• Aucun résultat trouvé

Space-time multilevel Monte Carlo methods and their application to cardiac electrophysiology

N/A
N/A
Protected

Academic year: 2021

Partager "Space-time multilevel Monte Carlo methods and their application to cardiac electrophysiology"

Copied!
17
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal

of

Computational

Physics

www.elsevier.com/locate/jcp

Space-time

multilevel

Monte

Carlo

methods

and

their

application

to

cardiac

electrophysiology

S. Ben Bader

a

,

,

P. Benedusi

a

,

A. Quaglino

a

,

b

,

P. Zulian

a

,

R. Krause

a

aCenterforComputationalMedicineinCardiology,InstituteofComputationalScience,UniversitàdellaSvizzeraitaliana,Lugano,Switzerland bNNAISENSESA,Lugano,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Availableonline5February2021 Keywords:

UncertaintyQuantification Multilevelmethods

Space-timefiniteelements(3D+1) Cardiacelectrophysiology Monodomainequation

We present anovel approach aimedat high-performanceuncertainty quantification for time-dependent problems governed by partial differential equations. In particular, we consider input uncertainties described by a Karhunen-Loève expansion and compute statisticsofhigh-dimensionalquantities-of-interest,suchasthecardiacactivationpotential. OurmethodologyreliesonacloseintegrationofmultilevelMonteCarlomethods,parallel iterativesolvers,and aspace-timediscretization.Thiscombinationallowsforspace-time adaptivity,time-changingdomains,andtotakeadvantageofpastsamplestoinitializethe space-timesolution.Theresultingsequenceofproblemsisdistributedusingamultilevel parallelizationstrategy,allocatingbatchesofsampleshavingdifferentsizestoadifferent numberofprocessors.Weassesstheperformanceoftheproposedframeworkbyshowing in detail its application to the solution of nonlinear equations arising from cardiac electrophysiology.Specifically,westudythe effectofspatially-correlatedperturbationsof theheartfibers’conductivitiesonthemeanandvarianceoftheresultingactivationmap. As shownby the experiments,thetheoretical rates ofconvergence ofmultilevel Monte Carloare achieved. Moreover,thetotalcomputational work foraprescribed accuracy is reducedbyanorderofmagnitudewithrespecttostandardMonteCarlomethods.

©2021TheAuthor(s).PublishedbyElsevierInc.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Manyphenomenainscience,engineering,andmedicinecanbemodeledasinitialboundaryvalueproblemsforan un-known function.Theirnumericalsolutionisa computationallydemanding task.Inadditionto that,the inputdataorthe parameters ofthesemodelsmightnot be knownexactly,i.e., they aresubjecttoa possiblylarge uncertainty.Inorderto guarantee that the outcome of simulations can be relied upon, it istherefore imperative to quantify the effects ofsuch input uncertaintiesontheoutput quantities-of-interest.Thisprocessiscalledforwardpropagationandispartofthefield ofUncertaintyQuantification(UQ).Thiscanbeachievedvia,e.g.sampling methodsbysolving,numeroustimes,a computa-tionallyexpensiveproblem.Thissettingrequiresthatoneshouldnotonlyrelyonhugecomputationalresources(e.g.parallel implementationonsupercomputers),butalsoonmathematicalstate-of-the-art techniquesforreducing thecomputational load.

Inthe caseofcardiacelectrophysiology,it hasbeenwell establishedthat theheart muscle-fibersplay amajor role in the electrical conductivity.From CTand MRIimaging, the fibersorientations aswell asthe conductivitiesthey carry are

*

Correspondingauthor.

E-mailaddress:seif.ben.bader@usi.ch(S. Ben Bader). https://doi.org/10.1016/j.jcp.2021.110164

0021-9991/©2021TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

extremelyhardtodetermineprecisely.Moreover,thesecanvaryfromonepatienttoanother,leadingtohugeuncertainties if standard orientations or conductivities are used in patient-specific simulations. In this work, we focus only on fiber conductivities andmodelit asaspatially-correlated randomperturbation applied tothediffusion field.In thiscontext,a single patient-tailored simulationcan takeseveralhours on alarge cluster, forexamplewhen themonodomainmodelis employed [26].It followsthat,e.g.,UQ forsuchmodelsis currentlyunfeasible, orextremelyinefficient, withplainMonte Carlomethods.

A standardapproach toovercome thesedifficultiesis touse modelreduction strategies,such asreducedorsurrogate models [7,19].Theseapproximationsarebuild upontheobservationthat inmanyapplicationsitisclearly possibleto dis-tinguishbetweenoffline andonline phasesoftheworkflow,wheretheformeristypicallyveryexpensiveandencompasses everything thatcan beprecomputedinadvance,e.g.,training asurrogatemodelbeforeanypatient-specificdatabecomes available, whilethelatterisverycheap andconsistsonly ofmodelevaluations.Unfortunately, thisapproach hastwo sig-nificantdrawbacks.Ontheonehand,complexerrorestimatesmustbeprovidedtoensurethattheapproximationerroris within acceptable bounds.On theother hand,theoffline training shouldbe performedonlyonce,which isunrealisticin caseswhere,e.g.,thegeometryisnot knowna priori.Alternativetothat,physics-basedreduction strategieswhichbypass theprecomputationarealsopossible.Inthecaseofelectrophysiology,theactivationtimecanbecomputedviatheeikonal equation,whichprovidesaphysiologically-meaningfulsolution [31],stronglylinkedtothebidomainequation [6].

Amorerecentideaistoallowreducedmodelstobeinaccurate,inthesense ofnotprovidinganapproximationwithin certainerrorbounds.Accuracyisreplacedbycorrelation [29] orevenonlystatisticaldependence [22] withthehigh-fidelity model. This approach has a twofold advantage. Onthe one hand,it is the statistical dependence, ratherthan the error bounds of coarse models based on coarse meshes,that is crucial to ensure that propagating uncertainties via the low-fidelitymodelsprovideuseful informationonthestatisticsofthehigh-fidelityquantity-of-interest.Ontheotherhand, low-fidelitymodelsare notrestrictedtolow-resolutiongeometries,thereforesolvingthemcanbeseveralordersofmagnitude faster than a coarse model. However, some computational effort (

100 runs of the high-fidelity model) is needed for estimatingthestatisticaldependencebetweenthemodels.Moreover,thereisnoestablished approachfortreating vector-valued quantities-of-interest [28], whichmay requirea significantly differentnumberof samplesofeach model foreach vectorcomponent.Anapproachbasedonminimizinganormoftheerrorwasrecentlyproposedin[34].

Inthespecificcontextofelectrophysiology,theuseofBayesianmultifidelitymethodshasbeenadvocatedin [33],where a Bayesian regression mappingthe low- and high-fidelity outputs iscreated. The Bayesiannature of thisapproach error automaticallyaugmentstheestimate ofthesolutionstatisticswithfullprobabilitydistributionsandcredibleintervals, ob-tainedindependentlyofthedegree ofstatisticaldependencebetweenmodelsandthenumberofsamplesemployed.This makesitaverysuitable approachforscenarioswhereresourcesarescarce,suchasclinicalapplications.However,this ap-proachislimitedtoscalarorlow-dimensionalquantities-of-interest.Moreover,itdoesnotyieldasymptoticconvergenceto point estimatesasthe numberofsamplestendstoinfinity, soit isunsuitableforscenarioswhereaccurate estimatesare desired.

All ofthe above methodologiesare characterized by a clearsegregationamong sampling, models,discretizations, and solutionmethods.Here,wetake theoppositerouteandintertwinethedifferentcomponents.Thecentral pointofour ap-proach is to consider the multilevelMonte Carlo method [13], which extends the idea ofcontrol variables [9]. The key idea istoperform mostofthe simulationson asequenceoflow-resolution models.Similarly tothecaseofmultifidelity, thedirectuseofthehighest-resolutionlevelguaranteesconvergence,whileasignificantportionofthecomputationalload is offsetto thelow-resolution hierarchy.However, in thiscase, nooffline preprocessingis neededtofind thecorrelation acrossmodelsandvector-valuedoutputsarenaturally handledbytheframework.Inordertoallowforarbitrarycoarsening in spaceandtime, we further rely on a space-timediscretization ofthe monodomain equation. Bydoing so, italso be-comespossibletousethealreadycomputedsamplesfortheinitializationofNewton’smethod,whichsolvesthespace-time equations,therebysignificantlyreducingtheamountofiterationsrequiredforconvergence.

Theoutlineofthepaperisasfollows:Section2introducestheelectrophysiologyequationsandtheuncertaintyrelated tothefiberconductivities,Section

3

detailstheproposedmethodusingtheheatequationasamodelproblem,andSection4

presentstheresultsfromthenumericalexperiments.

2. Modeling theuncertaintyinthefiberconductivities 2.1. Thedeterministicmonodomainequation

The heartassumesa pumpingfunctionthat istheresultofa verycomplexcontractionandrelaxationcycleoccurring in thecardiac cells. Thisprocess is controlled bya non-trivialpattern ofelectrical activationwhich isat thecoreof the heartfunction.Indeed,severalheartdiseasesarecloselyrelatedtodisturbancesoftheelectricalactivity.Asaconsequence, understandingandmodeling thisactivityisimportantforabetterclinicaldiagnosisandtreatmentofpatients.

Thepropagationoftheelectricalpotentialinsidethecardiacmuscleisinitiatedinthesinoatrialnode,thatisontopof theleft andrightatriums.Itgeneratesa stimulusthat givesriseto atraveling wave throughtheheart.Its cells havethe abilitytorespondactivelytothiselectricalstimulusthroughvoltage-gatedionchannels.

Startingfromthefirstmodelsforionicchannels[20],alargefamilyofmodelshasbeendevelopedbynow,describingthe electrical activityatthesubcellularlevel.Combinedwithdiffusioninspace,theso-calledmonodomainequation hasbeen

(3)

derived[21,25] fortheelectricalpropagationinthecardiactissue.Themonodomainequationiswrittenasanon-stationary reaction-diffusionequation

u

(

x

,

t

)

t

− ∇ · (

G

(

x

)

u

(

x

,

t

))

+

Iion

(

u

(

x

,

t

))

=

Iapp

(

x

,

t

),

∀(

x

,

t

)

D

× (

0

,

T

],

G

(

x

)

u

(

x

,

t

)

·

n

(

x

)

=

0

,

∀(

x

,

t

)

∈ ∂

D

× (

0

,

T

],

(1) u

(

x

,

0

)

=

0

,

x

D

,

where u

=

u

(

x

,

t

)

is the electrical potential, D

⊂ R

d a domain representing the heart, T

∈ R

+ the endtime, Iapp

:

D

×

[

0

,

T

]

→ R

an appliedstimulusmodelingthe sinoatrialnodeactivation,and Iion

: R

→ R

an ionchannelmodel.We rely hereontheFitz-HughNagumo(FHN)model[10],forwhichwehave:

Iion

(

u

)

:=

α

(

u

urest

)(

u

uth

)(

u

upeak

).

(2)

The values urest, uth and upeak are characteristicpotential values representing theaction potential behavior that a heart cellgoesthroughduring itsactivation. Thesearerespectivelytherestingpotential urest (cellisunactivated),thethreshold potentialuth(cellistriggered)andthepeakvalueupeak(cellisactivated).Here,

α

isanon-negativescalingparameter.

Finally,G in(1) representstheconductivitytensormodelingthefibers,alongwhichelectricalpotentialpropagationtakes place,allovertheheartmuscle.Thetensor G playsamajorroleinourmodelasitmayrepresentasourceofuncertainty withregardstothefibersorientationsandconductivitiesitmodels.We hereassume that G isa scalarisotropicdiffusion fieldandfocusexclusivelyonthefiberconductivities.

2.2. Thestochasticmonodomainequation

The mathematicalandnumericalinstruments developedindecades ofresearch intheelectrophysiology field allow in principle forvirtual therapyplanning. Themonodomainequation isby nowanestablished modelincardiac electrophysi-ology,describingwithhighaccuracytheelectricalactivityinthemyocardium.Nonetheless,patient-specificsimulationsare stillnotemployedasaroutinetoolinthetreatmentofpatients.

Aparticularreasonforthiscan befoundinthedatawhich isacquiredinclinical practice.Forinstance,thefiber con-ductivitiesstillrepresentagreatchallengetobedeterminedfromanimagingpointofaview.Oneshouldthereforeaccount forpossibleuncertaintiesofthediffusionfieldG in(1).

Modelingtheuncertaintyrequirestoaccountforanadditionalstochasticvariableintheformulationofthemonodomain equation. Letus denote this stochastic variable with

ω

∈ 

where



is the set ofall possible outcomes, which in our applicationwouldrepresentthesetofalldiffusionfieldsmodeled bytheuncertainty.Wearenowinterestedinestimating thestatistics ofu

(

x

,

t

,

ω

)

,i.e.

E

[

u

(

x

,

t

)

]

=



u

(

x

,

t

,

ω

)

d

P (

ω

)

,asasolutiontothemonodomainstochastic PDE,forwhich themainequationreads:foralmostevery

ω

∈ 

:

u

(

·,

ω

)

t

− ∇ · (

G

(

·,

ω

)

u

(

·,

ω

))

+

Iion

(

u

(

·,

ω

))

=

Iapp

(

·),

in D

× (

0

,

T

],

(3)

where we omittedthe spaceandtime variables

(

x

,

t

)

forthe sake of readability. Forevaluating

E

[

u

(

x

,

t

)

]

given(3), we relyonMonte-CarloandMultilevelMonte-CarlotechniquesasdescribedinSection3.Thesemethodsimplyadeterministic reformulationof(3), andsolvingthemonodomainequation fordifferentindependentandidenticallydistributedsamples. Naturally,parallelizationplaysamajorroleintheperformanceofbothmethods,giventheimportantnumberofsamplesto consider.

3. Space-timemultilevelMonteCarlo 3.1. MultilevelMonteCarlo

Asintroducedintheprevioussection,weareinterestedinequationsthataresubjecttouncertainorunreliabledatain theaimofevaluatingtheinformationderivingfromtheprocessofsimulations.Thisconcept hadbeensummarizedunder theterminologyofuncertainty quantification (UQ)andisconcerned aboutextractingrobustandqualitativeinformation de-spitethepresenceofthisvariability.Inthenextsubsection,webrieflydetailtheproblemweintendtosolve,andintroduce thereadertothenotationwerelyon.

3.1.1. ProblemsettingandUncertaintymodeling

From a mathematical point ofview, theunderlying taskresidesin computingthe solution ofa PDE withcoefficients dependingonarandominputbelongingtoastochasticspace.Fortheproblem(3) tobewell-defined,weneedtointroduce thefollowingsetting.

(4)

Fig. 1. Exampleofrandomfieldsforcubeandventriclegeometries.(Forinterpretationofthecolorsinthefigure(s),thereaderisreferredtothewebversion ofthisarticle.)

Let

(,

,

P )

be acompleteandseparableprobabilityspace, with



2 a

σ

-fieldand

P

a probabilitymeasure.We considerabounded,LipschitzdomainD

⊂ R

d withd

=

1

,

2

,

3.WealsorequiretheBochnerspace

L2

(, ,

P;

B

)

:=



v

:  →

B

|

v strongly measurable such that

v

L2(;B)

<



,

where B

=

L2

(

[

0

,

T

];

H1

(

D

))

isitselfaBochnerspace(

[

0

,

T

]

denotesthetimedomain)and

v

L2(;B)

:=

 



v

(

·,

ω

)

2Bd

P (

ω

)



1/2

.

(4)

ThenormontheBochnerspaceB

=

L2

(

[

0

,

T

];

H1

(

D

))

isinturndefinedas

v

(

·,

ω

)

B

:=

 

[0,T]



D v

(

x

,

t

,

ω

)

2dxdt



1/2

.

(5)

Forthe sakeofbrevity, we willalways referto L2

(,

,

P

;

B

)

with L2

(

;

B

)

. Havingeverythingathand,we introducea simplifiedequationmodelof(3),givenby

findu

˜

L2

(

;

L2

(

[

0

,

T

];

H1

(

D

)))

suchthatforalmostevery

ω

∈ 

,

tu

˜

(

X

,

ω

)

div

(

G

(

X

,

ω

)

∇ ˜

u

(

X

,

ω

))

=

f

(

X

)

in D

× [

0

,

T

],

(6) where X

= (

x

,

t

)

andG

(

X

,

ω

)

isthediffusionfieldsubjecttotheuncertainty

ω

∈ 

,thatcanbeinterpretedasaparticular diffusionfieldfromallthepossibleonesweallowfortheproblemfor.Noticethatiftheforcing function f wasdepending onu

˜

(

X

)

andwrittenas f

(

X

)

=

Iapp

(

X

)

Iion

(

u

˜

(

X

,

ω

))

,werecoverthestochasticmonodomainequation(3).Wewill how-everlateronforerrorestimates(cf.subsection

3.1.2

)relyonaclassicalforcingfunction f

(

X

)

,independentfromu,

˜

treating thereforetheconvergenceratesforthequadraturemethodsonthestochasticheatequation.ThePDEfurtherencodes suit-ableboundaryandinitialconditions.Weareinterestedincomputingthestatisticsofthesolutionu tothestochasticPDE (6),i.e.

E

u

](

X

)

=



u

˜

(

X

,

ω

)

d

P (

ω

)

L2

(

[

0

,

T

];

H1

(

D

))

.

Morespecifically,every

ω

∈ 

expressesadifferentdiffusionfield G

(

X

,

ω

)

.Inourparticularcase,itismoreconvenient tothinkofthesedifferentdiffusionfieldsasasuperpositionofameandiffusionfieldG0

(

X

)

andarandomperturbationall overthedomain D (randomfield).

Wefurthermoreassumethediffusionuncertaintiestobespatially correlated,sinceneighboringregionsare morelikely tohavethesameconductivityinahealthyheart.Wethereforetalkaboutspatiallycorrelatedrandomfields[17].Examples ofrandomfieldsofcubeandidealizedventriclegeometriescanbefoundinFig.1.

The followingareobtainedby expressingthestochastic diffusioncoefficient G

:

D

× 

→ R

asa truncated Karhunen-Loève(KL)expansion [33] G

(

x

;

ω

)

=

G0

(

x

)

+

s M



k=1

λ

k

φ

k

(

x

k

(

ω

) ,

(7)

where

λ

kand

φ

k

(

x

)

arerespectivelyeigenvaluesandeigenvectorsofthecovariancematrixinducedbyaspatialcorrelation kernelk. Regarding theKLtruncation,thestochastic dimension M is obtainedbylow rankapproximating thecovariance matrix withpivoted Choleskydecomposition [15,17].The

k

(

ω

)

}

Mk=1 are stochastically uncorrelatedrandom variables of

(5)

thejointdensityfunction

ρ

(

y

)

=

Mi=1

ρ

k

(

yk

)

.Weusehereauniformdistribution,i.e.

ψ

i

U(−

1

,

1

)

.Wearethereforeable toidentifythestochasticspace



withitsimage

[−

1

,

1

]

M usingthemapping

ψ

:  → [−

1

,

1

]

M

,

(8)

ω

→ (ψ

1

(

ω

),

· · · , ψ

M

(

ω

)).

(9)

Likewisebyinsertingarealizationy

= (

y1

,

· · · ,

yM

)

= (ψ

1

(

ω

),

· · · ,

ψ

M

(

ω

))

,wecouldreformulatethetruncatedKL expan-sioninadeterministicformforG

:

D

× [−

1

,

1

]

M

→ R

as

G

(

x

,

y

)

=

G0

(

x

)

+

s M



k=1

λ

k

φ

k

(

x

)

yk

.

(10)

Finally,s

>

0 in(10) ischosensuchthatforallx

D s

M



i=1

λ

i

φ

k

(

x

)

yk

L([−1,1]M)

≤ δ

G0

(

x

),

for

δ

=

0

.

5,inordertoenforcethediffusioncoefficient tobe uniformlyellipticandbounded, i.e.for all x

D andforall y

∈ [−

1

,

1

]

M

0

<

Gmin

(

x

)

G

(

x

,

y

)

Gmax

(

x

) <

∞.

The arguments aboveallow also for rewriting the stochastic equation (6) in aparametric form: findu

L2

(

[−

1

,

1

]

M

;

L2

(

[

0

,

T

];

H1

(

D

)))

tu

(

X

,

y

)

div

(

G

(

X

,

y

)

u

(

X

,

y

))

=

f

(

X

)

in D

× [

0

,

T

],

(11) forally

∈ [−

1

,

1

]

M.

Theexpectationofthesolutionforthestochasticheatequation(11) canberewrittenasahighdimensionalintegral

E[

u

](

X

)

=



[−1,1]M u

(

X

,

y

)

ρ

(

y

)

dy





˜

u

(

X

,

ω

)

d

P (

ω

)

= E[˜

u

](

X

).

(12)

3.1.2. Methodsanderrorestimates

Inordertonumericallyapproximatetheintegral(12),oneshouldrelyonaquadratureformulaofthetype

Q

u

(

·) =

Nl



i=1

wiu

(

·, ξ

i

)

ρ

i

) .

(13)

Approximatingastochasticintegrallikewisecanfurtherbeunderstoodasasamplingmethod,wherethesamplesrepresent the quadrature points. A well known samplingmethod is the Monte-Carlo estimator. It ischaracterized by a fairly easy implementation and isstraightforward to use,but it has a low convergence rateand hence requires a large number of samples,i.e.simulations.Inthiswork,weconsideramultilevelapproachasanalternativetostandardMonte-Carlo.

TheMonte-Carlo(MC)estimatorrepresentsadirectmethodforcalculatingthesolutiontotheparametricproblem(12). Itsquadratureformulacanbeexpressedas

Q

MCu

(

·) =

Nl−1 Nl



i=1

ui

(

·),

(14)

i.e.themeanoversolutionsamplesui,i

=

1

,

..,

Nl correspondingto Nl independentandidenticallydistributedrealization. The definitionofthe MCestimator (14) wouldbe completelyauto-sufficient ifasolution ui tothe sample i couldbe computedexactly.However,inthecontextthemonodomainequation,anexactandanalyticalsolutioncannotbeprovided andwerelyonfiniteelementstonumericallyapproximateit.Letusconsideranestedsequenceofshaperegularand quasi-uniformtetrahedralizations

{

T

l

}

l≥0ofthespatialdomainD,eachofmeshsizehl

2−l.Wedefinethecontinuous,piecewise linearfiniteelementspaces

S

l

= {

vl

C0

(

D

)

:

vl|T

∈ P

1

(

T

),

T

T

l

}.

Wenowintroducethenotation

Q

MC,lu

(

·) =

Nl−1 Nl



i=1

(6)

whereuliisthefiniteelementapproximationofthesolutionuiforthesamplei,lyinginthespace

S

l.Therefore,thesolution obtainedthroughtheMCmethodissubjectnotonlytothestochasticerrordependingonthenumberofsamplesusedas quadraturepoints,butalsoonthediscretizationerrorinherenttosolvingthePDEwithinthecontextoffiniteelements.

ThestochasticerroroftheMCquadratureintegrationisboundedby [3]

E[

u

] −

Q

MCu

L2([−1,1]m;V)

Nl−1/2

u

L2([−1,1]m;V)

,

(16)

where

V =

L2

(

[

0

,

T

];

H1

(

D

))

withthenormdefinedasin(5).Ontheotherhand,usinglinearfiniteelementsandasecond ordermethodintime(e.g.Crank-Nicolson)wegetthefollowingerrorestimatefora H2–regularsolutioninspace [1,11,14,

35]

u

ul

V

C

(

hl2

+ 

tl2

)

f

V

,

(17)

forsomeconstantC

>

0 thatdependsontheinitialconditionandthenumberoftimestepsconsidered,butnotonhl and



tl whicharerespectivelythespatial andtimediscretizationparametersforagivenlevell.Putting(16) and(17) together resultsinhavingthegeneralerrorbound [3]

E[

u

] −

Q

MC,lu

L2([−1,1]m;V)

C

(

N

1/2

l

+

h

2

l

+ 

t2l

)

f

L2([−1,1]m;V)

.

(18)

The setting for a MC estimation istherefore closely relatedto that of the following errorestimate, asit underlinesthe relationshipbetweenthemeshsizeandthenumberofsamplestoconsideronagivendiscretizationlevel.Indeed,inorder to not have an error that is neither dominated by discretization in stochastics or discretization in space and time, the numberofsamplestoconsideronalevell issuchthat

Nl−1/2

O

(

hl2

)

=⇒

Nl

O

(

hl 4

)

=

O

(

2 4l

),

wherewe assumethathl

2−l andhl

∼ 

tl.TheconvergencerateoftheMCmethodcanthereforebe derivedfrom(18) andisgivenby2−2l.Thereadermightatthislevelrealizethelimitationofsuchamethod,asthenumberofsamplestobe takengetstremendouslylargewhenconsideringdiscretizationlevelswithsmallhl and



tl.Inaddition,eachoneofthese samplesalsorequiresamoresignificantcomputationalloadwhichplacestheMCmethodintherangeofnumericallycostly methodsforPDEsrequiringahighresolutionsolution.

TheMultilevelMonteCarlo(MLMC)estimatorrepresentsanalternativefortheMCestimator.Wewouldliketosolvethe equation foran initiallydiscretized domain D

× [

0

,

T

]

,whichwe willrefer toasbeingthefinediscretization level L.Let usestablishahierarchyofnestedcoarsediscretizationlevelsl

=

0

,

1

,

..,

L

1 obtainedbyuniformcoarseninginspaceand time.WedefinetheMLMC-estimatorasfollows:

Q

MLMC,Lu

(

·) =

L



l=0

Q

Ll MC

(

ul

(

·) −

ul−1

(

·)),

(19) where



Q

l MC



L

l=0isasequenceofMCquadratureswithincreasingprecisionoforder2−

2l [16].Wealsodefineu −1

0. To clarify the above, the underlying idea about the MLMC-estimator is to perform the dominant number of MLMC samples on a coarse level l

=

0, and to obtain a solution forlevel l

=

L by adding corrections betweenevery different successivelevelsl

1 andl. TheMLMCanditsconvergenceratehavebeendiscussedindetailsin [5,16,36] forthecaseof thestochasticPoissonproblem.Forthestochasticequation,given(16),(17) andtheabovespecified2−2l increasingprecision forthequadraturerule,asimilarresultcanbeshown:

E[

u

] −

Q

MLMC,lu

L2([−1,1]m;V)

C 22LL

f

L2([−1,1]m;V)

,

(20)

forsomeconstant C

>

0.TheMLMChasthereforethesameconvergenceratethanMC uptoalogarithmicnumber,butis designedtobelesscomputationallyexpensive.

3.2. Space-timediscretizationforthelinearproblem

The heat equation (6) can be numerically solved by means offinite elements (FE)and finite differences(FD), which are well established forsuch problems.A classical approachin thatsense isto performa FEdiscretization inspace and FDintime, i.e.using asequentialtime-steppingmethod.The parallelscalabilityofthisapproachiseventually limitedby the timeintegrationprocess. Infact,when theparallelizationinspacesaturates,sequential timeintegrationbecomesthe naturalbottleneckforthescalabilityofthesolutionprocess.Thiscanbeovercomebyparallel-in-timemethods.Thosewere developedinthelastdecades [27] toovercomethisbottleneckandenhanceparallelisminbothspaceandtime.Inparticular, weemployamonolithicapproachinspaceandtime,whereweassemblealargespace-timesystemthatissolvedinparallel [24].Foracomprehensivereviewofparallel-in-timemethods,see[12].

(7)

We use Lagrangian FEof first orderfor the discretizationin the spacevariable. Assuming that the solutionu

(

x

,

t

)

is sufficiently regularon D, wederive theweak formulationfrom(6) (inwhichwe neglectthestochastic variable

ω

) using testfunctionsv

H10

(

D

)

:



D

u

(

x

,

t

)

t v

(

x

)

dx

+



D

(

G

(

x

)

u

(

x

,

t

))

v

(

x

)

dx

=



D f

(

x

,

t

)

v

(

x

)

dx

.

Then,wedefinethesemi-discreteproblem:

Mh

u

(

t

)

t

+

Khu

(

t

)

=

f

(

t

).

(21)

Here,Mh

∈ R

n×nandKh

∈ R

n×narethestandardmassandstiffnessmatricesobtainedusingn linearnodalbasisfunctions

i

}

ii==n1

⊂ P

1,i.e. Mh

:=



D

ψ

i

(

x

j

(

x

)

dx

n i,j=1

,

Kh

:=



D

(

G

(

x

)

∇ψ

i

(

x

))

∇ψ

j

(

x

)

dx

n i,j=1

,

(22) f

(

t

)

:=



D f

(

x

,

t

i

(

x

)

n i=1

,

(23)

arisingfromtheapproximation:

u

(

x

,

t

)



n



i=1

ui

(

t

i

(

x

),

with u

(

t

)

= [

u1

(

t

),

u2

(

t

),

· · · ,

un

(

t

)

]

T

.

Considerauniformpartitionofthetimeaxis

[

0

,

T

]

inm intervals,suchthat



t

=

T

/

m andtk

=

k



t,withk

=

0

,

· · · ,

m.We applythesecondorderCrank–Nicolsonmethodforthetimediscretizationof(21) andobtain,fork

=

0

,

· · · ,

m

1



Mh

+



t 2 Kh



uk+1

+



Mh

+



t 2 Kh



uk

=

fk and uk

:=

u

(

tk

),

(24) with fk

:=



t 2



f

(

tk+1

)

+

f

(

tk

)



.

(25)

Ifwedefine At,h

:=

Mh

+

2tKh andBt,h

:= −

Mh

+

2tKh thesystemofequations(24) canbesummarizedinthecompact form: At,h Bt,h At,h Bt,h At,h

u1 u2

..

.

um

=

f1 f2

..

.

fm

⇐⇒

C u

=

f

,

(26)

whereC

∈ R

nm×nmisalargespace-timesystemthatcanbedistributedandsolvedinparalleland u

:= [

u1

,

u2

,

· · · ,

um

]

T and f

:= [

f1

,

f2

,

· · · ,

fm

]

T

.

3.3. Discretizationofthenonlinearproblem

The discretization of (1) is an extension of the assembly procedure described in Section 3.2. In particular, the linear system(26) ismodifiedtocontainthediscretizationofthenon-linearreactiontermIion:

C u

+

r

(

u

)

=

f

,

(27)

wherer

(

u

)

∈ R

nmisgivenby

r

(

u

)

:= (

t IN

Mh

)

Iion

(

u

)

with Iion

(

u

)

:= [

Iion

(

u1

),

Iion

(

u2

),

· · · ,

Iion

(

unm

)

]

T

,

wheren andm arerespectivelythespaceandtimedegreesoffreedom.

TheJacobianJ

(

u

)

∈ R

nm×nm ofthenon-linearoperatorinlefthandsideof(27) isgivenby J

(

u

)

=

C

+ (

t Im

Mh

)

·

diag

(

Iion

(

u1

),

Iion

(

u2

),

· · · ,

Iion

(

unm

)).

(8)

3.4. Transferofdiscretefields

ThetransferofinformationbetweenfiniteelementspacesinourmultilevelMonteCarlomethodisperformedbymeans ofboth L2–projectionsandstandardfiniteelementinterpolationmethods.Inthecasewhenmeshhierarchiesaregenerated byrefinement,theelementsoftherefinedmeshformpartitionsoftheelementsoftheoriginalcoarsemesh.Thisallowsus toemploystandardfiniteelementinterpolationfortransferringfromthecoarsespacetotherefinedspace.However,ifthe finemeshisnotgeneratedbyrefinementwecanuseL2–projectionsforthesametask.Fortransferringdiscretefieldsfrom the finespace to acoarser spacewe also employ the L2–projection. L2–projectionsare proven tobe optimal andstable andin generalsuperiorto interpolation [18].In particular,we employ alocalapproximation ofthe L2–projection, which is constructedby exploiting thepropertiesof thedual basis [30,37]. Thislocal approximationallows usto construct the transferoperatorexplicitlyinsuchawaythatitcanbeappliedbymeans ofasimplesparsematrix-vectormultiplication. Inaparallelcomputingenvironment,wheremeshesarearbitrarilydistributed,theassemblyofthemassmatricesrelatedto

L2–projection isnot trivial.Theconstruction ofthediscrete L2–projectionrequiresusto detectandcompute intersections betweentheelements ofthecoarsemeshandtheelementsofthefinermeshwhichmightbestoredindifferentmemory addressspaces(e.g.,onasuper-computingcluster).Forthispurposeweusetheparalleltree-searchalgorithmsandassembly routinesdescribedin [23].

In thiswork we extend theabove to multilevel space-timediscretizations. By exploitingthe tensor-productstructure of (26) wecan simplifythe implementationandbenefitfrombettercomputationalperformance. Asbefore,letusassume that the spatial mesh does not change at each time-step (i.e., no adaptive mesh refinement). In this case, the tensor-product structureofthe space-timegridallows ustoconstructspace-time operatorsin aconvenientwaywhich requires theassemblyofthespatialtransferoperatortobeperformedonlyonce.

Forl

=

0

,

...,

L

1 let ul

∈ R

nlml bethecoefficientsofthediscrete space-timesolutiononlevell,wherenl (resp.ml) is

thenumberofspatialnodes(resp.timesteps)onl.WithPl,h

∈ R

nl×n wedenotethespatialdiscreterepresentationsofthe

L2–projectionfromthefineleveltoacoarserlevell, andwith Pl,t

∈ R

ml×m thetemporalrestrictionoperator,obtainedby standardbisection.Thespace-timetransfermatrixPl

∈ R

nlml×nm isconstructedwiththefollowingtensorproduct

Pl

=

Pl,t

Pl,h

,

andwewrite ul

=

P

lu.Thespace-timeinterpolation(prolongation)operatorfromanycoarselevell

1 toafinerlevell is constructedinthesameway,usingthetensor-productbetweentransferoperators.

3.5. Parallelsolver

Thenonlinearproblem(27) issolvedwithNewton’smethod.Foreachofthearisinglinearproblemsintheform(26), we employ a space-time parallelPGMRES, withthe preconditionergiven byan ILU(0)factorizationwithin the PETSc [2] framework.Ifmultipleprocessorsareused,thecorrespondingblock-Jacobipreconditionerisemployed,andthePGMRESis applied,inparallel,tothelocalblocks.Theusage ofthelatterPGMRESismotivatedbythespectral analysisofthe space-timesystemin(26),carriedoutin [4].AsdefaultbyPETSc,theGMRESsolverisrestartedafter30iterations.Itisimportant torecallthatthefirstiterateplaysanimportantrolefortheconvergenceofNewton’smethod.Forthisreasonwe usethe unperturbedreferencesolutionasinitialguessforeachMonte-Carlosample.Thisguaranteesfastconvergenceinoursetting.

3.6. Parallelizationstrategy

The MLMCmethoddevelopedabove reducesundoubtedlythe computationalcomplexity thatiscarriedby anaive MC approach. However, to fullyexploit the multilevelalgorithm, itis necessary to relyon a parallel environment that takes advantageofalldifferentlayersunderwhichconcurrent workcanbeexecuted.TheMLMCrequirescomputingsamplesat differentdiscretizationlevels, requiringadifferentamount ofresources.Therefore,we could thinkofinitially distributing therequiredamountofworkforevery levelasafirstparallelization layer.Onevery oneoftheselevels,multiplesamples needtobecomputed.Thosearecompletely independentandwecanconsiderdistributingworkacrosssamplesasasecond parallelizationlayer.Thethirdlayer,inthecontextoffiniteelements,wouldnaturallybeaparallelizationacrossthe tempo-spatialgrid,usingspace-timeparallelmethod.

We therefore rely on a so-called three level parallelization strategy largely inspired by [8]. We furthermore adapt it to standard allocationprocedures oncurrentHigh Performance Computing (HPC)system, in whicha requestfor a small amount ofresources ismore likelyto be granted ina shorteramount oftime. We issueconsequently differentjob calls involvingdifferentamountofresources forevery paralleltaskconsistingofbatches ofsamplesto solve(cf.Fig.2). Asan example,let ussuppose wehave anMLMCsetting of L

+

1 levels.We start withinitiating p0

,

. . . ,

pL processes carrying thetasksforeveryoneoftheselevels.Thesamplestobecomputedforeverylevell areequallydistributedinbatchesover the pl processes createdforthat level. The differentnumberof samples Nl on each levelandthe flexibility inchoosing the numberofprocesses pl are suchthat the batch size mayvaryacross thelevels, asshowninFig. 3.Every sample is furthersolvedinparallelwithdomaindecompositiontechniques,fulfillingthethirdparallelizationlayer.Detailsaboutthe parallelsolverwereliedonareprovidedattheendofsubsection

2.2

afterintroducingourapplication,i.e.themonodomain

(9)

Fig. 2. MLMC tasks scheduling and job requests step. tl,idenotes the i-th task of level l.

Fig. 3. The different processes executing concurrently different batches of samples.

equation. Notice thatanother advantageofthe followingcluster schedulingapproachis toavoidwasting resourceswhen theprocesseshavedifferenttimeexecution.

4. Numericalexperiments

The numericalexperimentswere realizedusingSLOTH[32] aUQ pythonlibrarydevelopedattheInstitute of Compu-tational Science (ICS)ofLugano.For thiswork,we extended itto themonodomain equation(and ingeneralto all types of3D

+

1PDEs)byemployingUtopia[38] forthefiniteelementformulation.Theexperimentshavebeenperformedonthe multicorepartitionofthesupercomputerPizDaintoftheSwissNationalSupercomputingCentre.

Parametersfortheexperiments Theparametersofmonodomainequation(1) usedforthenumericaltestsare:

G0

(

x

)

=

3

.

325

·

10−3cm2mV ms−1 from(7) isthemeandiffusionfield.

α

=

1

.

4

·

10−3 mV−2ms−1,u

rest

=

0 mV, uth

=

28 mV,andupeak

=

115 mVare thevaluesforthe ionchannel model Iion

(

u

)

in(2).

(10)

Fig. 4. Stimulus locations for the cube and the ventricle.

Fig. 5. KL eigenvalues decay for the cube (left) and the idealized ventricle (right).

Iapp

(

x

,

t

)

=



urest

+

upeakexp



(

x

x0

)

2

σ

2



χ

[0,t1)

(

t

)

where t1

= 

t

=

0

.

005 ms is the function we rely on for the

appliedstimulus. Forthecube,

σ

=

0

.

5 cmwhereas fortheventricle itwas set

σ

=

1 cm.Here,x0 isthelocation of stimulusandareshownforbothgeometriesinFig.4.

ParametersforKLexpansion Weusethecorrelationkernel

k

(

x

,

y

)

=

e

d(x,y)2

σKL

,

for

σ

KL

=

0

.

25 forthecubeand

σ

KL

=

0

.

5,whiled

(

x

,

y

)

istheEuclidean distancebetweenx andy.Thedumpingfactor s in (7) forenforcinguniformellipticityissetto s

=

0

.

3 for bothgeometries.Thelowrankpivoted Choleskydecompositionon thecovariancematricesinducedbythecorrelationkernelsaboveyieldedthestochasticdimensionM

=

66 forthecubeand

M

=

87 fortheidealizedventricle.WefurthermorereporttheKLeigenvaluesdecayinFig.5.

4.1. Numericalexperimentsin1D

+

1

We intend to verifythe convergencerate ofboth MC and MLMCasdeveloped inSection 3.We consider an interval anduseahierarchynestedmeshes,obtainedbyuniformcoarseninginspaceandtime.InTable1,wereportallthedetails regarding theconsidered mesh hierarchy,i.e.the numberof elements,the meshsize, the numberoftime steps andthe timestepsize.

Wecreateareferencesolution,denotedasvre f,bycalculatingthemeanover20,000 samplesonthefinestlevelL

=

5. For the purpose ofverifying the MC convergencerate, we run several MCs on each level l with Nl

24l, andcompute thedifferencebetweentheexpectationcalculatedateachlevel,denotedasvl,andthereferencesolution.Weevaluatethe rootedmeansquareRMSE

= E[

el

2

]

1/2,whereel

= |

vl

vref

|

and

el

2

=



[0,T]

el

(

·,

t

)

2L2(D)dt

=



[0,T]



D e2l

(

x

,

t

)

dx dt

.

(11)

Table 1

DetailsabouttheconsideredMeshhierarchy.t andh arethetimeandspacediscretizationsteps,m andn are thenumberofsubdivisionsfortimeandspaceintervals.

l 0 1 2 3 4 5

n 31 62 125 250 500 1000

h 0.032 0.016 0.008 0.004 0.002 0.001

m 4 8 16 32 64 128

t 0.16 0.08 0.04 0.02 0.01 0.005

Fig. 6. Controlled convergence graphs for MC and MLMC for the 1D+1 example.

Table 2

Detailsaboutthemeshhierarchyforthecubegeometry.

l 0 1 2 3

Dof’s 5400 65,219 898,317 13,301,753

h 0.2 0.1 0.05 0.025

t 0.04 0.02 0.01 0.005

We plot the rooted mean square error versus the level, in what we will refer to as the controlled convergence graph. We usethisterminologyasitindicates that we arecontrolling thenumberofsamples inorderto haveastochastic and discretizationerrorsofthesameorder.TheplotisshowninFig.6.

In the same plot, we show the controlled convergence for the MLMC. For each level L, we perform an MLMC run involving as many levels by setting the number of samples on the coarse level to 24L. The number of samples for the following levelsis then calculatedby dividingthisnumber withtheidealsamplingratio,which corresponds inour case to 16.Thisnumbercanbe deducedby enforcingthath2

lN −1/2 l

=

h2l+1N

−1/2

l+1 which representstheerrorcontributionfrom levelsl andl

+

1.

4.2. Numericalexperimentsin3D

+

1

Weintendinthenextsubsectionstoestimateandverifytheconvergencebehavior fortheMCandtheMLMCestimators, as done for the 3D

+

1 case above. Furthermore, a comparison in terms of work to accuracy for both methods will be conducted.

Werely onthecubeandtheventriclegeometries,introduced inSection 3(cf.Fig.1).As opposedtoa classicalMLMC approach,whereone wouldrefine aninitiallycoarse meshinordertoreduce thevariance,wehereconsidertherealistic setting ofan application forwhichonly one mesh ofthe givengeometry isprovided. Thismesh is providedat thefine discretizationlevel,thereforethegoalfortheMLMCistoreducetheworkloadbyconsideringcoarsermeshes.Werelyon anestedmeshhierarchyof3and4levelsrespectivelyfortheventricleandthecubegeometries.Thenumberofspace-time degreesoffreedom(Dof’s),thespaceandtimediscretizationstepsofalltheconsideredlevelsforthecubeandtheventricle arerespectivelyreportedinTables2and

3

.

(12)

Table 3

Detailsaboutthemeshhierarchyfortheventriclegeometry.

l 0 1 2

Dof’s 154,546 2,120,420 31,184,747

h 0.1 0.05 0.025

t 0.02 0.01 0.005

Fig. 7. Convergence rate for the MC estimator for the cube and the ventricle.

Fig. 8. Mean (left) and variance (right) at the final time state for the cube.

4.2.1. Monte-Carloin3D

+

1

Weconduct aMonte-Carlostudy of N

=

10000 sampleson thefinediscretizationlevelsinordertoobtain areference solution. In Figs. 8 and 9, we show the mean and the variance at the final time state for the cube and the ventricle, respectively.

InSection3,wepresentthetheoreticalsemi-linearconvergenceoftheMCmethod(cf.Equation(16)).Weverifythisin Fig.7inwhichwe plottherootedmeansquareerror(RMSE)against thenumberofsamples(N) usedfortheestimation process. Itcanbe observedhow theRMSEindeedbehavesasRMSE

=

O(

N−0.5

)

.Noticethat theseplotsrelyonaveraged multipleruns.

4.2.2. MutilevelMonte-Carloin3D

+

1

ThesettingfortheMLMCisvery similartothatofthe1D

+

1case.We underlinetheimportanceoftheidealsampling ratioasdetailedatthe endofSection 3.We provideinFigs. 10and

11

a visualization oftheMLMCestimator(mean at coarselevelandcorrectionsbetweensuccessivelevels)forthecubeandtheventriclerespectively.

Fig.12presentsthecontrolledconvergencegraphofMCandMLMCforboththecubeandtheventricle.Itdemonstrates that thegeneralconvergencerateobtainedforthesetwomethodsisasexpected. MCandMLMChavethereforeasimilar controlledconvergencerate.

Workbehavior forafixedMLMCsetting: Asmentionedintheprevious paragraph,theplotsforcontrollederrorinFig.12

(13)

Fig. 9. Mean (left) and variance (right) at the final time state for the ventricle.

(14)

Fig. 11. Mean at coarse level and corrections between successive levels for the ventricle.

Fig. 12. Controlled convergence (MC and MLMC) graphs for the cube (left) and the ventricle (right).

underlinethisaspect,weattemptheretoevaluatethisdifferenceofproducedworkforbothmethods,whenevertheMLMC setting(finelevel,numberoflevels,meshhierarchy,...)hadbeenpreviouslyset.LetusdenotewithWltheexpectedwork forsolvingasampleatlevell,

l

=

0

,

· · · ,

L.WealsointroduceWl tobedefinedas

Wl

=

Wl−1

+

Wl

,

l

=

0

,

· · · ,

L

withW1

0.Wecanthereforeformulatethetotalworkexpressionforbothmethodsinthefollowingway WMC,L

=

WLNL

,

WMLMC,L

=

L



l=0

WlNl

,

(28)

where Nl is thenumberofsamples computedoneach level l,

l

=

0

,

· · · ,

L.We furthermorecan usethe samplingratio betweenlevelsforMLMC,whichwewilldenoteherewith

β

,torewritetheMLMCtotalworkinfunctionofthenumberof samplesatthefinelevelexclusively

WMLMC,L

=



L



l=0

β

LlWl



NL

.

ThelatterexpressionallowsustoselectdifferentvaluesofthenumberofsamplesNL atthefinelevel,thereforeevaluating theworkfordifferentsamplings.InFig.13,weplottheRMSEversusthetotalamountofworkforbothmethods.Wehere define theexpectedwork Wl forcomputingasample atlevell to be thetotalrunning timeforsolving a sample atthe samelevel,averagedthroughsolvingahundredofsamples.Furthermore,wenormalizewithrespecttothetimeforsolving asampleonthefinelevel.

Asymptoticalworkbehavior ofMC/MLMC: Equivalentlytothecontrolledconvergenceconcept,wewouldlikenowtostudy theworkinthecontextofthecontrollederror.Followingthetheory,inordertoachieveanerroroforder2−2l,the costfor

(15)

Fig. 13. WorkcomparisonbetweenMCandMLMCforthecube(left)andtheventricle(right).Works(WMC,L andWMLMC,L asdefinedin(28))are

measuredonthebasisofCPUtime.

solvingasamplewithlinearFEisgivenby CFE,l

=

2γdl

,

where

γ

isthecomplexityofthesolutionmethodusedandd isthedimensionforthePDEproblemconsidered(equalto4 inourcase).Thenumberofsamplestoexecuteonalevell forgettinganerroroforder2−2l isgivenby

NMC,l

=

24l

.

Fromthese,onecanrecoverthetotalamountofworkrequiredbybothmethodsforafinediscretizationlevelL

WMC,L

=

CFE,LNMC,L

=

2γdL24L

=

2(γd+4)L (29) and WMLMC,L

=

L



l=0 CFE,LNMC,Ll

=

L



l=0 2γdl24(Ll)

=

24L L



l=0 2(γd−4)l (30)

Thiscanberewrittenas

WMLMC,L

=

L24Lif

γ

d

=

4

,

2γdL

24L 2γd−4

1 if

γ

d

=

4

.

(31)

Therefore, incasedimension d and complexity

γ

areknown, equations(29) and(31) givea theoretical estimate on the asymptotical behavior forthe work produced by both MC andMLMC. In our case, since we are measuring the work in termsoftimetosolution(CPUtime),wecanestimatetheproductofthosevaluesas

γ

d

=

log2

(

Wl+1

/

Wl

).

(32)

Thefollowingestimatesyield

γ

d

4 forthecube

γ

d

2 fortheventricle

TheMCandMLMCproducedworkforthecubeexperimentsarethereforegivenby

WMC,L

=

28L

,

WMLMC,L

=

L24L

.

(33)

Fortheventricleexperiments,weobtain

WMC,L

=

26L

,

WMLMC,L

=

3

(

24L

22L

)

4

.

(34)

Thisdemonstrates veryclearly that theasymptoticbehavior ofMLMCintermsof computationalwork issignificantly re-ducedincomparisonwithstandardMC.Weillustrate thisinFig.14.Werecallthatthecontrolled RMSEel atlevell isof

(16)

Fig. 14. MCandMLMCasymptoticalworkforthecube(left)andtheventricle(right).The“dimensionalcomplexity”(γd asdefinedin(32))ismeasured onthebasisofCPUtime.

order2−2l.Fromthis,wecandeducethate−0.5

l

2l.Puttingthistogetherwithequations(33) and(34),showsthatforthe cubewehave

el

=

O

(

WMC−1/4

),

whereasfortheventricle

el

=

O

(

WMC−1/3

).

ThisisillustratedinFig.14. 5. Conclusions

We presented a novel approach aimed at performing uncertainty quantification fortime-dependent problems, in the presence of high-dimensional input uncertainties andoutput quantities-of-interest.We assessed the performance ofthe proposed frameworkbyshowingindetailsitsapplicationtocardiacelectrophysiology.Theresultsshowthattheproposed methodattainstheidealconvergenceratespredictedbythetheory.Ourmethodologyreliesonacloseintegrationof multi-levelMonteCarlomethods,paralleliterativesolvers,andaspace-timediscretization.Thisallowstoexploittheir synergies, suchasfortheinitializationofNewton’s methodusingthesolutionofpastsampleswhentheybecomeavailable.The pro-posedmethodcanalsobeextendedtospace-timeadaptivityandtime-varyingdomains,bothofwhichareveryrelevantin thecontextofcardiacelectrophysiologyandwillbeaddressedinfutureworks.

CRediTauthorshipcontributionstatement

S.Ben Bader: Conceptualization, Investigation,Methodology,Software,Visualization, Writing –originaldraft, Writing – review&editing. P.Benedusi: Software,Writing–originaldraft,Writing–review&editing. A.Quaglino: Conceptualization, Methodology, Software,Writing – originaldraft, Writing – review &editing. P.Zulian: Software,Writing –original draft, Writing–review&editing. R.Krause: Conceptualization,Fundingacquisition,Methodology,Resources,Supervision. Declarationofcompetinginterest

The authors declare that they haveno known competingfinancial interests or personal relationships that could have appearedtoinfluencetheworkreportedinthispaper.

Acknowledgements

The authors would like to thankthe Swiss NationalScience Foundation (SNSF) for their support through the project “Multilevel Methods and Uncertainty Quantificationin Cardiac Electrophysiology” in collaboration with theUniversity of Basel(grantagreementSNSF-205321_169599),butalsothroughtheproject“HEARTFUSION:Imaging-drivenPatient-specific CardiacSimulation”incollaboration withtheUniversityofBern(grantagreementSNSF-169239).Furthermore,theauthors wouldliketo thanktheDeutscheForschungsgemeinschaft(DFG) whichhassupportedparts ofthesoftwareusedherein theSPPEXA program“EXASOLVERS –ExtremeScaleSolvers forCoupledProblems”andSNSFunderthelead agencygrant agreement SNSF-162199.Part of thesoftware toolsutilized inthispaper were developedas partofthe activities of the Swiss Centre forCompetence in Energy Research on the Future Swiss Electrical Infrastructure (SCCER-FURIES), which is financially supported by the SwissInnovation Agency (Innosuisse –SCCER program). Theauthors gratefullyacknowledge financial support bythe Theo Rossidi MonteleraFoundation, theMantegazza Foundation, andFIDINAM tothe Center of ComputationalMedicineinCardiology.

(17)

References

[1]KadirA.Aziz,PeterMonk,Continuousfiniteelementsinspaceandtimefortheheatequation,Math.Comput.52 (186)(1989)255–274.

[2]SatishBalay,ShrirangAbhyankar,MarkF.Adams,JedBrown,PeterBrune,KrisBuschelman,LisandroDalcin,VictorEijkhout,WilliamD.Gropp,Dinesh Kaushik,MatthewG.Knepley, LoisCurfmanMcInnes,KarlRupp,BarryF.Smith, StefanoZampini,Hong Zhang,HongZhang,PETScusersmanual, TechnicalReportANL-95/11- Revision3.7,ArgonneNationalLaboratory,2016.

[3]AndreaBarth,ChristophSchwab,NathanielZollinger,Multi-levelMonteCarlofiniteelementmethodforellipticPDEswith stochasticcoefficients, Numer.Math.119 (1)(2011)123–161.

[4]PietroBenedusi,CarloGaroni,RolfKrause,XiaozhouLi,StefanoSerra-Capizzano,Space-timeFE-DGdiscretizationoftheanisotropicdiffusionequation inanydimension:thespectralsymbol,SIAMJ.MatrixAnal.Appl.39 (3)(2018)1383–1420.

[5]JuliaCharrier,RobertScheichl,ArethaL.Teckentrup,FiniteelementerroranalysisofellipticPDEswithrandom coefficientsand itsapplicationto multilevelMonteCarlomethods,SIAMJ.Numer.Anal.51 (1)(2013)322–352.

[6] PieroColliFranzone,LucianoGuerri,Spreadingofexcitationin3-Dmodelsoftheanisotropiccardiactissue.I.Validationoftheeikonalmodel,Math. Biosci.113(1993)145–209,https://doi.org/10.1016/0025-5564(93)90001-q.

[7]CesareCorrado,Jean-FrédéricGerbeau,PhilippeMoireau,Identificationofweaklycoupledmultiphysicsproblems:applicationtotheinverseproblem ofelectrocardiography,J.Comput.Phys.283(2015)271–298.

[8]DanielDrzisga,BjörnGmeiner,U.Rüde,RobertScheichl,BarbaraI.Wohlmuth,SchedulingmassivelyparallelmultigridformultilevelMonteCarlo methods,SIAMJ.Sci.Comput.39 (5)(2017)S873–S897.

[9]GeorgeFishman,MonteCarlo:Concepts,Algorithms,andApplications,correctededition,Springer,NewYork,ISBN 978-0-387-94527-9,February2003. [10]RichardFitzHugh,Impulsesandphysiologicalstatesintheoreticalmodelsofnervemembrane,Biophys.J.1 (6)(1961)445–466.

[11]DonaldA.French,J.ThomasKing,Analysisofarobustfiniteelementapproximationforaparabolicequationwithroughboundarydata,Math.Comput. 60 (201)(1993)79–104.

[12]MartinJ. Gander, 50 years oftime parallel time integration,in: Multiple Shootingand Time DomainDecomposition Methods,Springer, 2015, pp. 69–113.

[13] MichaelB.Giles,MultilevelMonteCarlomethods,ActaNumer.24(2015)259–328,https://doi.org/10.1017/S096249291500001X.

[14]WeiGong,MichaelHinze,Errorestimatesforparabolicoptimalcontrolproblemswithcontrolandstateconstraints,Comput.Optim.Appl.56 (1) (2013)131–151.

[15] HelmutHarbrecht,MichaelPeters,ReinholdSchneider,Onthelow-rankapproximationbythepivotedCholeskydecomposition,Appl.Numer.Math. 62 (4)(2012)428–440,https://doi.org/10.1016/j.apnum.2011.10.001.

[16]HelmutHarbrecht,MichaelPeters,MarkusSiebenmorgen,Onmultilevelquadratureforellipticstochasticpartialdifferentialequations,in:SparseGrids andApplications,Springer,2012,pp. 161–179.

[17]HelmutHarbrecht,MichaelPeters,MarkusSiebenmorgen,Efficientapproximationofrandomfieldsfornumericalapplications,Numer.LinearAlgebra Appl.22 (4)(2015)596–617.

[18] ChristianHesch,PeterBetsch,Acomparisonofcomputationalmethodsforlargedeformationcontactproblemsofflexiblebodies,Z.Angew.Math. Mech.86 (10)(2006)818–827,https://onlinelibrary.wiley.com/doi/abs/10.1002/zamm.200610289.

[19]JanS.Hesthaven,GianluigiRozza,BenjaminStamm,etal.,CertifiedReducedBasisMethodsforParametrizedPartialDifferentialEquations,Springer, 2016.

[20]AlanL.Hodgkin,AndrewF.Huxley,Aquantitativedescriptionofmembranecurrentanditsapplicationtoconductionandexcitationinnerve,J.Physiol. 117 (4)(1952)500–544.

[21]DanielE.Hurtado,DuvanHenao,Gradientflowsandvariationalprinciplesforcardiacelectrophysiology:towardefficientandrobustnumerical simu-lationsoftheelectricalactivityoftheheart,Comput.MethodsAppl.Mech.Eng.273(2014)238–254.

[22]Phaedon-SteliosKoutsourelakis, Accurate uncertainty quantification using inaccuratecomputational models, SIAM J. Sci.Comput. 31 (5) (2009) 3274–3300.

[23]RolfKrause,PatrickZulian,Aparallelapproachtothevariationaltransferofdiscretefieldsbetweenarbitrarilydistributedunstructuredfiniteelement meshes,SIAMJ.Sci.Comput.38 (3)(2016)C307–C333.

[24]EleanorMcDonald,AndyWathen,Asimpleproposalforparallelcomputationovertimeofanevolutionaryprocesswithimplicittimestepping,in: NumericalMathematicsandAdvancedApplications,ENUMATH2015,Springer,2016,pp. 285–293.

[25]WalterT.Miller,DavidB.Geselowitz,Simulationstudiesoftheelectrocardiogram.I:thenormalheart,Circ.Res.43 (2)(1978)301–315.

[26]StevenNiederer,LawrenceMitchell,NicolasSmith,GernotPlank,Simulatinghumancardiacelectrophysiologyonclinicaltime-scales,Front.Physiol.2 (2011).

[27]JürgNievergelt,Parallelmethodsforintegratingordinarydifferentialequations,Commun.ACM7 (12)(1964)731–733.

[28] BenjaminPeherstorfer,KarenWillcox,MaxGunzburger,OptimalmodelmanagementformultifidelityMonteCarloestimation,SIAMJ.Sci.Comput. 38 (5)(Jan2016)A3163–A3194,https://doi.org/10.1137/15m1046472.

[29]BenjaminPeherstorfer,KarenWillcox,MaxGunzburger,Surveyofmultifidelitymethodsinuncertaintypropagation,inference,andoptimization,SIAM Rev.60 (3)(2018)550–591.

[30]AlexanderPopp,BarbaraI.Wohlmuth,MichaelW.Gee,WolfgangA.Wall,Dualquadraticmortarfiniteelementmethodsfor3Dfinitedeformation contact,SIAMJ.Sci.Comput.34 (4)(2012)B421–B446.

[31] AndrewJ. Pullan,KarlA.Tomlinson,PeterJ.Hunter,Afinite elementmethodfor aneikonalequationmodelofmyocardialexcitation wavefront propagation,SIAMJ.Appl.Math.63 (1)(2002)324–350,https://doi.org/10.1137/S0036139901389513.

[32] AlessioQuaglino,SeifBenBader,RolfKrause,SLOTH:anopensourcePythonlibraryforUQ,availableathttps://bitbucket.org/quagla/sloth/src/master/, 2017,software.

[33]AlessioQuaglino,SimonePezzuto,Phaedon-SteliosKoutsourelakis,AngeloAuricchio,RolfKrause,Fastuncertaintyquantificationofactivationsequences inpatient-specificcardiacelectrophysiologymeetingclinicaltimeconstraints,Int.J.Numer.MethodsBiomed.Eng.34 (7)(2018)e2985.

[34]AlessioQuaglino,SimonePezzuto,RolfKrause,High-dimensionalandhigher-ordermultifidelityMonteCarloestimators,J.Comput.Phys.388(2019) 300–315.

[35]AlfioQuarteroni,RiccardoSacco,FaustoSaleri,NumericalMathematics,vol. 37,SpringerScience&BusinessMedia,2010.

[36]ArethaL.Teckentrup,RobertScheichl,MichaelB.Giles,ElisabethUllmann,FurtheranalysisofmultilevelMonteCarlomethodsforellipticPDEswith randomcoefficients,Numer.Math.125 (3)(2013)569–600.

[37]BarbaraI.Wohlmuth,AmortarfiniteelementmethodusingdualspacesfortheLagrange multiplier,SIAMJ.Numer.Anal.38 (3)(2000)989–1012. [38] PatrickZulian,AlenaKopaniˇcáková,MariaChiaraGiuseppinaNestola,AndreasFink,NurFadel,VictorMagri,TeseoSchneider,EricBotter,JanMankau,

Figure

Fig. 1. Example of random fields for cube and ventricle geometries. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Fig. 2. MLMC tasks scheduling and job requests step. t l , i denotes the i-th task of level l.
Fig. 5. KL eigenvalues decay for the cube (left) and the idealized ventricle (right).
Fig. 6. Controlled convergence graphs for MC and MLMC for the 1D + 1 example.
+6

Références

Documents relatifs

Comme une rame fendant l’eau bleue en faisant ses

Strobel D, Seitz K, Blank W et al (2009) Tumor-specific vascularization pattern of liver metastasis, hepatocellular carcino- ma, hemangioma and focal nodular hyperplasia in

Les auteurs ont donc conclu que la morphine 2 mg/ml en gargarisme s’avère une option thérapeutique intéressante pour le traitement des mucosites chez les patients traités pour

Since the gradient of the trial wave function ∇Ψ(R) (and of the exact wave function) does not generally vanish at the location of the nodes, the drift velocity v(R) diverges at

To tackle large dimensions, other methods have been devised that are based on a non-independent sampling: Markov chain Monte Carlo methods (MCMC).. The prototype of MCMC methods is

[r]

Une étude in-vivo a montré que l’extrait BuOH des feuilles et des tiges d’O acanthium et S junceum respectivement, possède une activité analgésique, avec un pouvoir de

Nous venons de la rencontrer consisté en l'absence de tout nom et c'est évidement l'anonymat (ex.. ﻈﻨﻤﻟﺍ ﻦﻣ ﺔﻴﺟﺭﺎﺨﻟﺍ ﺕﺎﺒﺘﻌﻟﺍ ﺓﺮﻫﺎﻇ ﻲﺛﺍﺪﺤﻟﺍ ﺭﻮ ﺔﺑﺎﺘﻛ ﻑﺪﻫ ﻥﺇ