• Aucun résultat trouvé

Sequent Calculus Cut Elimination

N/A
N/A
Protected

Academic year: 2022

Partager "Sequent Calculus Cut Elimination"

Copied!
90
0
0

Texte intégral

(1)

Sequent Calculus Cut Elimination

Akim Demailleakim@lrde.epita.fr

EPITA — École Pour l’Informatique et les Techniques Avancées

June 10, 2016

(2)

Sequent Calculus Cut Elimination

1 Problems of Natural Deduction

2 Sequent Calculus

3 Natural Deduction in Sequent Calculus

A. Demaille Sequent Calculus, Cut Elimination 2 / 40

(3)

Preamble

The following slides are implicitly dedicated to classicallogic.

(4)

Problems of Natural Deduction

1 Problems of Natural Deduction

2 Sequent Calculus

3 Natural Deduction in Sequent Calculus

A. Demaille Sequent Calculus, Cut Elimination 4 / 40

(5)

Normalization

(6)

Proofs hard to find

Some elimination rules used formulas coming out of the blue.

··

· A∨B

[A]·

·· C

[B]·

·· C ∨E C

A. Demaille Sequent Calculus, Cut Elimination 6 / 40

(7)

Negation is awkward

(8)

Sequent Calculus

1 Problems of Natural Deduction

2 Sequent Calculus Syntax

LK — Classical Sequent Calculus Cut Elimination

3 Natural Deduction in Sequent Calculus

A. Demaille Sequent Calculus, Cut Elimination 8 / 40

(9)

Gerhard Karl Erich Gentzen (1909–1945)

German logician and mathematician.

SA (1933)

An assistant of David Hilbert in Göttingen (1935–1939).

Joined the Nazi Party (1937).

Worked on the V2.

Died of malnutrition in a prison camp (August 4, 1945).

(10)

Syntax

1 Problems of Natural Deduction

2 Sequent Calculus Syntax

LK — Classical Sequent Calculus Cut Elimination

3 Natural Deduction in Sequent Calculus

A. Demaille Sequent Calculus, Cut Elimination 10 / 40

(11)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed

(12)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed Not for intuitionistic systems

A. Demaille Sequent Calculus, Cut Elimination 11 / 40

(13)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed

(14)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed Not for intuitionistic systems

A. Demaille Sequent Calculus, Cut Elimination 11 / 40

(15)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed

(16)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed Not for intuitionistic systems

A. Demaille Sequent Calculus, Cut Elimination 11 / 40

(17)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed

(18)

Sequents

Sequent

Asequentis an expression Γ`∆, whereΓ,∆are (finite) sequences of formulas.

Variants:

Sets Γ,∆can be taken as (finite) sets.

Simplifies the structural group

Prevents close examination of. . . the structural rules Single Sided Sequents can be forced to be `Γ

Half the number of rules is needed Not for intuitionistic systems

A. Demaille Sequent Calculus, Cut Elimination 11 / 40

(19)

Reading a Sequent

Γ`∆ If all the formulas of Γare true, then one of the formulas of∆is true.

Commas on the left hand side stand for “and”

Turnstile,`, stands for “implies”

Commas on the right hand side stand for “or”

(20)

Reading a Sequent

Γ`∆ If all the formulas of Γare true, then one of the formulas of∆is true.

Commas on the left hand side stand for “and”

Turnstile,`, stands for “implies”

Commas on the right hand side stand for “or”

A. Demaille Sequent Calculus, Cut Elimination 12 / 40

(21)

Reading a Sequent

Γ`∆ If all the formulas of Γare true, then one of the formulas of∆is true.

Commas on the left hand side stand for “and”

Turnstile,`, stands for “implies”

Commas on the right hand side stand for “or”

(22)

Reading a Sequent

Γ`∆ If all the formulas of Γare true, then one of the formulas of∆is true.

Commas on the left hand side stand for “and”

Turnstile,`, stands for “implies”

Commas on the right hand side stand for “or”

A. Demaille Sequent Calculus, Cut Elimination 12 / 40

(23)

Some Special Sequents

Γ`A Ais true under the hypotheses Γ

`A Ais true

Γ` Γis in contradiction A` ¬A

` contradiction

(24)

Some Special Sequents

Γ`A Ais true under the hypotheses Γ

`A Ais true

Γ` Γis in contradiction A` ¬A

` contradiction

A. Demaille Sequent Calculus, Cut Elimination 13 / 40

(25)

Some Special Sequents

Γ`A Ais true under the hypotheses Γ

`A Ais true

Γ` Γis in contradiction

A` ¬A

` contradiction

(26)

Some Special Sequents

Γ`A Ais true under the hypotheses Γ

`A Ais true

Γ` Γis in contradiction A` ¬A

` contradiction

A. Demaille Sequent Calculus, Cut Elimination 13 / 40

(27)

Some Special Sequents

Γ`A Ais true under the hypotheses Γ

`A Ais true

Γ` Γis in contradiction A` ¬A

` contradiction

(28)

LK — Classical Sequent Calculus

1 Problems of Natural Deduction

2 Sequent Calculus Syntax

LK — Classical Sequent Calculus Cut Elimination

3 Natural Deduction in Sequent Calculus

A. Demaille Sequent Calculus, Cut Elimination 14 / 40

(29)

LK — Classical Sequent Calculus

LK — Gentzen 1934

logistischerklassischer Kalkül.

There are several possible exposures Different sets of inference rules We follow [Girard, 2011]

(30)

Identity Group

Id A`A

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

Gentzen’s Hauptsatz

Thecut rule is redundant, i.e., any sequent provable with cuts is provable without.

A. Demaille Sequent Calculus, Cut Elimination 16 / 40

(31)

Identity Group

Id A`A

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

Gentzen’s Hauptsatz

Thecut rule is redundant, i.e., any sequent provable with cuts is provable without.

(32)

Structural Group

Γ`∆

`X Γ`τ(∆)

Γ`∆ X` σ(Γ)`∆

Γ`∆

`W Γ`A,∆

Γ`∆ W` Γ,A`∆ Γ`A,A,∆

`C Γ`A,∆

Γ,A,A`∆ C` Γ,A`∆

A. Demaille Sequent Calculus, Cut Elimination 17 / 40

(33)

Structural Group

Γ`∆

`X Γ`τ(∆)

Γ`∆ X` σ(Γ)`∆ Γ`∆

`W Γ`A,∆

Γ`∆ W`

Γ,A`∆

Γ`A,A,∆

`C Γ`A,∆

Γ,A,A`∆ C` Γ,A`∆

(34)

Structural Group

Γ`∆

`X Γ`τ(∆)

Γ`∆ X` σ(Γ)`∆ Γ`∆

`W Γ`A,∆

Γ`∆ W`

Γ,A`∆ Γ`A,A,∆

`C Γ`A,∆

Γ,A,A`∆ C` Γ,A`∆

A. Demaille Sequent Calculus, Cut Elimination 17 / 40

(35)

Logical Group: Negation

Γ,A`∆

` ¬ Γ` ¬A,∆

Γ`A,∆

¬ ` Γ,¬A`∆

(36)

Logical Group: Conjunction

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ ` Γ,A∧B `∆

Γ,B `∆ r∧ ` Γ,A∧B `∆

Additive

˘

Γ`A,∆ Γ0`B,∆0

` ∧ Γ,Γ0`A∧B,∆,∆0

Γ,A,B `∆

∧ ` Γ,A∧B`∆

Multiplicative

A. Demaille Sequent Calculus, Cut Elimination 19 / 40

(37)

Logical Group: Conjunction

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ ` Γ,A∧B`∆

Γ,B `∆ r∧ ` Γ,A∧B `∆

Additive

˘

Γ`A,∆ Γ0`B,∆0

` ∧ Γ,Γ0`A∧B,∆,∆0

Γ,A,B `∆

∧ ` Γ,A∧B`∆

Multiplicative

(38)

Logical Group: Conjunction

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ ` Γ,A∧B`∆

Γ,B `∆ r∧ ` Γ,A∧B `∆

Additive

˘

Γ`A,∆ Γ0`B,∆0

` ∧ Γ,Γ0`A∧B,∆,∆0

Γ,A,B `∆

∧ ` Γ,A∧B`∆

Multiplicative

A. Demaille Sequent Calculus, Cut Elimination 19 / 40

(39)

Logical Group: Conjunction

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ ` Γ,A∧B`∆

Γ,B `∆ r∧ ` Γ,A∧B `∆

Additive

˘

Γ`A,∆ Γ0`B,∆0

` ∧ Γ,A,B `∆

∧ `

Multiplicative

(40)

Logical Group: Conjunction

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ ` Γ,A∧B`∆

Γ,B `∆ r∧ ` Γ,A∧B `∆

Additive

˘

Γ`A,∆ Γ0`B,∆0

` ∧ Γ,Γ0`A∧B,∆,∆0

Γ,A,B `∆

∧ ` Γ,A∧B`∆

Multiplicative

A. Demaille Sequent Calculus, Cut Elimination 19 / 40

(41)

Logical Group: Conjunction

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ ` Γ,A∧B`∆

Γ,B `∆ r∧ ` Γ,A∧B `∆

Additive

˘

Γ`A,∆ Γ0`B,∆0

` ∧ Γ,A,B `∆

∧ ` Multiplicative

(42)

Logical Group: Disjunction

Γ`A,∆

`l∨ Γ`A∨B,∆

Γ`B,∆

`r∨ Γ`A∨B,∆

Γ,A`∆ Γ,B`∆

∨ ` Γ,A∨B `∆

Additive

Γ`A,B,∆

` ∨ Γ`A∨B,∆

Γ,A`∆ Γ0,B `∆0

∨ ` Γ,Γ0,A∨B`∆,∆0

Multiplicative

˙

A. Demaille Sequent Calculus, Cut Elimination 20 / 40

(43)

Logical Group: Disjunction

Γ`A,∆

`l∨ Γ`A∨B,∆

Γ`B,∆

`r∨

Γ`A∨B,∆

Γ,A`∆ Γ,B`∆

∨ ` Γ,A∨B `∆

Additive

Γ`A,B,∆

` ∨ Γ`A∨B,∆

Γ,A`∆ Γ0,B `∆0

∨ ` Γ,Γ0,A∨B`∆,∆0

Multiplicative

˙

(44)

Logical Group: Disjunction

Γ`A,∆

`l∨ Γ`A∨B,∆

Γ`B,∆

`r∨

Γ`A∨B,∆

Γ,A`∆ Γ,B`∆

∨ ` Γ,A∨B `∆

Additive

Γ`A,B,∆

` ∨ Γ`A∨B,∆

Γ,A`∆ Γ0,B `∆0

∨ ` Γ,Γ0,A∨B`∆,∆0

Multiplicative

˙

A. Demaille Sequent Calculus, Cut Elimination 20 / 40

(45)

Logical Group: Disjunction

Γ`A,∆

`l∨ Γ`A∨B,∆

Γ`B,∆

`r∨

Γ`A∨B,∆

Γ,A`∆ Γ,B`∆

∨ ` Γ,A∨B `∆

Additive

Γ`A,B,∆

` ∨ Γ,A`∆ Γ0,B `∆0

∨ `

Multiplicative

˙

(46)

Logical Group: Disjunction

Γ`A,∆

`l∨ Γ`A∨B,∆

Γ`B,∆

`r∨

Γ`A∨B,∆

Γ,A`∆ Γ,B`∆

∨ ` Γ,A∨B `∆

Additive

Γ`A,B,∆

` ∨ Γ`A∨B,∆

Γ,A`∆ Γ0,B `∆0

∨ ` Γ,Γ0,A∨B`∆,∆0

Multiplicative

˙

A. Demaille Sequent Calculus, Cut Elimination 20 / 40

(47)

Logical Group: Disjunction

Γ`A,∆

`l∨ Γ`A∨B,∆

Γ`B,∆

`r∨

Γ`A∨B,∆

Γ,A`∆ Γ,B`∆

∨ ` Γ,A∨B `∆

Additive

Γ`A,B,∆

` ∨ Γ,A`∆ Γ0,B `∆0

∨ `

Multiplicative

˙

(48)

Logical Group: Implication

Γ`∆,A Γ0,B `∆0

⇒`

Γ,Γ0,A⇒B `∆,∆0

Γ,A`B,∆

`⇒ Γ`A⇒B,∆

A. Demaille Sequent Calculus, Cut Elimination 21 / 40

(49)

Logical Group: Implication

Γ`∆,A Γ0,B `∆0

⇒`

Γ,Γ0,A⇒B `∆,∆0

Γ,A`B,∆

`⇒

Γ`A⇒B,∆

(50)

Prove A ∧ B ` A ∧ B

A`A l∧ ` A∧B `A

B `B

r∧ ` A∧B `B

` ∧ A∧B `A∧B

A. Demaille Sequent Calculus, Cut Elimination 22 / 40

(51)

Prove A ∧ B ` A ∧ B

A`A l∧ ` A∧B `A

B `B

r∧ ` A∧B `B

` ∧ A∧B `A∧B

(52)

Prove A ∧ B ` A ∨ B

A`A l∧ ` A∧B `A

`r∨ A∧B `A∨B

A. Demaille Sequent Calculus, Cut Elimination 23 / 40

(53)

Prove A ∧ B ` A ∨ B

A`A l∧ ` A∧B `A

`r∨ A∧B `A∨B

(54)

Prove A ∨ B ` A ∨ B

A`A

`l∨

A`A∨B

B `B

`r∨ B `A∨B

∨ ` A∨B `A∨B

A. Demaille Sequent Calculus, Cut Elimination 24 / 40

(55)

Prove A ∨ B ` A ∨ B

A`A

`l∨

A`A∨B

B `B

`r∨ B `A∨B

∨ ` A∨B `A∨B

(56)

Prove the equivalence of the two ∧ rules

Additive Multiplicative Γ`A,∆ Γ`B,∆

` ∧+

Γ`A∧B,∆

≡ Γ`A,∆ Γ0 `B,∆0

` ∧×

Γ,Γ0 `A∧B,∆,∆0

Γ`A, Γ`B,

` ∧× Γ,Γ`AB,∆,

==============`C Γ,Γ`AB,

============C` Γ`AB,

Γ`A,

=========W` Γ,Γ0`A,

============`W Γ,Γ0`A,∆,0

Γ0`B,0

=========W` Γ,Γ0`B,0

============`W Γ,Γ0`B,∆,0

` ∧+ Γ,Γ0`AB,∆,0

A. Demaille Sequent Calculus, Cut Elimination 25 / 40

(57)

Prove the equivalence of the two ∧ rules

Additive Multiplicative Γ`A,∆ Γ`B,∆

` ∧+

Γ`A∧B,∆

≡ Γ`A,∆ Γ0 `B,∆0

` ∧×

Γ,Γ0 `A∧B,∆,∆0

Γ`A, Γ`B,

` ∧×

Γ,Γ`AB,∆,

==============`C Γ,Γ`AB,

Γ`A,

=========W` Γ,Γ0`A,

============`W Γ,Γ0`A,∆,0

Γ0`B,0

=========W` Γ,Γ0`B,0

============`W Γ,Γ0`B,∆,0

` ∧+ Γ,Γ0`AB,∆,0

(58)

Prove the equivalence of the two ∧ rules

Additive Multiplicative Γ`A,∆ Γ`B,∆

` ∧+

Γ`A∧B,∆

≡ Γ`A,∆ Γ0 `B,∆0

` ∧×

Γ,Γ0 `A∧B,∆,∆0

Γ`A, Γ`B,

` ∧×

Γ,Γ`AB,∆,

==============`C Γ,Γ`AB,

============C` Γ`AB,

Γ`A,

=========W` Γ,Γ0`A,

============`W Γ,Γ0`A,∆,0

Γ0`B,0

=========W` Γ,Γ0`B,0

============`W Γ,Γ0`B,∆,0

` ∧+

Γ,Γ0`AB,∆,0

A. Demaille Sequent Calculus, Cut Elimination 25 / 40

(59)

Logical Group: Quantifiers

Γ`A,∆

` ∀ Γ` ∀x·A,∆

Γ,A[t/x]`∆

∀ ` Γ,∀x·A`∆

Γ`A[t/x],∆

` ∃ Γ` ∃x·A,∆

Γ,A`∆

∃ ` Γ,∃x·A`∆ In ` ∀and∃ `,x 6∈FV(Γ,∆).

(60)

Logical Group: Quantifiers

Γ`A,∆

` ∀ Γ` ∀x·A,∆

Γ,A[t/x]`∆

∀ ` Γ,∀x·A`∆ Γ`A[t/x],∆

` ∃ Γ` ∃x·A,∆

Γ,A`∆

∃ ` Γ,∃x·A`∆ In` ∀ and∃ `,x 6∈FV(Γ,∆).

A. Demaille Sequent Calculus, Cut Elimination 26 / 40

(61)

Single Sided

Defining the Negation

Alternatively, one can define the negation as a notationinstead of defining it by inference rules.

¬(¬p) := p

¬(A∧B) := ¬A∨ ¬B

¬(A∨B) := ¬A∧ ¬B

¬(∀x·A) := ∃x· ¬A

¬(∃x·A) := ∀x· ¬A

(62)

Single Sided

Defining the Negation

Alternatively, one can define the negation as a notationinstead of defining it by inference rules.

¬(¬p) := p

¬(A∧B) := ¬A∨ ¬B

¬(A∨B) := ¬A∧ ¬B

¬(∀x·A) := ∃x· ¬A

¬(∃x·A) := ∀x· ¬A

Then define the sequents as`Γ I.e., Γ`∆;` ¬Γ,∆

A. Demaille Sequent Calculus, Cut Elimination 27 / 40

(63)

Single Sided

Defining the Negation

Alternatively, one can define the negation as a notationinstead of defining it by inference rules.

¬(¬p) := p

¬(A∧B) := ¬A∨ ¬B

¬(A∨B) := ¬A∧ ¬B

¬(∀x·A) := ∃x· ¬A

¬(∃x·A) := ∀x· ¬A

(64)

Single Sided

The Full Sequent Calculus

` ¬A,AId

`Γ,A ` ¬A,∆ Cut

`Γ,∆

`σ(Γ)X

`Γ W

`A,Γ

`A,A,Γ C

`A,Γ

`A,∆

`A∨B,∆l∨

`B,∆

`A∨B,∆r∨

`A,∆ `B,∆

`A∧B,∆ ∧

`A,∆

` ∀x·A,∆∀

`A[t/x],∆

` ∃x·A,∆

A. Demaille Sequent Calculus, Cut Elimination 28 / 40

(65)

Cut Elimination

1 Problems of Natural Deduction

2 Sequent Calculus Syntax

LK — Classical Sequent Calculus Cut Elimination

3 Natural Deduction in Sequent Calculus

(66)

Subformula Property

What can be told from the last rule of a proof?

If the last rule is a cut,

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

nothing can be said!

Otherwise. . .

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ `

Γ,A∧B`∆ · · ·

premisses can only usesubformulas of the conclusion!

A. Demaille Sequent Calculus, Cut Elimination 30 / 40

(67)

Subformula Property

What can be told from the last rule of a proof?

If the last rule is a cut,

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

nothing can be said!

Otherwise. . .

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ `

Γ,A∧B`∆ · · ·

premisses can only usesubformulas of the conclusion!

(68)

Subformula Property

What can be told from the last rule of a proof?

If the last rule is a cut,

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

nothing can be said!

Otherwise. . .

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ `

Γ,A∧B`∆ · · ·

premisses can only usesubformulas of the conclusion!

A. Demaille Sequent Calculus, Cut Elimination 30 / 40

(69)

Subformula Property

What can be told from the last rule of a proof?

If the last rule is a cut,

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

nothing can be said!

Otherwise. . .

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ,A`∆ l∧ `

Γ,A∧B`∆ · · ·

(70)

Cut Elimination

replace “complex” cuts by simpler cuts (smaller formulas) until the cut is on the simplest form, the identity

where it is not longer needed!

A. Demaille Sequent Calculus, Cut Elimination 31 / 40

(71)

Cut Elimination

Logical Rules

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ0,A`∆0

l∧ ` Γ0,A∧B `∆0

Cut Γ,Γ0 `∆,∆0

;

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0`∆,∆0

For all the connectives.

(72)

Cut Elimination

Logical Rules

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ0,A`∆0

l∧ ` Γ0,A∧B `∆0

Cut Γ,Γ0 `∆,∆0

; Γ`A,∆ Γ0,A`∆0

Cut Γ,Γ0`∆,∆0

For all the connectives.

A. Demaille Sequent Calculus, Cut Elimination 32 / 40

(73)

Cut Elimination

Logical Rules

Γ`A,∆ Γ`B,∆

` ∧ Γ`A∧B,∆

Γ0,A`∆0

l∧ ` Γ0,A∧B `∆0

Cut Γ,Γ0 `∆,∆0

; Γ`A,∆ Γ0,A`∆0

Cut Γ,Γ0`∆,∆0

(74)

Cut Elimination

Removal of a Cut

Identity A`A

·· Γ,A·`∆

Cut Γ,A`∆

;

··

· Γ,A`∆

A. Demaille Sequent Calculus, Cut Elimination 33 / 40

(75)

Cut Elimination

Removal of a Cut

Identity A`A

·· Γ,A·`∆

Cut Γ,A`∆

;

··

· Γ,A`∆

(76)

Cut Elimination

Commutations

Γ,B `A,∆ Γ,C `A,∆

∨ `

Γ,B∨C `A,∆ Γ0,A`∆0 Cut Γ,B∨C,Γ0 `∆,∆0

;

Γ,B `A,∆ Γ0,A`∆0 Cut Γ,B,Γ0 `∆,∆0

Γ,C `A,∆ Γ0,A`∆0 Cut Γ,C,Γ0`∆,∆0

∨ ` Γ,B∨C,Γ0`∆,∆0

Beware of the duplication!

A. Demaille Sequent Calculus, Cut Elimination 34 / 40

(77)

Cut Elimination

Commutations

Γ,B `A,∆ Γ,C `A,∆

∨ `

Γ,B∨C `A,∆ Γ0,A`∆0 Cut Γ,B∨C,Γ0 `∆,∆0

; Γ,B `A,∆ Γ0,A`∆0

Cut Γ,B,Γ0 `∆,∆0

Γ,C `A,∆ Γ0,A`∆0 Cut Γ,C,Γ0`∆,∆0

∨ `

Beware of the duplication!

(78)

Cut Elimination

Commutations

Γ,B `A,∆ Γ,C `A,∆

∨ `

Γ,B∨C `A,∆ Γ0,A`∆0 Cut Γ,B∨C,Γ0 `∆,∆0

; Γ,B `A,∆ Γ0,A`∆0

Cut Γ,B,Γ0 `∆,∆0

Γ,C `A,∆ Γ0,A`∆0 Cut Γ,C,Γ0`∆,∆0

∨ ` Γ,B∨C,Γ0`∆,∆0

Beware of the duplication!

A. Demaille Sequent Calculus, Cut Elimination 34 / 40

(79)

Cut Elimination

Structural Rules: Weakening

Γ`∆

`W

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0`∆,∆0

;

Γ`∆

=======W` Γ,Γ0 `∆

=========`W Γ,Γ0 `∆,∆0

(80)

Cut Elimination

Structural Rules: Weakening

Γ`∆

`W

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0`∆,∆0

; Γ`∆

=======W` Γ,Γ0 `∆

=========`W Γ,Γ0 `∆,∆0

A. Demaille Sequent Calculus, Cut Elimination 35 / 40

(81)

Cut Elimination

Structural Rules: Contraction

Γ`A,A,∆

`C

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

;

Γ`A,A,∆ Γ0,A`∆0 Cut

Γ,Γ0 `A,∆,∆0 Γ0,A`∆0 Cut Γ,Γ00`∆,∆0,∆0

============== C Γ,Γ0 `∆,∆0

Nice!

but wrong might loop for ever

(82)

Cut Elimination

Structural Rules: Contraction

Γ`A,A,∆

`C

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

; Γ`A,A,∆ Γ0,A`∆0

Cut

Γ,Γ0 `A,∆,∆0 Γ0,A`∆0 Cut Γ,Γ00`∆,∆0,∆0

============== C Γ,Γ0 `∆,∆0

Nice!

but wrong might loop for ever

A. Demaille Sequent Calculus, Cut Elimination 36 / 40

(83)

Cut Elimination

Structural Rules: Contraction

Γ`A,A,∆

`C

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

; Γ`A,A,∆ Γ0,A`∆0

Cut

Γ,Γ0 `A,∆,∆0 Γ0,A`∆0 Cut Γ,Γ00`∆,∆0,∆0

Nice!

but wrong might loop for ever

(84)

Cut Elimination

Structural Rules: Contraction

Γ`A,A,∆

`C

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

; Γ`A,A,∆ Γ0,A`∆0

Cut

Γ,Γ0 `A,∆,∆0 Γ0,A`∆0 Cut Γ,Γ00`∆,∆0,∆0

============== C Γ,Γ0 `∆,∆0

Nice!

but wrong

might loop for ever

A. Demaille Sequent Calculus, Cut Elimination 36 / 40

(85)

Cut Elimination

Structural Rules: Contraction

Γ`A,A,∆

`C

Γ`A,∆ Γ0,A`∆0 Cut Γ,Γ0 `∆,∆0

; Γ`A,A,∆ Γ0,A`∆0

Cut

Γ,Γ0 `A,∆,∆0 Γ0,A`∆0 Cut Γ,Γ00`∆,∆0,∆0

Nice!

but wrong might loop for ever

(86)

Cut Elimination

Structural Rules: Complications with Contractions

Γ`A,A,∆

`C Γ`A,∆

Γ0,A,A`∆0 C` Γ0,A`∆0

Cut Γ,Γ0 `∆,∆0

;

Γ`A,A,∆

Γ0,A,A`∆0 C` Γ0,A`∆0

Cut Γ,Γ0 `A,∆,∆0

Γ0,A,A`∆0 C` Γ0,A`∆0

Cut Γ,Γ00 `∆,∆0,∆0

==============C Γ,Γ0 `∆,∆0

A. Demaille Sequent Calculus, Cut Elimination 37 / 40

(87)

Cut Elimination

Structural Rules: Complications with Contractions

Γ`A,A,∆

`C Γ`A,∆

Γ0,A,A`∆0 C` Γ0,A`∆0

Cut Γ,Γ0 `∆,∆0

;

Γ`A,A,∆

Γ0,A,A`∆0 C` Γ0,A`∆0

Cut Γ,Γ0 `A,∆,∆0

Γ0,A,A`∆0 C`

Γ0,A`∆0

(88)

Natural Deduction in Sequent Calculus

1 Problems of Natural Deduction

2 Sequent Calculus

3 Natural Deduction in Sequent Calculus

A. Demaille Sequent Calculus, Cut Elimination 38 / 40

(89)

Recommended readings

[Girard et al., 1989], Chapters 5 & 13

A short (160p.) book addressing all the concerns of this course, and more (especially Linear Logic).

Easy and pleasant to read. Available for free.

(90)

Bibliography I

Girard, J.-Y. (2011).

The Blind Spot: Lectures on Logic.

European Mathematical Society.

https://books.google.fr/books?id=eVZZ0wtazo8C.

Girard, J.-Y., Lafont, Y., and Taylor, P. (1989).

Proofs and Types.

Cambridge University Press.

http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html.

A. Demaille Sequent Calculus, Cut Elimination 40 / 40

Références

Documents relatifs

disability field: Standard Rules on the Equalization of Opportunities for Persons with Disabilities. They contain a message of vital impor- tance because there is no country in

The rules are said to be deep because unlike the sequent calculus for which rules must be applied at the root of sequents, the rules of the calculus of structures can be applied at

Let us now turn to nested sequents for IML. The data structure of a nested sequent for intuitionistic modal logics that we employ here has already been used in [11] and is almost

From the perspective of theorem proving for example, the presence of the bidirectional rules and contraction as explicit structural rules in LBI means that it is difficult to

We have presented a version of the λΠ-calculus modulo where rewrite rules are explicitly added in contexts making their addition an iterative process where previous rules can be used

A short (160p.) book addressing all the concerns of this course, and more (especially Linear Logic). Easy and pleasant

In this case the right and left hand limits are different, and hence we say that the limit of f x as x tends to zero does not exist even though the function is defined at 0.. This

These Sherpa projeclS resulted from the common interest of local communities, whereby outsiders, such as Newar and even low-caste Sherpa (Yemba), could contribute