• Aucun résultat trouvé

Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell

N/A
N/A
Protected

Academic year: 2021

Partager "Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell"

Copied!
19
0
0

Texte intégral

(1)

HAL Id: hal-01635907

https://hal.archives-ouvertes.fr/hal-01635907

Submitted on 15 Nov 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Enhanced Photon Extraction from a Nanowire Quantum

Dot Using a Bottom-Up Photonic Shell

Mathieu Jeannin, Thibault Cremel, Teppo Häyrynen, Niels Gregersen, Edith

Bellet-Amalric, Gilles Nogues, Kuntheak Kheng

To cite this version:

Mathieu Jeannin, Thibault Cremel, Teppo Häyrynen, Niels Gregersen, Edith Bellet-Amalric, et al..

Enhanced Photon Extraction from a Nanowire Quantum Dot Using a Bottom-Up Photonic Shell.

Physical Review Applied, American Physical Society, 2017, 8 (5), pp.054022.

�10.1103/PhysRevAp-plied.8.054022�. �hal-01635907�

(2)

bottom-up photoni shell 2 Mathieu Jeannin, 1,

Thibault Cremel, 2,

Teppo Häyrynen, 3 Niels 3 Gregersen, 3 Edith Bellet-Amalri , 2 Gilles Nogues, 1,

and Kuntheak Kheng 2 4

1

Univ. Grenoble Alpes, CNRS, Institut Néel, "Nanophysique 5

et semi ondu teurs" group, F-38000 Grenoble, Fran e 6

2

Univ. Grenoble Alpes, CEA, INAC, PHELIQS, "Nanophysique 7

et semi ondu teurs" group, F-38000 Grenoble, Fran e 8

3

DTU Fotonik, Department of Photoni s Engineering, Te hni al University of 9

Denmark, Ørsteds Plads, Building 343, DK-2800 Kongens Lyngby, Denmark 10

Abstra t 11

Semi ondu tornanowiresoerthepossibilitytogrowhighqualityquantumdotheterostru tures, 12

andinparti ular CdSequantumdotsinsertedinZnSe nanowireshave demonstrated theabilityto 13

emitsinglephotonsuptoroomtemperature. Inthisletter, wedemonstrate abottom-upapproa h 14

to fabri ate a photoni ber-like stru ture around su h nanowire quantum dots by depositing an 15

oxide shell using atomi layer deposition. Simulations suggest that the intensity olle ted in our 16

NA=0.6 mi ros ope obje tive an be in reased by a fa tor 7 with respe t to the bare nanowire 17

ase. Combining mi ro-photolumines en e, de ay time measurements and numeri al simulations, 18

we obtain a 4-fold in rease in the olle ted photolumines en e from the quantum dot. We show 19

thatthis improvement isdue to an in reaseof thequantum dot emissionrateand a redire tionof 20

the emitted light. Our ex-situ fabri ation te hnique allows a pre ise and reprodu ible fabri ation 21

onalarges ale. Itsimprovedextra tione ien yis ompared tostateofthearttop-downdevi es. 22

ontributedequallytothiswork

(3)

Controlling and enhan ing the spontaneous emission of quantum emitters is one of the 24

urrent key issues in the eld of nanophotoni s. Semi ondu tor quantum dots (QDs) are 25

onsideredaspromisingande ientsingle-photonemittersforquantumopti sappli ations. 26

[16℄ Over the past few years, several approa hes have been pursued to ontrol their emis-27

sion properties, from the use of photoni rystals [7, 8℄ to top-down photoni wires [911℄ 28

and trumpets.[12, 13℄ These strategies are based on the early work of Pur ell[14℄ whi h 29

demonstrated that the spontaneous emission of an emitter an be modied by engineering 30

itsele tromagneti environment. They relyonawaveguidingapproa h toin rease the ou-31

pling between a well-dened propagating opti al mode and the QD while simultaneously 32

redu ing the ouplingbetween the QDand ba kground radiationmodes, oering ontrolof 33

both the opti almode proleand the QD spontaneousemission rate. 34

In this ontext, the interest of the dot-in-a-nanowire onguration fabri ated using 35

bottom-up methodsnaturally arises be ause itprovides a simple way to ensure the enter-36

ingofasinglequantumemitterinthephotoni stru ture.[15 17℄Thebottom-upfabri ation 37

methodalsoavoidsheavy pro essing,likeet hingthe semi ondu tingmaterial,thatisoften 38

detrimentaltotheQDsopti alproperties. However,themainrealizationsuptonow on ern 39

III-V semi ondu tors, [1517℄ limiting the operation range to the ryogeni temperature. 40

Ta kling this issue, the potentialof II-VI materials,inparti ular CdSe QDs inserted inside 41

ZnSe nanowires (NWs) has been demonstrated in previous studies. They allow for robust 42

high temperature single-photon emission using heteroepitaxial [18℄ or homoepitaxial [19℄ 43

nanowire growth. Contrary to all the aforementioned systems where the photoni wire 44

stru ture hasadiameter omparabletothewavelength

λ/n

ofthe guidedlightwhi hallows 45

forhighlye ient ouplingtothe HE

11

mode[20℄,the diameterof theII-VINW embedding 46

the QD (

20 nm

) is mu h smaller than the wavelength of the emitted light (

530 nm

). It 47

leads tolightemission predominantly intonon-guidedradiationmodes and a low olle tion 48

e ien y. Anadditionalfabri ationeorthasthustobemadetoensureane ient oupling 49

tothe olle tionopti s. 50

In apreviousreport[21℄wehavetheoreti ally investigatedthe potentialofusing anoxide 51

shell deposition onabareZnSe NWtoform athi kphotoni wire stru ture. In this arti le, 52

we experimentally demonstrate the use of atomi layer deposition (ALD) to fabri ate a 53

(4)

onformal aluminum oxide (Al

2

O

3

) shell around ZnSe NWs ontaining a single CdSe QD. 54

Weshowthattheoxideshelldrasti allyenhan esthelightintensityemittedbytheQD,and 55

we use time-resolved mi rophotolumines en eto systemati allystudy the ee t of the shell 56

thi kness onthe nanowire quantum dot (NWQD) emission rate. Our results are ompared 57

to numeri al simulations a ounting for the real NW geometry, eviden ing the dierent 58

physi alme hanismsleadingto the enhan ementof the spontaneous emissionfromthe QD 59

and to the improved light olle tionfromthe emittingstru ture. 60

II. PRINCIPLES OF OPERATION

61

Toillustratethe ee t of the NW and itssurroundingmediumonthe QD emissionrate, 62

let us onsider a QD pla ed inside an innitely long ylinder as illustrated in Fig. 1(a) 63

radiatingaeld ata wavelength

λ

. The ylinder ismade ofa diele tri material(refra tive 64

index

n

) and has a diameter

d

. We rst onsider a dipoleorientation perpendi ular to the 65

NWaxisinordertousetheNWasapropagationmediumforthe emittedlight. Inthelimit 66

where

d ≪ λ/n

, the diele tri s reening ee t[11 ℄ redu es the spontaneous emission rate

γ

67 by a fa tor: 68

γ

γ

0

=

4

n(n

2

+ 1)

2

,

(1)

where

γ

0

istheradiativeemissionrateinthebulkmaterialofindex

n

.[22℄ForaZnSe ylinder 69

(

n

ZnSe

= 2.68 at

λ

=

530 nm

), the s reening fa tor is

1/45. If the NW is surrounded by a 70

shell of refra tiveindex

n

s

insteadof va uum, equation1 remainsvalidby repla ing

n

with 71

theindex ontrast

n/n

s

. ForanAl 2

O 3

surroundingmedium(

n

s

=

1.77),the s reeningfa tor 72

be omes

1/4.1,resulting inan order of magnitudelarger radiativerate. 73

Inadditionto hangingthediele tri s reening,theAl 2

O 3

shellalsoinuen estheguiding 74

of light along the NW. We have omputed the total emission rate

γ

and the emission rate 75

γ

HE11

intothefundamentalHE

11

waveguidemodefromaradialdipoleasfun tionoftheshell 76

thi kness

t

s

[see Fig. 1(a)℄ using a semi-analyti al approa h[23℄ ombined with an e ient 77

non-uniformdis retizations hemeink spa e.[24 ℄Theresultsare plottedinFigure1(b). We 78

observe that the shell thi kness of

120 nm

not only leads to an in reased total emission 79

rate, it also allows for onnement of the fundamental HE

11

mode to the ore-shell NW 80

leadingtoapreferential ouplingof theemittedlighttothis mode. Figure1( ) presentsthe 81

spontaneousemission

β

fa torrepresentingthefra tion

β = γ

HE11

ofemittedlight oupled 82

(5)

(a)

(c)

Air

Al

2

O

3

ZnSe

d

(b)

HE11

β

Figure 1. (a) Geometry of the innite NW. (b) Total spontaneous emission rate (bla k

+

) and

spontaneousemission rateinto therst guidedmode HE

11

(redˆ) asa fun tionof shellradius for

a radialdipole. ( ) Fra tion

β

ofpower radiated into theHE

11

mode.

tothe HE

11

mode. Weobserveindeedthat up to71%of theemittedlightis oupledtothis 83

mode for

t

s

=

120 nm

. The dipole thus be omes oupled to the equivalent of a monomode 84

photoni wire[911, 1517℄ pavingthe way to the ontrolof itsfar-eld radiationpattern. 85

III. SAMPLE FABRICATION 86

OuremittersareCdSeQDsembeddedinsideaZnSeNWwithathin,epitaxialpassivation 87

Zn

0.83

Mg

0.17

Seshell grown aroundtheNW.They aregrownby mole ularbeamepitaxyona 88

GaAs(111)Bsubstrate. AZnSebuerlayerisrstgrownontheGaAssubstrateafterwhi h 89

a thin layerof Au (less than one monolayerthi k) is evaporatedon the sample surfa e and 90

dewetted at

510

C

to form small (

10 nm

diameter) Au droplets that serve as a atalyst 91

fortheNWgrowth. Thesubstratetemperatureisthenset at

400

C

andauxofZnandSe 92

atomswith anex ess of Se is used,indu ingpreferential growthof verti alZnSe NWs. The 93

NWsareinwurtzitephaseandtheirdiameteristhesameasthedroplet(

10 nm

diameter). 94

The thi kness of the initialAu layer is hosen to ensure a low NW density (

1 NW per 95

µm

2

). After the growth of a

400 nm

high NW, the atom uxes are stopped to allow the 96

eva uationofresidualSeatomsinsidethedroplet. Then,theQDisgrownunderauxofCd 97

and Se atomsfor

20 s

. The uxes are interrupted againbefore theZnSe growth isresumed, 98

resulting inan expe ted QD height of 2-

3 nm

inserted in a

700 nm

high NW. Finally, an 99

epitaxial Zn

0.83

Mg

0.17

Se shell (

5 nm

thi k) is grown around the NW at

220

C

. A s anning 100

ele tron mi ros ope (SEM) image of su ha CdSe/ZnSe/ZnMgSe ore/shell NWQD system 101

is presented in Figure 2(a). The ag-shape termination of the NW is formed during the 102

(6)

100nm

(a)

100nm

(d)

20 nm

10 nm

2-3 nm

t

s

(c)

(b)

100 nm

ZnSe

ZnMgSe

CdSe

Al

2

O

3

Figure 2. (a) SEM image of a standing ZnSe/ZnMgSe NW embedding a CdSe QD. The QD

position is marked by the red square. (b, ) Tilted SEM image of a ZnSe NW after a

20 nm

and

110 nm

thi k Al

2

O

3

shell deposition respe tively. The NW is sket hed on the SEM image. Note

the ir ular shape of the shell as well as its hemispheri al termination above the NW apex. (d)

Sket h of theNWQD geometry, indi ating theQD height (2-

3 nm

), theNW diameter (

≃10 nm

), theepitaxial shellthi kness(

≃5 nm

) andtheALD shellthi kness

t

s

.

growth of the ZnMgSe shell. It is present insome NWs. 103

The higher bandgap of Zn

0.83

Mg

0.17

Se shell prevents the harge arriers to re ombine 104

non-radiatively on the ZnSe NW sidewall and hen e improves the quantum yield of the 105

CdSe emitter. In prin iple, it ould dire tly be used to grow a photoni wire of diameter 106

λ/n

ZnSe

around the NWQD. However, during the epitaxial shell growth two phenomena 107

are ompeting: the radial growth of the shell around the wurtzite NWs, and the verti al 108

growth of a 2D Zn

0.83

Mg

0.17

Se layer on the sample surfa e. The radial shell growth rate is 109

verylowbe ause the growth of ZnSeon WZsurfa es is not favourable. Be ause ofthis low 110

shell growth rate, atrade-o has tobefound to avoid buryingthe NWs ina Zn

0.83

Mg

0.17

Se 111

matrix. As aresult, only thin epitaxialshells an be fabri ated. 112

The omplexity of reating a thi k epitaxialshell is one of the reasons why we fabri ate 113

(7)

reason isthat, sin e this pro ess step an bedone separately from the NW growth pro ess, 115

it allows to tune ex situ the shell parameters after a rst opti al hara terization of the 116

QD.Indeed, due toitsslowdeposition rate,the ALD pro essallowstopre isely ontrolthe 117

deposited thi kness, whi h an also be nally veried using s anning ele tron mi ros opy. 118

Wehavetestedseveraloxidematerials,andsele ted Al

2

O

3

be auseitprodu edverysmooth 119

and onformal, amorphous shells. Figure 2(b) and ( ) show two SEM images of the result-120

ing oxide shell deposition (

20 nm

and

110 nm

), and the omplete stru ture is sket hed in 121

Fig. 2(d). We note that the onformaldeposition allows to end the NW+shell stru ture by 122

analmost perfe t half-sphereas an beseen inFig. 2(b, ). ALD alsoburiesthe Au droplet 123

under the shell. The latter might intera t with the eld emitted by the QD through its 124

lo alized plasmon resonan e. Considering its small diameter it will essentially absorb the 125

in oming eld. Moreover the guided HE11 mode prole presents a minimum on the NW 126

axis. This iswhy we negle t the dropletinuen e in the following. 127

IV. EXPERIMENTAL RESULTS

128

Asample fromasingle epitaxialgrowth pro ess is ut inpie es,and photoni stru tures 129

with dierentoxide shell thi knesses are fabri ated. Taking advantage of the lowNW den-130

sity, individualstru tures are opti ally hara terized dire tly onthe growth substrate. The 131

samplesare mountedon the old nger ofa He-ux ryostat and ooled down to

4 K

. Indi-132

vidualphotoni stru tures are probed using onfo almi rophotolumines en e (µPL). They 133

are ex itated by a super ontinuum pulsed laser (Fianium WhiteLase,

10 ps

pulse duration, 134

repetiton rate

76 MHz

) and a spe trometer sele ting a

10 nm

bandwidth entered around 135

485 nm

. This ex itationenergy, belowthe ZnSegap, allows ustoindu e rossedtransitions 136

between delo alizedstatesinthe NW1D ontinuumanda dis rete onned 0D stateinthe 137

NWQD band stru ture[25 ℄. In this onguration, the NW axis is aligned with the opti al 138

axis and emission from the QD is olle ted by a

NA = 0.6

obje tive. A typi al NWQD 139

spe trum is presented in Figure 3(a) as a fun tion of the pump laser power. Three lines 140

an be identied and are attributed to the ex iton (X), the harged ex iton (CX) and the 141

bi-ex iton(XX) respe tively. The total emissionintensity of the X lineas afun tion of the 142

pumppowerisreportedinFigure3(b). Itshowsalinearin reaseatlowpumpingpower,and 143

(8)

525 530 535 540

Wavelength

(nm)

0.0

0.5

1.0

1.5

2.0

2.5

PL

In

ten

sit

y (

arb

. u

nit

s)

X CX XX

(a)

10

-2

10

-1

10

0

Pump Power (mW)

10

0

10

1

Ex

cit

on

in

ten

sity

(x

10

3

s

1

)

(b)

0

20

40

60

80 100 120

Oxide shell thickness (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

No

rm

ali

ze

d In

ten

sit

y

(c)

axial

radial

Figure 3. (a)µPL spe trum ofa NWQD with

120 nm

thi k photoni shellfor dierent pumping

powers. Itshowsaex iton(X), hargedex iton(CX)andbiex iton (XX)lines. The orresponding

pumpingpowersarereportedinpanel(b). Thebla kre tangleindi atestheintegrationbandwidth

usedtoextra t thetotal ex itonemissionintensity(Xline). (b)Integrated ex itonemission

inten-sity as a fun tion of pumping power, in a log-log s ale. ( ) Blue rosses: Total ex iton emission

intensity for dierent NWQDs as a fun tion of the oxide shell radius. Red diamonds: average of

the experimental datapoints. Data are normalized to the average intensity at

t

s

=110 nm

Bla k lines: results ofthenumeri alsimulationsfor aradial (solidline)andanaxial(dashedline)dipole.

Theyarenormalized to the axial intensityat

t

s

=110 nm

a onstant plateau at high pumping powers orresponding to the saturation of the ex iton 144

level.[26℄ Under pulsed ex itation, we note that hanging the shell thi kness might modify 145

the laser power in the NW and the ex itation probability of the QD. Hen e if ae ts the 146

slopeatlowpowerinFig.3(b). Ithashowevernoee tonthesaturationplateauwhi honly 147

depends on the QD emission rate and light olle tione ien y. This allows usto ompare 148

statisti alsets of nanostru tures with dierent oxide shellthi knesses. The total integrated 149

emissionat saturation asa fun tion of the oxide shell thi kness is reported in blue markers 150

for ea h NWQD in Figure 3( ). The values have been normalized to the average intensity 151

(9)

0 2 4 6 8

t (ns)

10

-2

10

-1

10

0

No

rm

ali

ze

d PL

In

ten

sity

(a)

(b)

0 20 40 60 80 100 120

Shell thickness (nm)

0

2

4

6

8

10

De

ca

y t

im

e (

ns)

axial

radial

semi-analytical

Figure4. (a)Example ofTRPL signalversus timefor 2 NWswith a

t

s

=

20 nm

shell. Ba kground ountsaremeasuredfor

t < 0

andsubstra ted. Amplitudeof ountsarenormalizedto1to ompare the2 datasets. Red lines aremono-exponential ts, whose orresponding pointsin(b) areshowm

byarrows. (b)Blue rosses: experimentalex iton de aytimesfor several QDsasa fun tionof the

oxideshellradius. Theverti al errorbarsrepresent theterror. Bla klines: numeri al simulation

results for a radial dipole (solid line), or an axial dipole (dashed line). Red dashed-dotted line:

Semi-analyti al al ulations for the inniteNW.

at

t

s

=110 nm

. ForNWswithout anoxide shell, the lumines en e intensity is very lowand 152

we were never able to rea h the saturation regime, this is why we donot report the orre-153

sponding points in Fig. 3( ). Forea h shell thi kness, we observe a large spread inex iton 154

saturation intensity. However, we note a general trend of in reasing saturation intensity 155

within reasingshellthi kness, asdemonstratedby theredmarkerswhi hshowtheposition 156

of the average intensity of our measurements for ea h shell thi kness. On average, the de-157

position ofa

110 nm

thi k shell resultsin the experimentsin analmost4-foldenhan ement 158

of the olle ted intensity with respe t to the

20 nm

thi k shell ase. The semi-analyti al 159

al ulationsshowthatthis enhan ementis10-foldwhenwe omparetoaNWwithoutoxide 160

shell. 161

The observed in rease in intensity at saturation orresponds to the ombination of im-162

proved olle tion e ien y through light redire tion from the stru ture and enhan ement 163

of the spontaneous emission rate. In the latter ase, a modi ation of the QD dynami s is 164

expe ted tobedete ted by measuring the ex iton de ay rate. Time-resolved measurements 165

were arried out using a low pump power as ompared to the ex iton saturation power to 166

avoid any repopulation of the X level. The measured de ay transients are thus monoex-167

ponential. The tted de ay onstant is the total ex iton de ay time

τ

. The experiment 168

(10)

one of gure 3( ). The same ex itation laser wasused, the QD uores en e was spe trally 170

ltered in a spe trometer (500gr/mm grating) and integrated on an avalan he photodiode 171

ina photon orrelation setup,using the exit slitof the spe trometeras aspe tral bandpass 172

lter. Theresultsofthese measurements,presented inFigure4showalsoa greatdispersion 173

in de ay time. One observes however that longer lifetimes are observed for smaller shell 174

thi kness (up to

5.9 ns

). In reasing the shell thi kness leads to an overall de rease in the 175

measured ex iton lifetime, hen e an enhan ement of the ex iton de ay rate in agreement 176

with the results of the numeri al simulations. For systems without an oxide shell, only a 177

fewNWQDsgivealargeenoughsignaltobeproperlymeasured. Theyyieldamu hsmaller 178

dispersion of short de ay times. 179

V. DISCUSSION AND COMPARISON TO NUMERICAL SIMULATIONS

180

A. Dispersion of the results 181

For ea h oxide shell thi kness, the large variations of the experimental results in both 182

Figs. 3( ) and 4 have several possible origins. First, the presen e of non-radiative re om-183

bination hannels an redu e the intensity at saturation and hange the de ay time. The 184

non-radiative re ombination rate an vary fromQD to QD be ause of fabri ation inhomo-185

geneities,leadingtoaspreadinthemeasuredvalues.[27℄Se ond,variationsintheQDaspe t 186

ratio and piezoele tri elds indu ed internal strain appliedby both the ZnSe ore and the 187

Zn

0.83

Mg

0.17

Se shell lead to dierent overlap of ele tron and hole wavefun tions and hen e 188

dierentex iton os illatorstrengths. Finally, onsidering the QD aspe t ratio and internal 189

strain, we expe t a heavy-holeex iton type for our QDs.[2831℄ Heavy-hole ex iton re om-190

bination results in a mixture of ir ularly polarized emission, omposed of two degenerate 191

out-of-phase radial dipoles. However, strain and onnement ee ts might lead to valen e 192

band mixingbetween lighthole and heavy hole levels,[3234℄ resulting inan emission om-193

posed of a mixture between axialand radial dipoles and hen eto a spreadin total emitted 194

intensity, aswe dis uss later. Additionalmeasurementson NWQDs grown insimilar ondi-195

tions and me hani allydispersed ona substrate (i.e. lying horizontallyon it)revealed that 196

oneNWQDoutof6emitlightpolarizedalongtheNWaxis,whileothersemitlightpolarized 197

(11)

the Zn

0.83

Mg

0.17

Se shell and low temperature of observation, we expe t that non-radiative 199

ee ts play a minor role. The epitaxial shell prevents non-radiative de ay hannels owing 200

to surfa e traps. Additional measurements as a fun tion of temperature show that both 201

the emission intensity and the de ay time donot hange signi antly up to150-

200 K

(not 202

presented here). This indi ates that the non-radiative ee ts are not dominating at low 203

temperature, as in the present experiment. While we annot yet ompletely rule out the 204

ontributionofnon-radiativeee ts,wethinkthatthe majoree ttoexplainthe dispersion 205

of the results omes from variationsin valen e band mixingand os illator strength due to 206

the lo alenvironmentof the QD.Finally letusstress that the shortest de ay times (1-

2 ns

) 207

we measure remain longer than the de ay time of CdSe self-assembled QD embedded in 208

bulk ZnSe (<

1 ns

)[35℄. The redu tion of the diele tri s reening ee t is a main ee t we 209

eviden e. 210

B. Colle ted intensity and radiative lifetime 211

Tobetterunderstandtheee toftheshelldepositionontheNWQDemission,weperform 212

numeri alsimulationsof the photoni stru ture formedby the fullNW +oxide shell geom-213

etry[see Fig.2(d)℄. It takesintoa ount thepresen e of the ZnSesubstrate, and the Al 2

O 3 214

shell and layer deposited on the NWs and substrate. The QD is modeled as an os illating 215

ele tri dipole, either in the axial dire tion (along the NW axis) or in the radial dire tion 216

(orthogonaltothe NW axis). Weperform nite-elementmethodsimulations(Comsolv4.1) 217

to ompute the total eld radiated by the dipole.[34℄ For ea h shell thi kness and dipole 218

orientation,we evaluate the power radiatedtowards the obje tiveby omputingthe uxof 219

the Poynting ve tor over a surfa e limited by its numeri al aperture (NA=0.6) in a region 220

far from the NW where near eld an be negle ted. The results of these simulations are 221

reported inFigure 3( ) inbla k lines for an axial(dashed line) orradial (solid line) dipole. 222

The results are normalized tothe axial intensity at

t

s

=110 nm

. Comparing the simulated 223

integrated intensity in the ase of a

20 nm

and

110 nm

reveals an enhan ement fa tor less 224

than2-foldforanaxialdipoleandalmost4-foldforaradialdipole. The4-foldenhan ement 225

observed in our measurements suggests that on average, the dominant emitting dipole in 226

our stru ture is radial, ingoodagreementwith the re ombinationof a heavy hole ex iton. 227

(12)

ulations by integrating the total power radiated over every dire tion for the two dipole 229

orientations(radial and axial)

P

. Wenormalize this value by the same quantity omputed 230

foradipoleinbulkZnSe

P

0

. Forapurelyradiativesystemwehave

P/P

0

= γ/γ

0

= τ

0

[36℄, 231

where

τ

and

τ

0

aretheradiativelifetimeforthenanostru tureandforbulkZnSerespe tively. 232

Radiativetimes are presented in bla k lines in Figure4, where we have hosen

τ

0

= 300 ps

233

ingoodagreementwithpreviously reported radiativelifetimeofCdSeQDinbulkZnSe[37℄. 234

Theaxialdipoleradiateswithanalmost onstantde aytimeasafun tionoftheoxideshell 235

thi kness, while the radial dipole de ay time strongly de reases with in reasing oxide shell 236

thi kness

t

s

. Additionally,we ompare thede ay timefortheradialdipole omputedforthe 237

full geometry to the semi-analyti al al ulations for the innite NW presented in g. 1(b) 238

with the same

τ

0

value. The agreement is ex ellent indi ating that interferen e ee ts due 239

toree tions fromthe substrate and from the top hemispheri alterminationare negligible. 240

Comparingthetrends ofthe simulations,we an onrmthat ouremittersbearastrong 241

radialdipole hara ter. Themeasurementsdispersion anbewellunderstoodby onsidering 242

thattherealemittersareamixtureofradialandaxialdipolesradiatingwitha hara teristi 243

de ay time omprised between the simulated lifetimes of the pure radial and axial dipole. 244

Wedo not observe long de ay time for NWQDs withoutan oxide shell in Fig. 4. Forthese 245

systems,itisverydi ulttondemitterswhi harebrightenoughtobedete tedisbe ause 246

both the laser absorption and the emission rate of a radial dipole are very weak for su h 247

small NW diameters. We think that the emitters whi h have been sele ted orrespond to 248

NWQDshavingalargefra tionofaxialdipole hara ter astheyarethebrightestoneswhen 249

nooxideshell is present. 250

C. Radiation pattern 251

Toanalyze the me hanismsleading tothe in rease in olle ted intensity with in reasing 252

shell thi kness, we present in Figure5 several simulated radiation patterns. They are rep-253

resented as polar plots of the far-eld intensity

I(θ)

in the top

(x, z)

plane,

θ

is the angle 254

between the dire tion of observation and the verti al

z

axis. Simulations are made using 255

respe tivelyaradialdipole[along

x

,Figures5(a- )℄oranaxialdipole[along

z

,Figures 5(d-256

f)℄. 257

(13)

1

1

1

1

1

1

Air

NW

t

s

=110nm

t

s

=70nm

t

s

=30nm

NW

z

z

z

z

z

z

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5. Radiation patterns from numeri al simulations for a radial dipole pla ed at

470 nm

abovethesubstrate. TheexperimentalNAregionisshadedandindi atedinred. (a,d)Comparison

betweenthe aseofafree-standingemitterinair(bla kdashes),andembeddedinsidetheNW(blue

solidline)foraradial(a)oraxial(d)dipole. Theyeviden etheee tofthediele tri s reeningfrom

theNW on the radial dipole and theabsen e of s reening for the axialdipole. (b, e)Comparison

of the total emitted intensity versus

t

s

for a radial (b) or axial (e) dipole. A ombined ee t of redu eddiele tri s reening andlightguiding and redire tiontowardssmall angles isobserved. ( ,

f) Ee t oftheshelllayertermination shape fora radial ( )or axial(f)dipole. The hemispheri al

shape in reases the fra tionoflight thatis redire ted towardsthe

z

dire tion.

Figures5(a,d) show the ee t of the NW stru ture alone (no oxide shell being present) 258

on su h dipoles by omparing it to the ase of a free standing dipole in va uum above 259

the same ZnSe substrate. One an see that the presen e of the NW does not ae t the 260

shapeof radiationdiagram,whi hisessentiallydeterminedbytheinterferen esbetween the 261

dire tlyradiatedeldanditsree tiononthesubstrate. Mostremarkably,inthe aseofthe 262

radial dipole the presen e of the NW dramati ally redu es the emission intensity through 263

the diele tri s reening ee t dis ussed earlier. Simulationsshowa radiativerate redu tion 264

by afa tor

1/16 ≃ n

ZnSe

/45

inagreementwiththe diele tri s reeningvaluepredi ted by 265

Eq. (1). In ontrast, in the ase of the axial dipole it an be seen that the presen e of the 266

NW only slightlyin reases the emittedintensity. 267

(14)

shell thi kness

t

s

. In the ase of the radial dipole, the shell rst redu es the index ontrast 269

between the NWand thesurroundingmedium( f. Eq. 1),resultinginastrongredu tionof 270

the emitter lifetimeand thus in an in reased total emitted intensity as seen in in Fig. 3( ) 271

andFig.4. Notethatthetheintensitypatternshowninthepolarplotmustbemultipliedby 272

thesolidangle

sin θdθ

ifonewantstoevaluatethepowerradiatedinthenumeri alaperture. 273

This is why the intensity for an axial dipole an be larger than for a radial one, as seen in 274

Fig. 3( ). Se ond, as shown in Figure 1( ), the shell presen e ensures preferential emission 275

intotheguidedHE

11

mode forin reasingshellthi kness. As a onsequen e anear-Gaussian 276

far-eldemissionpattern orrespondingtothefar-eldemissionproleoftheHE

11

mode[38℄ 277

is observed for

t

s

=

110 nm

, ontrary to the stru tures with a smaller oxide shell thi kness 278

where one observesthe presen e of two losely-spa ed lobesat small emissionangles (

±

10

279

with respe t to the

z

-axis). The resulting emission into the 0.6 NA one is maximum for 280

t

s

=110 nm

, where the emission into the HE

11

mode is nearly maximum [ f. Fig. 1(b)℄. 281

The ee t of the oxideshell thi kness on the axialdipoleis ompletelydierent. Whilethe 282

totalemittedintensitydoesnotvarymu h,andhen etheemitterlifetimestays onstant(as 283

notedinFig.4),the lightemittedby theaxialdipoledoesnot oupletothe HE

11

modebut 284

is emittedex lusively intoradiation modes. Thus the fra tion of intensity emitted towards 285

the olle tionlens in reases onlyslightly asthe oxideshell thi kness in reases [ f. Fig.5(e)℄. 286

This intensity in rease for the axialdipolealsopresented inFig.3( ) isnot due to a hange 287

in the spontaneous emission rate of the emitter, but rather to a slight redire tion of the 288

emittedlight. 289

Finally, Figures5( ,f ) ompare the a tual hemispheri al geometryof the oxide shell ter-290

mination to the at end of a simple lateral shell. They show that the presen e of the 291

hemisphere is bene ial to the radiation pattern for both kinds of dipole. For the radial 292

dipole, the hemisphere enablesa near-adiabati expansionof the HE

11

mode[38℄ leading to 293

a narrowing of the far-eld emission pattern and an in reased olle tion by the numeri al 294

aperture. The axialdipolebenets less from the hemispheri altermination of the photoni 295

stru turesin enolightfromthisdipoleis oupledtotheHE11mode. Wealsonotethathalf 296

oftheemittedlightpropagatestowards thegrowthsubstrateanddue totheindex-mat hing 297

ondition between the NW and the substrate, this lightis predominantly lost. 298

In order to assess the performan es of our devi e we ompute the ratio

η

between the 299

(15)

parameter is agoodgure of merit for the antenna redire tion ee t althoughit annotbe 301

dire tlyrelatedtotheoverall olle tione ien y be auseofthe powerlostinthesubstrate. 302

Forourfullphotoni stru tureandaradialdipoleonehas

η ≃

80%for

t

s

=

110 nm

. Thisvalue 303

redu es to

66%foraatterminated ore-shellphotoni wireillustratingtheimportan eof 304

theadiabati expansionoftheHE

11

guidedmodeattheendofthewire. Forthedipoleinthe 305

NW without shell

η ≃

55%. We havealso simulated astru ture inspiredby state-of-the-art 306

devi esfabri atedby top-down methodsinRef.[9℄. Inthis asewesimulatea

110 nm

oxide 307

shell photoni wire where the hemispheri al termination is repla ed by a oni al tapper of 308

Al 2

O 3

whose radius progressively de reases from 120 to

10 nm

in

1.5 µm

. In this ase one 309

has

η ≃

94%,showingthatalthoughbene ialourhemispheri alterminationisnotoptimal. 310

VI. CONCLUSION

311

In summary, we have presented a bottom-up approa h to fabri ate a diele tri antenna 312

around a QD inserted inside a NW. This method allows for both reprodu ible and very 313

pre isefabri ationofthestru tureonalargeensembleofemittersaton e. Itisbasedonthe 314

depositionofathi k oxideshellaroundtheNWusing atomi layerdeposition. Experiments 315

show a 4-fold enhan ement of the QD photolumines en e shown in Fig. 3( ) between a 316

20 nm

and a

110 nm

thi k shell. Semi-analyti al al ulations and numeri alsimulations of 317

thestru ture revealthattheoxideshell thi kness stronglya ts onthe radialdipoleemission 318

through twomain phenomena: the redu tionof thediele tri s reening,whi hin reases the 319

spontaneousemission ratefrom theQD, and the redire tionof lightthrough a waveguiding 320

ee t. Simulationssuggestthatthe olle tedintensityismultipliedbyafa tor7withrespe t 321

tothebareNW ase. Thefabri ationpro essofthe photoni shellisverysimpleand anbe 322

appliedtoQDsemittingsinglephotonsup toroomtemperature. Althoughnotoptimal,the 323

resulting stru ture is a step towards the best nanowire single photon sour es operating at 324

lowtemperature[9℄. Diele tri s reening ould be furtherredu ed by growingan oxideshell 325

of higher index mat hing

n

ZnSe

like TiO 2

. We note alsothat in our system a large fra tion 326

of the emitted power is radiated in the substrate. This loss hannel ould be redu ed by 327

having a mirror at the bottom of the stru ture.[15 , 39℄ Moreover, to fully benet from the 328

waveguiding approa h, a better ontrol on the intrinsi QD properties has to be rea hed 329

(16)

olle tionaperture. 331

ACKNOWLEDGMENTS 332

This work was supported by the Fren h National Resear h Agen y under the ontra t 333

ANR-10-LABX-51-01andtheDanishResear hCoun ilforTe hnologyandProdu tion (LO-334

QIT Sapere Aude grant DFF #4005-00370). 335

[1℄ P. Mi hler, A. , Kiraz, C. Be her, W. V. S hoenfeld, P. M. Petro, L. Zhang, E. Hu, and 336

A.Imamoglu,Aquantumdotsingle-photonturnstiledevi e,S ien e 290,22822285 (2000) . 337

[2℄ Charles Santori, Matthew Pelton, Glenn Solomon, Yseulte Dale, and Yoshihisa Yamamoto, 338

Triggered singlephotons froma quantumdot, Phys.Rev. Lett. 86, 1502 (2001) . 339

[3℄ Charles Santori,DavidFattal,JelenaVu£kovi¢,Glenn S.Solomon, andYoshihisaYamamoto, 340

Indistinguishablephotons froma single-photondevi e, Nature 419,594597(2002) . 341

[4℄ A.Zrenner, E.Beham,S.Stuer,F.Findeis,M.Bi hler, andG.Abstreiter,Coherent proper-342

ties of atwo-levelsystembasedon a quantum-dotphotodiode, Nature 418,612614 (2002) . 343

[5℄ N. Akopian, N. H. Lindner, E. Poem, Y. Berlatzky, J. Avron, D. Gershoni, B. D. Ger-344

ardot, and P. M. Petro, Entangled photon pairs from semi ondu tor quantum dots, 345

Phys.Rev. Lett. 96,130501 (2006) . 346

[6℄ Andrew J. Shields,Semi ondu tor quantumlight sour es, Nature Photon.1, 215 (2007) . 347

[7℄ E. Viasno-S hwoob, C. Weisbu h, H. Benisty, S. Olivier, S. Varoutsis, I. Robert-Philip, 348

R. Houdré, and C. J. M. Smith, Spontaneous emission enhan ement of quantum dots in 349

a photoni rystalwire, Phys.Rev. Lett. 95,183901 (2005) . 350

[8℄ T. Lund-Hansen, S. Stobbe,B. Julsgaard, H.Thyrrestrup, T. Sünner, M. Kamp, A.For hel, 351

andP.Lodahl,Experimentalrealizationofhighlye ientbroadband ouplingofsingle quan-352

tum dotsto aphotoni rystalwaveguide, Phys.Rev. Lett. 101,113903(2008) . 353

[9℄ Julien Claudon, Joël Bleuse, Nitin Singh Malik, Maela Bazin, P 'erine Jarennou, 354

Niels Gregersen, Christophe Sauvan, Philippe Lalanne, and Jean-Mi hel Gérard, A 355

highly e ient single-photon sour e based on a quantum dot in a photoni nanowire, 356

(17)

[10℄ J. Heinri h, A. Huggenberger, T. Heindel, S. Reitzenstein, S. Höing, L. Wors he h, and 358

A. For hel, Single photon emission from positioned GaAs/AlGaAs photoni nanowires, 359

Appl. Phys. Lett. 96,211117 (2010) . 360

[11℄ JoëlBleuse,JulienClaudon,MeganCreasey,Nitin.S.Malik,Jean-Mi helGérard,Ivan Maksy-361

mov, Jean-Paul Hugonin, and Philippe Lalanne, Inhibition, enhan ement, and ontrol of 362

spontaneous emissioninphotoni nanowires, Phys.Rev. Lett. 106,103601(2011) . 363

[12℄ MathieuMuns h,JulienClaudon,JoëlBleuse,NitinS.Malik, EmmanuelDupuy,Jean-Mi hel 364

Gérard, Yuntian Chen, Niels Gregersen, and Jesper Mørk, Linearly polarized, single-mode 365

spontaneous emissioninaphotoni nanowire, Phys. Rev.Lett. 108,077405(2012) . 366

[13℄ Mathieu Muns h,Nitin S. Malik, Emmanuel Dupuy, Adrien Delga, Joël Bleuse, Jean-Mi hel 367

Gérard, JulienClaudon,NielsGregersen, andJesperMørk,Diele tri gaasantennaensuring 368

an e ient broadband oupling between an inas quantum dot and a gaussian opti al beam, 369

Phys.Rev. Lett. 110,177402(2013) . 370

[14℄ E.M. Pur ell, Spontaneous emission probabilities at radio frequen ies, in 371

Pro eedings of the Ameri an Physi al So iety, Vol. 69 (Ameri an Physi al So iety (APS), 372

1946) p.674. 373

[15℄ Mi haelE.Reimer,GabrieleBulgarini,NikaAkopian,MoïraHo evar,MaaikeBouwesBavin k, 374

Mar el A. Verheijen, Erik P.A.M. Bakkers, Leo P. Kouwenhoven, and Val Zwiller, Bright 375

single-photon sour esinbottom-up tailorednanowires, Nature Comm. 3,737 (2012) . 376

[16℄ Gabriele Bulgarini, Mi hael E. Reimer, Tilman Zehender, Moiïra Ho evar, Erik P. A. M. 377

Bakkers, Leo P. Kouwenhoven, and Valery Zwiller, Spontaneous emission ontrol of single 378

quantum dotsinbottom-upnanowirewaveguides, Appl. Phys.Lett. 100,121106(2012) . 379

[17℄ G. Bulgarini,M. E. Reimer,M. B. Bavin k, K.D. Jöns,D. Dala u,P.J. Pool,E. P.Bakkers, 380

and V. Zwiller, Nanowire waveguide laun hing single photons in a gaussian mode for ideal 381

ber oupling, Nano Lett. 14, 41024106(2014) . 382

[18℄ AdrienTribu,Gregory Sallen,Thomas Ai hele, RégisAndré, Jean-Philippe Poizat,Catherine 383

Bougerol, Serge Tatarenko, and Kuntheak Kheng, A high-temperature single-photon sour e 384

from nanowire quantum dots, Nano Lett. 8,43264329 (2008) . 385

[19℄ S. Bounouar, M. Elouneg-Jamroz, M. den Hertog, C. Mor hutt, E. Bellet-Amalri , R. An-386

dré, C. Bougerol, Y. Genuist, J.-Ph. Poizat, S. Tatarenko, and K. Kheng, Ultrafast room 387

(18)

[20℄ Y.-R.Nowi ki-Bringuier, R.Hahner, J. Claudon, G.Le amp, P. Lalanne, and J.-M.Gérard, 389

A novel high-e ien y single-mode singlephoton sour e, Ann.Phys. 32,151 (2008). 390

[21℄ T. Cremel, M. Elouneg-Jamroz, E. Bellet-Amalri , L.Cagnon, S.Tatarenko, and K. Kheng, 391

Bottom-upapproa hto ontrolthephotonout ouplingofaII-VIquantumdotwithaphotoni 392

wire, Phys.Status SolidiC 11,1263 (2014) . 393

[22℄ Julien Claudon, Niels Gregersen, Philippe Lalanne, and Jean-Mi hel Gérard,  Harness-394

ing light with photoni nanowires: Fundamentals and appli ations to quantum opti s, 395

ChemPhysChem14, 23932402 (2013) . 396

[23℄ A.Yariv, Opti al ele troni s in modern ommuni ations (1997). 397

[24℄ Teppo Häyrynen, Jakob Rosenkrantz de Lasson, and Niels Gregersen,  Open-398

geometry Fourier modal method: modeling nanophotoni stru tures in innite domains, 399

J. Opt. So .Am. A 33,1298 (2016) . 400

[25℄ A.Vasanelli,R.Ferreira, andG.Bastard,Continuousabsorptionba kgroundandde oheren e 401

inquantum dots, Phys.Rev. Lett. 89(2002), 10.1103/physrevlett.89.216804. 402

[26℄ We notethat single-photonemission ispreserved ifone integrates both thesignal fromtheX 403

and CXlines.[? ℄. 404

[27℄ PetrStepanov, AdrienDelga,Xiaorun Zang,JoëlBleuse, Emmanuel Dupuy,EmanuelPeinke, 405

PhilippeLalanne, Jean-Mi helGérard, andJulienClaudon,Quantumdotspontaneous emis-406

sion ontrol ina ridge waveguide, Appl. Phys.Lett. 106,041112(2015) . 407

[28℄ J. D. Eshelby, The determination of the elasti eld of an ellipsoidal in lusion, and related 408

problems, Pro .R.So .A 241,376396(1957) . 409

[29℄ J. D. Eshelby, The elasti eld outside an ellipsoidal in lusion, 410

Pro .R.So .A 252,561569(1959) . 411

[30℄ M. Zieli«ski, Fine stru ture of light-hole ex itons in nanowire quantum dots, 412

Phys.Rev. B88,115424 (2013) . 413

[31℄ David Ferrand and Joël Cibert, Strain in rystalline ore-shell nanowires, 414

Eur. Phys.J. Appl.Phys.67, 30403(2014) . 415

[32℄ K. F. Karlsson, V. Tron ale, D. Y. Oberli, A. Malko, E. Pelu hi, A. Rudra, and 416

E. Kapon, Opti al polarization anisotropy and hole states in pyramidal quantum dots, 417

Appl. Phys. Lett. 89,251113 (2006) . 418

(19)

thony Martinez,Polarization properties of ex itoni qubitsinsingle self-assembledquantum 420

dots, Phys.Rev. B85, 155303(2012) . 421

[34℄ Mathieu Jeannin, Alberto Artioli, Pamela Rueda-Fonse a, Edith Bellet-Amalri , 422

Kuntheak Kheng, Régis André, Serge Tatarenko, Joël Cibert, David F er-423

rand, and Gilles Nogues, Light-hole ex iton in a nanowire quantum dot, 424

Phys.Rev. B95(2017),10.1103/physrevb.95.035305. 425

[35℄ G.Ba her,R.Weigand,J.Seufert,V.D.Kulakovskii,N.A.Gippius,A.For hel,K.Leonardi, 426

and D. Hommel, Biex iton versus ex iton lifetime in a single semi ondu tor quantum dot, 427

Phys.Rev. Lett. 83,44174420 (1999) . 428

[36℄ L.Novotny andB. He ht, Prin iplesof Nano-Opti s,2nd ed.(2012). 429

[37℄ T. Flissikowski,A.Hundt,M. Lowis h,M. Rabe, andF. Henneberger,Photon beatsfroma 430

single semi ondu torquantum dot, Phys.Rev. Lett. 86,3172 (2001) . 431

[38℄ Niels Gregersen, Torben R. Nielsen, Julien Claudon, Jean-Mi hel Gérard, and Jes-432

per Mørk, Controlling the emission prole of a nanowire with a oni al taper, 433

Opt. Lett. 33, 1693 (2008) . 434

[39℄ I. Friedler,P.Lalanne, J.P.Hugonin, J.Claudon, J.M.Gérard, A.Beveratos, andI. Robert-435

Philip, E ient photoni mirrors for semi ondu tornanowires, Opt. Lett. 33, 2635 (2008) . 436

Figure

Figure 1. (a) Geometry of the innite NW. (b) T otal spontaneous emission rate (blak + ) and spontaneous emission rate into the rst guided mode HE 11 (red ˆ) as a funtion of shell radius for
Figure 2. (a) SEM image of a standing ZnSe/ZnMgSe NW embedding a CdSe QD. The QD
Figure 3. (a) µPL spetrum of a NWQD with 120 nm thik photoni shell for dierent pumping powers
Figure 4. (a) Example of TRPL signal versus time for 2 NWs with a t s = 20 nm shell. Bakground ounts are measured for t &lt; 0 and substrated
+2

Références

Documents relatifs

With such a set/up, two cooling control modes are available resulting into a range of relatively moderate (from 30 to 500 ° C/min) and a range of high (from 500 to 1600 °

The results revealed the presence of carbides type Cr7C3 distributed in a martensitic or ferritic matrix and the

Because of the important and expanding role of nuclear power reactors in central station electric power generation, the Department gives major attention to teaching

Thus, the higher the gate voltage, the higher the DC as well as AC output current, which leads to a higher transconductance and lower insertion loss for the

Our empirical analysis for Swiss cantons over the period 1984–2005 suggests that fiscal rules have an economically and statistically significant negative effect on the probability of

Vincent est en effet actif dans sa séduction des femmes de l’institution alors qu’il a d’abord été passif, comme tout enfant livré à la sexualité adulte 6.. Mais, si la

Universities are instituting (or resurrecting) compulsory writing courses, textbook sales are booming, and the number of journals and conferences dedicated to writing

The objective of this study was to provide new insights on the Culicoides species composition and seasonality in three different host environments (a horse-riding center, a goat