• Aucun résultat trouvé

Description Logics in the Calculus of Structures

N/A
N/A
Protected

Academic year: 2022

Partager "Description Logics in the Calculus of Structures"

Copied!
2
0
0

Texte intégral

(1)

Description Logics in the Calculus of Structures

Jean-David Roubach1,2, Pascal Yim2, and Joaquín Rodriguez1

1 INRETS – ESTAS Villeneuve d’Ascq, France {roubach,rodriguez}@inrets.fr

2 École Centrale de Lille – LAGIS Villeneuve d’Ascq, France pascal.yim@ec-lille.fr

Abstract. We introduce a new proof system for the description logic ALC in the framework of the calculus of structures, a structural proof theory that employsdeep inference. This new formal presentation intro- duces positive proofs for description logics. Moreover, this result makes possible the study of sub-structural refinements of description logics, for which a semantics can now be defined.

1 A calculus of structures for description logics

Proof systems in the calculus of structures are defined by a set of deep inference rules operating on structures[1]. The rules are said to be deep because unlike the sequent calculus for which rules must be applied at the root of sequents, the rules of the calculus of structures can be applied at any depth inside a structure.

As noted by Schild[2], ALC is a syntactic variant of propositional multi- modal logicK(m). Therefore, since this logic involves no interaction between its modalities, its proof system in the calculus of structures can be straightforwardly extended from a proof system of unimodal Kin the calculus of structures, such as the cut-free proof systemSKSgKdescribed in [3].

Let A be a countable set equipped with a bijective function¯· : A → A, such that A¯¯ = A, and A¯ 6= A for every A ∈ A. The elements of A are called primitive concepts, and two of them are denoted by>and⊥such that>¯ :=⊥ and⊥¯ :=>.

The setRofprestructuresofALCconcepts is defined by the following gram- mar, whereAis a primitive concept and Ris a role name:

C, D::=> | ⊥ |A|C¯|(C, D)|[C, D]| ∃R.C | ∀R.C .

On the setR, the relation = is defined to be the smallest congruence relation induced by the following equations.

Associativity

(C,(D, E)) = ((C, D), E) [C,[D, E]] = [[C, D], E]

Commutativity [C, D] = [D, C]

(C, D) = (D, C)

(2)

Units

(C,>) = C [C,⊥] = C [>,>] = >

(⊥,⊥) = ⊥

Negation

(C, D) = [ ¯C,D]¯ [C, D] = ( ¯C,D)¯

¯¯

C = C

Roles

∀R.C = ∃R.C¯

∃R.C = ∀R.C¯

∀R.> = >

∃R.⊥ = ⊥

Astructureis an element ofR/=, i.e. an equivalence class of prestructures. For a given structureC, the structureC¯ is called itsnegation.Contextsare defined by the following syntax, whereCstands for any structure:S::={◦} |[C, S]|(C, S).

Aninference rule is a scheme of the kind S{C}

ρS{D}. This rule specifies a step of rewriting inside a generic context S{◦}. A proof in a given system, is a finite chain of instances of inference rules in the system, whose uppermost structure is the unit>.

2 System SKSg

ALC

The following set of rules defines the sound and complete cut-free proof system SKSgALC forALC in the calculus of structures :

S{>}

i↓S[C,C]¯

S(C,C)¯ i↑

S([C, D], E) S{⊥}

sS[C,(D, E)]

w↓S{⊥}

S{C}

w↑S{C}

S{>}

S[C, C]

c↓ S{C}

c↑ S{C}

S(C, C) S{∀R.[ ¯C, D]}

k↓S[∀R.C,∀R.D]

S(∃R.C,∃R.D) k↑ S{∃R.( ¯C, D)}

References

1. Brünnler, K.: Deep Inference and Symmetry in Classical Proofs. Logos Verlag, Berlin (2004)

2. Schild, K.: A correspondence theory for terminological logics: Preliminary report. In:

Proceedings of the International Joint Conference on Artificial Intelligence. (1991) 3. Stewart, C., Stouppa, P.: A systematic proof theory for several modal logics. In:

Advances in Modal Logic. Volume 5., King’s College (2005)

Références

Documents relatifs

All essential choices are confined to this phase; they include: disjunctive choice (for ), multiplicative choice (for ), possible failures (for atoms, 1, and !, if the context is

From the perspective of theorem proving for example, the presence of the bidirectional rules and contraction as explicit structural rules in LBI means that it is difficult to

We propose in this paper an extension of the calculus of structures, a deep inference formalism, that supports incremental and contextual reasoning with equality and fixpoints in

We have presented a version of the λΠ-calculus modulo where rewrite rules are explicitly added in contexts making their addition an iterative process where previous rules can be used

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In this case the right and left hand limits are different, and hence we say that the limit of f x as x tends to zero does not exist even though the function is defined at 0.. This

Global types of the form prepare (Timestamp) from Participant to Leader mean that role Participant sends a message of type Timestamp to the role Leader, using the channel prepare..

This work evolved in many directions: in [2], Meseguer complemented the theory of institutions by providing a categorical characteri- zation for the notions of entailment system