresentsthe abilityofthesystemtoavoidwastingenergy,isdefinedastheratio oftheheatrecoveredbythecoldwaterovertheheatlostbythe hotwater:

= Q˙R

hCp,h

Th,i−Th,o

(3)

where ˙mhandCp,harerespectivelythemassflowrateandspecific heatofthehotwater(waterfromthedrain).

Theeffectivenessεofthesystemwhichrepresentsameasure- mentoftheperformance oftheheatexchangerwhenusingthe NTUmethod[34]isdefinedastheratiooftheheatrecoveredby thecoldwateroverthemaximumpossibleheattransferthatcan behypotheticallyachievedin acounter-flowheat exchangerof infinitelength,calculatedfromthefollowingrelation:

ε= Q˙R

hCp,h

Th,i−Tc,i

(4)

InEq.(4),thehotsideisconsideredintheidealcasesincethe massflowrateinthehotsideisexpectedtobelowerthaninthe coldsideduetowaterlossesduetowalladhesioninthedrainage box.

Threesetsofexperimentsarecarriedout.Thefirstsetofexper- imentscorresponds to differentinlet cold temperatures(water supplytank)varyingfrom3.2Cto22.4Cwithafixedhotinlet temperatureof70Candacoldflowrateof0.146kg/s(thehotflow rateisspecifiedfurtherinthepaper).Thedifferentcoldtempera- turesareobtainedbyinitiatingatemperatureof3.2Cbyadding icestothecoldsupplytankandperformingsuccessivemeasure- mentswhenicesmelt.

Thesecondsetofexperimentsisperformedfordifferentcold waterflowrates(whichimpliesdifferentvaluesofhotflowrates) varyingfrom0.058kg/sto0.146kg/s.

Thethirdsetiscarriedoutfordifferenthotinlettemperatures varyingfrom40Cto80C.Thecoldinlettemperatureisrecorded foreachconfigurationofsettwoandthreeandrangesfrom25C to40C.

3. Resultsandanalysis

Inthissection,thedifferentresultsobtainedaswellasthecorre- spondingobservationsandanalysiswillbepresented.Fig.5shows thevariationofthehotwaterflowrate(hotwatertofallinthe drainage)infunctionofthecoldwaterflowrate(waterfromthe watersupplytank).

FromFig.5a,itcanbenoticedthatthehotflowrateislowerthan thecoldflowrate.Asillustrationforacoldflowrateof0.146kg/s, thehotflowrateis0.122kg/s.Thismeansthat0.024kg/sarelostin thedrainboxduetoadhesionofwaterontheinnerwalls.Theper- centageofhotwatertothecoldwaterflowrate(Fig.5b)isalmost around81%–85%.Itshouldbenoticedthatgiventhepercentage ofhotflowratetocoldflowrate,aconsiderabletimewastaken betweentwoconsecutivetestsinordertohavesufficientdryingof theinnerwallofthedrainbox.

Fig.6showsthevariationoftheheatrecoveredinthesystemin functionofthecoldinlettemperature(Eq.(2)).Itisshownthatthe

(4)

0.04 0.06 0.08 0.10 0.12 0.14

0.05 0.07 0.09 0.11 0.13 0.15

Hot flow rat e (kg/ s)

Cold flow rat e (kg /s) (a)

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

0.05 0.07 0.09 0.11 0.13 0.15

Hot flow rat e (%)

Cold flow r ate (kg /s) (b)

Fig.5.Variationof(a)hotwaterflowrateand(b)percentageofhotwaterflowrate intermsofthecoldwaterflowrate.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

2 4 6 8 10 12 14 16 18 20 22 24

Recovered heat (kW)

Cold inlet temperature (0C)

Fig.6.Heatrecoveredinfunctionofthecoldinlettemperature.

heatrecovereddecreasesquasi-linearlyasthecoldinlettemper- atureincreases.Asillustration,theheatrecovereddecreasesfrom 8.24kWto2.62kWwhenthecoldinlettemperatureincreasesfrom 3.2Cto22.4C.

Toinvestigatedeepertheperformanceofthesysteminrelation withthecoldtemperature,theefficiencyandeffectiveness(Eqs.

(2)–(4))areplottedinFig.7.Itcanbeshownthatwhenthecold inlettemperatureincreases,theefficiencyandtheeffectiveness decreasealmostlinearly.Asillustrationwhenthecoldinlettemper- atureincreasesfrom3.2Cto22.4C,theefficiencydecreasesfrom around100%to47%andtheeffectivenessdecreasesfromaround

Fig.7. Variationof(a)efficiencyand(b)effectivenessoftherecoverysystemin functionofthecoldinlettemperature.

26%to12%.Itisstrikingtonotethateveniftheefficiencyandthe effectivenessdonotrepresentthesameresult,indeedthequanti- tativevaluesaretotallydifferent,theevolutionofthecurvesof andεareverysimilarand,aboveall,ineachcase,thefinalvalueis around46–47%oftheinitialvalue.

Waterflowingfromtheboilertotheinletofthedrain(inletof theheatexchangerhotside)losesheatduetolossofflowrateand coolingduetocontactwiththeinnerwallsofthedrainbox.The lostheatcanbecalculatedasthedifferenceofenergyratebetween theoutletoftheboilerandtheinletofthedrain:

L=m˙cCp,cTb,o−m˙hCp,hTh,i (5) whereTb,oisthetemperatureofwaterattheboileroutlet.

Theratioofthelostheatcanbecalculatedas:

L

b,o =m˙cCp,cTb,o−m˙hCp,hTh,i

cCp,cTb,o (6)

with ˙Qb,otheheatattheoutletoftheboiler.

Fig.8showsthevariationofthelostheat ˙QLandthepercentage oflostheat ˙QL/Q˙b,oinfunctionofthehotinlettemperaturefor differentcoldwaterflowrates.

Itcanbeshownthatlossesincreasewiththeboileroutlettem- perature.Asillustration foracoldwaterflowrateof0.058kg/s, lossesincreasefrom11kWto12.8kWastheboiler outlettem- peratureincreasesfrom40Cto80C.Forflowratesof0.097kg/s and0.146kg/s,lossesarerespectivelyfrom25.1kWto29.3kWand

(5)

(a)

(b)

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0

40 50 60 70 80

Losses QL(kW)

Boiler outlet temperature (C)

Flow rate = 0. 058 kg/s Flow rate = 0. 097 kg/s Flow rate = 0. 146 kg/s

0.0 5.0 10.0 15.0 20.0

40 50 60 70 80

Losses QL/Qb,o(%)

Boiler outlet temperature (C)

Flow rate = 0. 058 kg/s Flow rate = 0. 097 kg/s Flow rate = 0. 146 kg/s .

. .

Fig.8.Variationof(a)lossesand(b)percentageoflossesinfunctionoftheboiler outlettemperaturefordifferentcoldflowrates.

from32.9kWto37.8kW,fortheboileroutlettemperaturesvarying from40Cto80C.

Thepercentageofheatlost(Fig.8b)increaseswhentheflow rateincreasesfrom0.058kg/sto0.097kg/s,thenitdecreasesfor higherflowrates.Asillustration,theaveragepercentagescorre- spondingtoflowratesof0.058kg/s,0.097kg/s,and0.146kg/sare respectively14.7%,20.2%and17.4%.

Fig.9showsthevariationoftherecoveredheatinfunctionof thecoldflowrateandboileroutlettemperature.

Itcanbeshownthattherecoveredheatincreaseswiththeboiler outlettemperature.Asillustrationforacoldflowrateof0.058kg/s, therecoveredheatincreasesfrom0.05kWto2.42kWastheboiler outlettemperatureincreasesfrom40Cto80C.Forflowratesof 0.097kg/sand0.146kg/s,therecoveredheatincreasesrespectively from0.36kWto4.77kWandfrom0.55kWto5.31kW.

Foraboilertemperatureof50C,therecoveredheatincreases from0.24kWto1.46kWasthecoldwaterflowrateincreasesfrom 0.058kg/sto0.146kg/s.Foraboileroutlettemperatureof70C, therecoveredheat increasesfrom1.58kWto3.91kW.Whatis strikingfromFig.9bisthefactthattherecoveredheatincreases highlywhentheflowrateincreasesfrom0.058kg/sto0.097kg/s, butseemstoreachaplateaubeyondthisvalue.

Theeffectsofthecoldflowrateandboileroutlettemperature ontheeffectivenessoftheexchangeroftherecoverysystemare showninFig.10.

Itcanbeshownthattheexchangereffectivenessincreaseswith theboileroutlettemperature.Asillustrationforacoldflowrateof

(a)

(b) .

0.00 1.00 2.00 3.00 4.00 5.00 6.00

40 50 60 70 80

Heat recovered QR(kW)

Boiler outlet temperature (0C) Flow rate = 0.058 kg/s

Flow rate = 0.097 kg/s

Flow rate = 0.146 kg/s

0.00 1.00 2.00 3.00 4.00 5.00 6.00

0.058 0.078 0.098 0.118 0.138

Heat recovered QR(kW)

Cold flow rate (kg/s) Tb,o = 40 °C Tb,o = 50 °C Tb,o = 60 °C Tb,o = 70 °C

Tb,o = 80 °C

.

Fig.9.Variationofrecoveredheat(a)infunctionoftheboileroutlettemperature fordifferentcoldflowratesand(b)infunctionofthecoldflowratefordifferent boileroutlettemperatures.

0.058kg/s,theeffectivenessincreasesfrom2%to23%astheboiler outlettemperatureincreasesfrom40Cto80C.Forflowratesof 0.097kg/sand0.146kg/s,theeffectivenessincreasesrespectively from9%to30%andfrom10%to21%.

FromFig.10b,itcanbeshownthattheeffectivenesscurvesreach maximaintheirvariationswithrespecttothecoldmassflowrate.

Toexemplifyforaboileroutlettemperatureof60C,theeffective- nessincreasesfrom16%to22%whenthewaterflowrateincreases from0.058kg/sto0.097kg/sandthendecreasesto16%whenthe coldflowrateincreasesfrom0.097kg/sto0.146kg/s.

4. Newcalculationprocedure

Basedonmanyfeaturesoftheresultsshownintheprevioussec- tion,anewprocedureofcalculationsthatpermitstoestimatethe performanceofarecoverysystemappliedtoanysystemofdrains and usinganyheatexchangertype willbepresentedhereafter.

Thisprocedurereliesonsomescenariosrelatedtotheoperational modeofagiventypeofdrain.Fig.11showstheflowchartofthe calculationprocedure.

Asshown inFig.11, theinputs tothecalculationprocedure arethewaterflowratefromthesupplytankthatthedrainsys- tem(showerchamber,sink,dishwasher,washingmachine,etc.) requires,thewatertemperaturein thesupply tankandthehot temperaturerelatedtothesystemmode(forexamplewaterheater temperatureinshowerapplication).Thecalculationprocedurewill

(6)

(b)

0 5 10 15 20 25 30 35

40 50 60 70 80

Effectiveness (%)

Boiler outlet temperature (0C)

Flow rate = 0. 058 kg/s

Flow rate = 0. 097 kg/s Flow rate = 0. 146 kg/s

(a)

0 5 10 15 20 25 30

0.058 0.078 0.098 0.118 0.138

Effectiveness (%)

Cold flow rate (kg/s)

Tb,o = 40 °C Tb,o = 50 °C Tb,o= 60 °C Tb,o = 70 °C Tb,o = 80 °C

Fig.10.Variationoftheexchangereffectiveness(a)infunctionoftheboileroutlet temperaturefordifferentcoldflowratesand(b)infunctionofthecoldflowratefor differentboileroutlettemperatures.

estimateseveralparameters,mainlytherecoveredheatandthe powerconsumptionreduction.

Step1:Fromthecoldmassflowrate ˙mc,thehotmassflowrate m˙hcanbecalculatedfromthefollowingrelation:

h=R1c (7)

whereR1 isaratiothatcanbeobtainedfrompreliminarymea- surementsforagivendrainsystemandwhichisfunctionofthe operationalmodescenario.AsillustrationfromFig.4b,thisratiois around81%to86%.

Step2:Thetemperatureofhotwaterattheheatexchangerinlet canbecalculatedfromEq.(6)rearrangedinadifferentmanneras follows:

Th,i=Tb,oRC

R1(1−R2) (8)

whereRC=Cp,c/Cp,h istheratioof thespecificheatofthecold watertothatofhotwaterandR2=Q˙L/Q˙b,otheratiooftherate ofenergylostinthedrainsystemtotherateofabsoluteenergy containedinthewateratthehotwatersystemofthedrainbefore enteringthedrainitself.

Fortherangesoftemperaturesofcoldandhotwaterforthemost commontypesofdrain,theratioRCisalmostequalto1.TheratioR2

isalsoaratiothatcanbeobtainedfrompreliminarymeasurements foragivendrainsystemandisfunctionoftheoperationalmode scenario.AsillustrationfromFig.7b,thisratioisaround14%–21%.

Step3:Fromcurvesofeffectivenessandefficiencyobtainedon theheatexchangerseparatelyfromthesystemandfordifferent coldandhottemperaturesanddifferentwaterflowrates,theeffec- tivenessandefficiencyoftheheatexchangerunderconsideration intherecoverysystemcanbeobtained.Itshouldbenoticedfrom theexperimentalanalysisperformedintheprevioussectionthat theeffectivenessoftheexchangerincreasesquasi-linearlywiththe differenceintemperaturebetweentheinlethotandcoldtempera- turesandincreasesexponentiallywiththeflowrateuptoacertain valuefromwhichitstartstodecrease.

Step4:Therateofheatexchangedinthesystemwhichcorre- spondstotherecoveredheatcanthenbecalculatedasfollows:

R=εm˙hCp,h

Th,i−Tc,i

(9) Step5:Thecoldwateroutlettemperaturewhichcorresponds tothetemperatureattheinletoftheheatingsystemofthedrain typeunderconsiderationcannowbecalculated:

Tc,o=Tc,i+ Q˙R

cCp,c (10)

Step6:Therateofenergyconsumedbytheheatingsystemof thedraintypecannowbecalculated:

heating=m˙cCp,c

Tb,o−Tc,o

(11) Step7:Thepowerconsumptionreduction(PCR)obtainedwith theinstallationoftherecoverysystemcanbeobtainedfrom:

PCR= Q˙R

R+Q˙Heating (12)

Step8:Thehotwateroutlettemperaturewhichcorrespondsto thetemperatureofwaterthatwillbedischargedinthefinaldrain canalsobecalculatedfrom:

Th,o=Th.i− Q˙R

hCp,h (13)

Theprocedurepresentedabovecanbeappliedtoanytypeof heatrecoverysystemfromanytypeofhotdrainsystemtoestimate parametersrelatedtotheperformanceoftherecoveryconcept.This procedurenecessitates preliminarymeasurements ona generic experimentalsetupsuchasthatpresentedaboveinthismanuscript toobtainsomekeyparametersandratiosthatareusedinthedif- ferentstepsofcalculations.

5. Conclusions

Recoveringthewasteheatfromsystemsutilizedinthedailylife isasolutiontodecreasethedomesticenergyconsumption.Inthis paper,recoveringheatfromhotdrainwaterisinvestigated.Particu- larly,agenericexperimentalsetupisdevelopedandanappropriate experimentalparametricanalysisiscarriedout.

Intheparametricanalysis,itwasparticularlyfoundthat:

(1)Around15%ofthewaterflowratecanbelost,i.e.notavailable inthesystemdrainagebox;

(2)The effectiveness and efficiency of the recovery system decreasewiththecold inlettemperature.Thisdecreasecan reach50%for20Cdifference;

(3)Around15–20%oftheheatofwaterattheboileroutletarelost inthesystemdrainagebox;

(4)Theexchanger effectivenessincreaseswiththeboileroutlet temperature.Asillustrationforacoldflowrateof0.058kg/s, theeffectivenessincreasesfrom2%to23%astheboileroutlet temperatureincreasesfrom40Cto80C.

(5)Theeffectivenesscurvesreachmaximaintheirvariationswith respecttothecoldmassflowrate.Toexemplifyforaboiler

(7)

Cold water Flow rate

Cold water (supply) inlet temperature

m

c

T

c,i

Calculation procedure

Ratio of flow rates R1 Ratio of energy lost R2 Effectiveness Efficiency Drain system type

Operational mode scenario

Hot temperature of system mode

Preliminar y tests

o

T

b,

Hot water flow rate

m

h Eq. 7

Eq. 8 Hot water inlet temperature

Effectiveness Exp.

Curves

Recovered heat

Cold water outlet temperature

Energy rate of heating system

Power consumption reduction

Cold water outlet temperature i

T

h,

Q

R

o

T

c,

heating

Q

PCR

o

T

h, Eq. 9

Eq. 10

Eq. 11

Eq. 12

Eq. 13

1

2

3

4

5

6

7

8 Fig.11.Flowchartofthecalculationprocedure.

outlettemperatureof60C,theeffectivenessincreasesfrom 16%to22%whenthewaterflowrateincreasesfrom0.058kg/s to0.097kg/sandthendecreasesto16%whenthecoldflowrate increasesfrom0.097kg/sto0.146kg/s.

Finally and based onthe parametric analysisshown, a new designapproachconsistingofasystematiccalculationprocedure waspresented.Itcanbeutilizedasapre-calculationtooltosize drainheatrecoverysystemsorasanoptimizationtechniqueto enhanceanexistingsystem.Itwasshownthatanydrainsystemcan bepreliminarysizedusingthenewsuggestedsystematicapproach basedonexperimentallydeterminedparameters.

References

[1]B.Wang,L.D.Cot,L.Adolphe,S.Geoffroy,J.Morchain,Estimationofwind energyoverroofoftwoperpendicularbuildings,EnergyBuild.88(2015) 57–67.

[2]L.Lu,K.Sun,Windpowerevaluationandutilizationoverareferencehigh-rise buildinginurbanarea,EnergyBuild.68(2014)339–350.

[3]E.Shojaeizadeh,F.Veysi,A.Kamandi,Exergyefficiencyinvestigationand optimizationofanAl2O3—waternanofluidbasedflat-platesolarcollector, EnergyBuild.101(2015)12–23.

[4]S.Tamvakidis,V.K.Firfiris,A.Martzopoulou,V.P.Fragos,T.A.Kotsopoulos, Performanceevaluationofahybridsolarheatingsystemforfarrowing houses,EnergyBuild.97(2015)162–174.

[5]N.Naili,M.Hazami,I.Attar,A.Farhat,Assessmentofsurfacegeothermal energyforairconditioninginnorthernTunisia:directtestanddeploymentof groundsourceheatpumpsystem,EnergyBuild.111(2016)207–217.

[6]A.Kecebas,C.Coskun,Z.Oktay,A.Hepbasli,Comparingadvancedexergetic assessmentsoftwogeothermaldistrictheatingsystemsforresidential buildings,EnergyBuild.81(2014)141–151.

[7]C.R.Touretzky,M.Baldea,Ahierarchicalschedulingandcontrolstrategyfor thermalenergystoragesystems,EnergyBuild.110(2016)94–107.

[8]M.Ameri,Z.Besharati,Optimaldesignandoperationofdistrictheatingand coolingnetworkswithCCHPsystemsinaresidentialcomplex,EnergyBuild.

110(2016)94–107.

[9]S.Delfani,H.Pasdarshahri,M.Karami,Experimentalinvestigationofheat recoverysystemforbuildingairconditioninginhotandhumidareas,Energy Build.49(2012)62–68.

[10]Y.ElFouih,P.Stabat,P.Rivière,P.Hoang,V.Archambault,Adequacyof air-to-airheatrecoveryventilationsystemappliedinlowenergybuildings, EnergyBuild.54(2012)29–39.

[11]M.S.Todorovic,J.T.Kim,Insearchforsustainablegloballycost-effective energyefficientbuildingsolarsystem—heatrecoveryassistedbuilding integratedPVpoweredheatpumpforair-conditioning,waterheatingand watersaving,EnergyBuild.85(2014)346–355.

[12]J.Jia,W.L.Lee,Applyingstorage-enhancedheatrecoveryroom

air-conditioner(SEHRAC)fordomesticwaterheatinginresidentialbuildings inHongKong,EnergyBuild.78(2014)132–142.

(8)

[13]S.Gendebien,S.Bertagnolio,V.Lemort,Investigationonaventilationheat recoveryexchanger:modelingandexperimentalvalidationindryand partiallywetconditions,EnergyBuild.54(2012)29–39.

[14]S.Garimella,Low-gradewasteheatrecoveryforsimultaneouschilledandhot watergeneration,Appl.Therm.Eng.42(2012)191–198.

[15]B.Peris,J.Navarro-Esbri,F.Molès,BottomingorganicRankinecycle configurationstoincreaseinternalcombustionenginespoweroutputfrom coolingwaterwasteheatrecovery,Appl.Therm.Eng.61(2013)364–371.

[16]J.White,M.C.Gillott,C.J.Wood,D.L.Loveday,K.Vadodaria,Performance evaluationofamechanicallyventilatedheatrecovery(MVHR)systemaspart ofaseriesofUKresidentialenergyretrofitmeasures,EnergyBuild.110 (2016)220–228.

[17]M.Kassai,M.R.Nasr,C.J.Simonson,Adevelopedproceduretopredictannual heatingenergybyheat-andenergy-recoverytechnologiesindifferent climateEuropeancountries,EnergyBuild.109(2015)267–273.

[18]J.Zhang,A.S.Fung,S.Jhingan,Analysisandfeasibilitystudyofresidential integratedheatandenergyrecoveryventilatorwithbuilt-ineconomizer usinganexcelspreadsheetprogram,EnergyBuild.75(2014)430–438.

[19]J.E.Smith,Recoveryandutilisationofheatfromdomesticwastewater,Appl.

Energy1(1975)205–214.

[20]S.Kannoh,Heatrecoveryfromwarmwastewateratdyeingprocessby absorptionheatpump,J.HeatRecoverySyst.2(1982)443–451.

[21]M.DePaepe,E.Theuns,S.Lenaers,J.VanLoon,Heatrecoverysystemfor dishwashers,Appl.Therm.Eng.23(2003)743–756.

[22]N.C.Baek,U.C.Shin,J.H.Yoon,Astudyonthedesignandanalysisofaheat pumpheatingsystemusingwastewaterasaheatsource,Sol.Energy78 (2005)427–440.

[23]L.T.Wong,K.W.Mui,Y.Guan,Showerwaterheatrecoveryinhigh-rise residentialbuildingsofHongKong,Appl.Energy87(2010)703–709.

[24]L.Liu,L.Fu,Y.Jiang,Applicationofanexhaustheatrecoverysystemfor domestichotwater,Energy35(2010)1476–1481.

[25]A.McNabola,K.Shields,Efficientdrainwaterheatrecoveryinhorizontal domesticshowerdrains,EnergyBuild.59(2013)44–49.

[26]I.Beentjes,R.Manouchehri,M.R.Collins,Aninvestigationofdrain-side wettingontheperformanceoffallingfilmdrainwaterheatrecoverysystems, EnergyBuild.82(2014)660–667.

[27]J.Wallin,J.Claesson,Investigatingtheefficiencyofaverticalinlinedrain waterheatrecoveryheatexchangerinasystemboostedwithaheatpump, EnergyBuild.80(2014)7–16.

[28]D.Slys,S.Kordana,Financialanalysisoftheimplementationofadrainwater heatrecoveryunitinresidentialhousing,EnergyBuild.71(2014)1–11.

[29]S.S.Cipolla,M.Maglionico,Heatrecoveryfromurbanwastewater:analysisof thevariabilityofflowrateandtemperature,EnergyBuild.69(2014)122–130.

[30]S.S.Cipolla,M.Maglionico,Heatrecoveryfromurbanwastewater:analysisof thevariabilityofflowrateandtemperatureinthesewerofbolognaItaly, EnergyProcedia82(2014)660–667.

[31]J.Wallin,J.Claesson,Analyzingtheefficiencyofaheatpumpassisteddrain waterheatrecoverysystemthatusesaverticalinlineheatexchanger,Sustain.

EnergyTechnol.Assess.8(2014)109–119.

[32]R.Manouchechri,C.J.Banister,M.R.Collins,Impactofsmalltiltanglesonthe performanceoffallingfilmdrainwaterheatrecoverysystems,EnergyBuild.

102(2015)181–186.

[33]R.Amon,M.Maulhardt,T.Wong,D.Kazama,C.W.Simmons,Wasteheatand waterrecoveryopportunitiesinCaliforniatomatopasteprocessing,Appl.

Therm.Eng.78(2015)525–532.

[34]F.P.Incropera,D.P.DeWitt,FundamentalsofHeatandMassTransfer,John WileyandSons,2011.

Références

Documents relatifs

Variation of recovered heat (a) in function of the boiler outlet temperature for different cold flow rates and (b) in function of the cold flow rate for different boiler

In Figure 7A, the profiles of the dimensionless water vapor concentration in the lumen, during inspiration and expiration, are presented for three values of Re insp 1 /β

A mathematical model, based on the energy conservation equations was developed to predict the variation of the three principal parameters, temperature of two PCMs, heat

As the main result of this paper, we employ equality (1.4) to show that in the case of radial functions the answer to W 1,1 -problem is positive (Theorem 3.12).. Even in this case,

The mucosal predominance of this antibody isotype depends on a cooperation between local plasma cells that produce polymeric IgA (pIgA) and mucosal epithe- lial cells that express

In conclusion, the measurements in low gravity of the temperature evolution of gas and liquid phases near the CP during positive quenches highlight the key role of the

In this work, the heat exchange service parameter data from the phosphoric acid concentration loop allows the predictive models of the specific exchange coefficient to

Key words : One phase Stefan problem, free moving boundary, inverse problem, feedback control, convex functions, regularization