• Aucun résultat trouvé

Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure

N/A
N/A
Protected

Academic year: 2021

Partager "Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-02525529

https://hal.univ-angers.fr/hal-02525529

Submitted on 31 Mar 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Recovering heat from hot drain water-Experimental evaluation, parametric analysis and new calculation

procedure

Mohamad Ramadan, Thierry Lemenand, Mahmoud Khaled

To cite this version:

Mohamad Ramadan, Thierry Lemenand, Mahmoud Khaled. Recovering heat from hot drain water-

Experimental evaluation, parametric analysis and new calculation procedure. Energy and Buildings,

Elsevier, 2016, 128, pp.575-582. �10.1016/j.enbuild.2016.07.017�. �hal-02525529�

(2)

ContentslistsavailableatScienceDirect

Energy and Buildings

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / e n b u i l d

Recovering heat from hot drain water—Experimental evaluation, parametric analysis and new calculation procedure

MohamadRamadana,∗,Thierrylemenandb,MahmoudKhaleda,c

aEnergyandThermo-FluidGroup,SchoolofEngineering,LebaneseInternationalUniversityLIU,P.O.Box146404,Beirut,Lebanon

bLARISEA7315,ISTIA,UniversityofAngers,Angers,France

cUnivParisDiderot,SorbonneParisCité,InterdisciplinaryEnergyResearchInstitute(PIERI),Paris,France

a r t i c l e i n f o

Articlehistory:

Received8February2016

Receivedinrevisedform26May2016 Accepted6July2016

Availableonline6July2016

Keywords:

Heatrecovery Energymanagement Drainwater Prototype Heattransfer Calculationprocedure

a b s t r a c t

Inthelastdecade,atremendousefforthasbeenmadetofindsolutionspermittingtodecreasethecon- sumptionoffossilenergy.Energyrecoveryisoneoftheemergingsolutions.Itconsistsinrecuperating thewasteenergythatexistsinmanysystemsandreutilizingitinausefulway.Heatrecoveryfromhot waterdrainisoneofenergyrecoverysystemsthatistakingitsreputationnowadaysduetothemajor partoftheelectricbilloccupiedbyheatingdomesticwater.Thispaperreportsacalculationprocedure thatcanbeappliedtomanydrainheatrecoverysystems.Itcanbeutilizedasapre-calculationtoolto evaluateandanalyzedrainheatrecoverysystemsorasanoptimizationtechniquetoenhanceanexisting system.Toproceed,agenericexperimentalsetupisdevisedandaparametricexperimentalanalysisis performedusingthedevelopedsetup.Experimentshaveshownthatthesystemcanconsiderablyincrease thetemperatureofthecoldsupplywaterforsomeconfigurations.Basedonexperimentalresults,many drainsystemscanbepreliminaryevaluatedandanalyzedusinganewsuggestedsystematiccalculation procedurebasedonexperimentallydeterminedparameters.

©2016ElsevierB.V.Allrightsreserved.

1. Introduction

Thehighdemandonenergyistremendouslyincreasingdueto threemainreasonsthataretheexpansionoftheindustrialdomain, thedepletionofthefuelresourceandtherapidpopulationgrowth.

Hugeeffortsarebeingmadetoovercomethisseverecrisis.Solu- tionscanbeclassifiedintothreecategories:

Usingrenewableenergyresourcessuchaswindenergy[1,2], solarenergy[3,4]andgeothermalenergy[5,6].

Improvingenergymanagement[7,8]whichconsistsinorganiz- ingenergyresourcessothatthelossofenergyisminimizedand theuseofenergyisoptimized.

Developingenergyrecovery[9,10]whichconsistsinrecovering thelostheatinenergysystemsandusingitinotherapplications.

Indeedenergyrecoverymaytakeseveralforms.Themostdevel- opedoneisheatrecovery[11–13]wheretherecoveredenergyis heat.Inotherterms,thelostheatofasystemcanbere-usedas heatsourceforanotherapplication.Heatrecoverystudiescover widerangeofenergydomains.Industrialapplicationsaresourcesof

Correspondingauthor.

E-mailaddresses:dr.ramadan.mohamad@gmail.com, mahmoudkhaled21@hotmail.com(M.Ramadan).

hugeheatlossthatexplainwhymanyworkshaveinvestigatedheat recoveryfromindustrialmachines[14].Heatrecoveryfrominter- nalcombustionengines[15]hasalsobeenstudied.Otherworks concernheatrecoveryinbuildingapplications[16–18].Heating waterinresidentialbuildingrepresentsthehighercontributionin thetotalamountofenergyconsumption.Ontheotherhand,drain waterisarichsourceofheatlossthatcanberecovered.

Inoneofthefirstworksonheatrecoveryfromdrainwater[19], theconsumptionofenergyforwaterheatingisstudiedintermsof thelife-styleofoccupants.Authorsshowedthatanenergysaving upto10%canbeobtainedinsomeconfigurations.Inanotherwork [20],studyofrecoveringheatfromwastewaterindyeingprocessis presentedandenergysavingisreportedbytheauthors.Heatrecov- eryfromdishwashersisinvestigatedin[21].Theauthorspresented anexperimentalstudyandshowedthatthesystemiseconomically beneficial.Recoveringwasteheatfromsystemsusinghotwater suchassauna,tobeusedinaheatpumpasheatsourceisstud- iedand analyzedin[22].Wasteheatrecoveryfromdrainwater inhighrisebuildingisinvestigatedin[23]:ahorizontalcounter flowheatexchangerisutilizedtoextractheatanduseittoheat coldwater.Authorsshowthatbyinstallingheatrecoverysystem upto15%ofthewastewaterheatcanberecovered.Enhancingheat pumpusedinpublicshowerfacilitiesusingheatrecoverysystem andsolarsystemisstudiedin[24].Beforeheatingwaterbyaheat http://dx.doi.org/10.1016/j.enbuild.2016.07.017

0378-7788/©2016ElsevierB.V.Allrightsreserved.

(3)

576 M.Ramadanetal./EnergyandBuildings128(2016)575–582

Fig.1.Drainwaterheatrecoverysystem(DWHRS)workingprinciple.

pump,itisheatedbysolarsystemthenbymeanofheatrecov- erysystem.Itismentionedthatusingsuchasystemreducesthe energyconsumptionaswellasthepollutionlevelandithaslower operatingcost.Heatrecoveryfromhorizontaldrainisinvestigated in[25].Authorsmentionthatusinghorizontalheatrecoverysys- temisapplicableandcanbeefficient; itsefficiencydependson severalfactors.Itisreportedthattheutilizationofsuchasystem reducehighlytheemissionofcarbondioxide.Benntjesetal.[26]

showedthattheeffectivenessofheatrecoverysystemdeceases withtheflowrateandthatthereisacriticalflowratebelowwhich theperformancecannotbeextrapolated.In[27],astudyonverti- calheatrecoverysystemwithheatpumpshowsthatthecontact resistancebetweenthecopperpipesandtheheatresistanceonthe insideofthedrainwaterhasthehighercontributiontotheheat resistance.Ithasbeenshownthatusingsucha heatpump,25%

oftheheatcanberecovered.Afinancialstudyontheutilizationof drainwaterheatrecoverysystemispresentedin[28].Authorspre- sentedamodelallowingestimatingthefinancialefficiencyofthe system.Thestudycoversseveralheatrecoveryconfigurationsand differentinstallationparameters.Utilizationofsewerwaterasheat sourceisstudiedin[29,30]andacasestudyconcerningthecityof Bologna(Italy)isconsidered.Monitoringdataareusedtoobtaina correlationbetweenthewastewaterflowrateanditstemperature.

Parametricstudyondrainwaterheatrecoveryusinginlinevertical heatexchangerforseveralflowscenariosisperformedin[31]:the authorsshowedthattheamountofrecoveredheathighlydepends onthesizingoftheheatrecoverysystem.Heatrecoveryfromwaste wateroftherapysystemsinspaispresentedin[32].Theeffectof theangleoftheheatrecoverysystemwithrespecttothevertical isstudiedin[33]:authorsshowedthattheeffectivenessdecreases whentheanglewithrespecttotheverticalincreases.

Theworkscitedabovecoverawiderangeofapplicationsrelated todrainheatrecovery.Eachstudypresentsananalysisfocusedona specificparameter.However,noneofthesestudiespresentsagen- eralapproachthatcanbeusedasareferencefordrainheatrecovery calculation.Thatiswhyitisessentialtoproposeageneralizedpro- cedureofstudyfordrainheatrecoverysystemthatcanbeadopted independentlyfromtheconfiguration,theapplicationandthesys- temparameters.Inthiscontext,thispaperpresentsacalculation procedurethatmaybeappliedtogenerallymanydrainheatrecov- erysystemsprovidingthatsomepreliminarytestsaredoneforthe drainsystemconsideredandforcorrespondingrealscenarios.Itcan beutilizedasapre-calculationtooltoevaluatedrainheatrecov- erysystemsorasanoptimizationtechniquetoenhanceanexisting system.

Theoriginalityofthepresentworkresidesinthegenericexper- imentalsetupdevelopedandtheanalysisperformedbasedonthe obtainedresults. Moreover,theexperimentalanalysis wasper- formedinsuchawaythathaspermittosuggestanewsystematic calculationprocedureinordertoevaluateandanalyzedrainheat recoverysystemsbasedonpreliminaryexperimentaltests.

Theremainingofthispaperiscomposedoffourparts.Parttwo isdedicatedtopresenttheexperimentalapproach.Inpartthree,

resultsarediscussed.Newcalculationprocedureispresentedin partfourandfinallypartfiveisreservedtotheconclusions.

2. Materialsandmethods

In this section, the principle of the heat recovery concept (Section2.1), theprototypeimplemented(Section2.2), andthe experimentalsetup(Section2.3)arepresented.

2.1. Principle

Theprincipleofthedrainwaterheatrecoverysystem(DWHRS) consistsin heating/preheatingthesupplywater beforeitenters thewaterheater,bytheheatcontainedinthedrainwater.Indeed, thewatertemperatureafteranydrainagetypeisrelativelyhigh.In othertermsthedrainwatertemperatureisclearlyhigherthanthe watersupplytemperaturewhichmaybebelow5Cincoldregions.

Froma heattransfer pointof view,thistemperature difference betweenthedrainwaterandthesupplywatermaybetransformed toaheatratethatcanheatthesupplywater.TheDWHRS(Fig.1) canbeviewedasaheatexchanger,inwhichthehotfluidisthe drainwaterandthecoldfluidisthesupplywater.Severaltypes of(DWHRS)canbeobtainedaccordingtotheheatexchangertype whichistheheartofthesystem.Themostcommonlyusedheat exchangersarethecoiledandconcentrictubeheatexchangersthat areusedinthisstudy.

2.2. Prototype

Tostudytheheatrecoveryfromdrainagesystemandanalyzeits performance,aprototypeisconstructed,asshownschematicallyin Fig.2.

Theprototypeiscomposedoffivemainparts:watersupplytank, waterpump,drainbox,electricheater,andcoiledheatexchanger.

Thewatersupplytankisaplastictankof60Lvolume,utilizedto supplythesystem.Thewaterpumpinsuresthenecessarywater pressuresothatwaterflowsinthesystem.Acontrolvalveisused

Fig.2.Schematicoftheconstructedprototype.

(4)

Fig.3.Glassboxsimulatingthedrainagetyperegion.

Fig.4.Coiledheatexchangerusedintherecoverysystem.

directlydownstreamofthepumpinordertocontrolaprescribed flowrateinthecircuit.

Thedrainboxrepresentstheregionofagiventypeofdrainage carryingthehotwaterbeforeitsdrainage.Asillustration,thisbox canbeashowerchamber,asink,adishwasher,awashingmachine, etc.Itconsistsofaglassbox(Fig.3)of3mmthicknessfixedby aluminumrodsatitscorners.Ithasalengthandwidthof40cm,a heightof60cmandatotalsurfaceareaof1.28m2.

Aninsulatedboilerof50Lsizeisusedtoheatthewaterafter passingthroughtheheatexchangertube.Thecoiledheatexchanger isconstructedusingasinglecoppercoilof12.7mminnerdiameter and0.6mmthicknesswrappedaroundacircularcopperpipeof 41.3mminnerdiameter,1.2mmthicknessanda70cmlength,as showninFig.4.Thecircularcopperpipeservesasdrainagepipeand isconnecteddirectlytothedrainageboxbase.Fiberglassinsulation of37.5mmthicknessisutilizedtoreduceheatlosses.

2.3. Experimentalsetup

Inordertotestthethermalperformanceofthesystem,mea- surementsoftemperaturesandflowratesarerequired.FourK-type thermocouplesareusedtomeasuretemperaturesTc,iandTc,oat respectivelytheinletandoutletofthecoiledsupplypipe(coldside oftheexchanger)and Th,i and Th,o atrespectivelytheinletand outletofthedrainagepipe(hotsideoftheexchanger).

Waterflowrates aremeasuredusing thestopwatchmethod tofillagiventankvolume.Themassflowrateisthencalculated accordingtothefollowingrelation:

m˙ =V

t (1)

whereisthewaterdensity,V thefilledvolumeandtthetime requiredtofillthevolumeV.Whenthedifferenttemperaturesand flowratesaremeasuredforagiventestedconfiguration,different performanceparametersoftherecoverysystemcanbecalculated.

Therecoveredheatcanbecalculatedfromthefollowingrelation:

Q˙R=m˙cCp,c

Tc,oTc,i

(2) where ˙mcandCp,carerespectivelythemassflowrateandspecific heatofthecoldwater(waterfromthesupplytank).

Theefficiencyoftherecoverysystem,whichrepresentsthe abilityofthesystemtoavoidwastingenergy,isdefinedastheratio oftheheatrecoveredbythecoldwaterovertheheatlostbythe hotwater:

= Q˙R

m˙hCp,h

Th,iTh,o (3)

where ˙mhandCp,harerespectivelythemassflowrateandspecific heatofthehotwater(waterfromthedrain).

Theeffectivenessεofthesystemwhichrepresentsameasure- mentoftheperformance oftheheatexchangerwhenusingthe NTUmethod[34]isdefinedastheratiooftheheatrecoveredby thecoldwateroverthemaximumpossibleheattransferthatcan behypotheticallyachievedin acounter-flowheat exchangerof infinitelength,calculatedfromthefollowingrelation:

ε= Q˙R

m˙hCp,h

Th,iTc,i (4)

InEq.(4),thehotsideisconsideredintheidealcasesincethe massflowrateinthehotsideisexpectedtobelowerthaninthe coldsideduetowaterlossesduetowalladhesioninthedrainage box.

Threesetsofexperimentsarecarriedout.Thefirstsetofexper- imentscorresponds to differentinlet cold temperatures(water supplytank)varyingfrom3.2Cto22.4Cwithafixedhotinlet temperatureof70Candacoldflowrateof0.146kg/s(thehotflow rateisspecifiedfurtherinthepaper).Thedifferentcoldtempera- turesareobtainedbyinitiatingatemperatureof3.2Cbyadding icestothecoldsupplytankandperformingsuccessivemeasure- mentswhenicesmelt.

Thesecondsetofexperimentsisperformedfordifferentcold waterflowrates(whichimpliesdifferentvaluesofhotflowrates) varyingfrom0.058kg/sto0.146kg/s.

Thethirdsetiscarriedoutfordifferenthotinlettemperatures varyingfrom40Cto80C.Thecoldinlettemperatureisrecorded foreachconfigurationofsettwoandthreeandrangesfrom25C to40C.

3. Resultsandanalysis

Inthissection,thedifferentresultsobtainedaswellasthecorre- spondingobservationsandanalysiswillbepresented.Fig.5shows thevariationofthehotwaterflowrate(hotwatertofallinthe drainage)infunctionofthecoldwaterflowrate(waterfromthe watersupplytank).

FromFig.5a,itcanbenoticedthatthehotflowrateislowerthan thecoldflowrate.Asillustrationforacoldflowrateof0.146kg/s, thehotflowrateis0.122kg/s.Thismeansthat0.024kg/sarelostin thedrainboxduetoadhesionofwaterontheinnerwalls.Theper- centageofhotwatertothecoldwaterflowrate(Fig.5b)isalmost around81%–85%.Itshouldbenoticedthatgiventhepercentage ofhotflowratetocoldflowrate,aconsiderabletimewastaken betweentwoconsecutivetestsinordertohavesufficientdryingof theinnerwallofthedrainbox.

Fig.6showsthevariationoftheheatrecoveredinthesystemin functionofthecoldinlettemperature(Eq.(2)).Itisshownthatthe

(5)

578 M.Ramadanetal./EnergyandBuildings128(2016)575–582

0.04 0.06 0.08 0.10 0.12 0.14

0.05 0.07 0.09 0.11 0.13 0.15

Hot flow rate (kg/s)

Cold flow rate (kg/s) (a)

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

0.05 0.07 0.09 0.11 0.13 0.15

Hot flow rate (%)

Cold flow rate (kg/s) (b)

Fig.5.Variationof(a)hotwaterflowrateand(b)percentageofhotwaterflowrate intermsofthecoldwaterflowrate.

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

2 4 6 8 10 12 14 16 18 20 22 24

Recovered heat (kW)

Cold inlet temperature (0C)

Fig.6.Heatrecoveredinfunctionofthecoldinlettemperature.

heatrecovereddecreasesquasi-linearlyasthecoldinlettemper- atureincreases.Asillustration,theheatrecovereddecreasesfrom 8.24kWto2.62kWwhenthecoldinlettemperatureincreasesfrom 3.2Cto22.4C.

Toinvestigatedeepertheperformanceofthesysteminrelation withthecoldtemperature,theefficiencyandeffectiveness(Eqs.

(2)–(4))areplottedinFig.7.Itcanbeshownthatwhenthecold inlettemperatureincreases,theefficiencyandtheeffectiveness decreasealmostlinearly.Asillustrationwhenthecoldinlettemper- atureincreasesfrom3.2Cto22.4C,theefficiencydecreasesfrom around100%to47%andtheeffectivenessdecreasesfromaround

Fig.7. Variationof(a)efficiencyand(b)effectivenessoftherecoverysystemin functionofthecoldinlettemperature.

26%to12%.Itisstrikingtonotethateveniftheefficiencyandthe effectivenessdonotrepresentthesameresult,indeedthequanti- tativevaluesaretotallydifferent,theevolutionofthecurvesof andεareverysimilarand,aboveall,ineachcase,thefinalvalueis around46–47%oftheinitialvalue.

Waterflowingfromtheboilertotheinletofthedrain(inletof theheatexchangerhotside)losesheatduetolossofflowrateand coolingduetocontactwiththeinnerwallsofthedrainbox.The lostheatcanbecalculatedasthedifferenceofenergyratebetween theoutletoftheboilerandtheinletofthedrain:

Q˙L=m˙cCp,cTb,om˙hCp,hTh,i (5) whereTb,oisthetemperatureofwaterattheboileroutlet.

Theratioofthelostheatcanbecalculatedas:

Q˙L

Q˙b,o =m˙cCp,cTb,om˙hCp,hTh,i

m˙cCp,cTb,o (6)

with ˙Qb,otheheatattheoutletoftheboiler.

Fig.8showsthevariationofthelostheat ˙QLandthepercentage oflostheat ˙QL/Q˙b,oinfunctionofthehotinlettemperaturefor differentcoldwaterflowrates.

Itcanbeshownthatlossesincreasewiththeboileroutlettem- perature.Asillustration foracoldwaterflowrateof0.058kg/s, lossesincreasefrom11kWto12.8kWastheboiler outlettem- peratureincreasesfrom40Cto80C.Forflowratesof0.097kg/s and0.146kg/s,lossesarerespectivelyfrom25.1kWto29.3kWand

Références

Documents relatifs

Variation of recovered heat (a) in function of the boiler outlet temperature for different cold flow rates and (b) in function of the cold flow rate for different boiler

Key words : One phase Stefan problem, free moving boundary, inverse problem, feedback control, convex functions, regularization

The mucosal predominance of this antibody isotype depends on a cooperation between local plasma cells that produce polymeric IgA (pIgA) and mucosal epithe- lial cells that express

In conclusion, the measurements in low gravity of the temperature evolution of gas and liquid phases near the CP during positive quenches highlight the key role of the

In this work, the heat exchange service parameter data from the phosphoric acid concentration loop allows the predictive models of the specific exchange coefficient to

A mathematical model, based on the energy conservation equations was developed to predict the variation of the three principal parameters, temperature of two PCMs, heat

In Figure 7A, the profiles of the dimensionless water vapor concentration in the lumen, during inspiration and expiration, are presented for three values of Re insp 1 /β

As the main result of this paper, we employ equality (1.4) to show that in the case of radial functions the answer to W 1,1 -problem is positive (Theorem 3.12).. Even in this case,