• Aucun résultat trouvé

T H E R A T I O N A L S O L U T I O N S O F T H E D I O P H A N T I N E E Q U A T I O N , y 2 _ X 3 D .

N/A
N/A
Protected

Academic year: 2022

Partager "T H E R A T I O N A L S O L U T I O N S O F T H E D I O P H A N T I N E E Q U A T I O N , y 2 _ X 3 D ."

Copied!
31
0
0

Texte intégral

(1)

THE RATIONAL SOLUTIONS OF THE DIOPHANTINE EQUATION,

y 2 _ X 3 D.

B y J . W . S. C A S S E L S TRINITY COLLEGE, CAMBItIDGE.

1. We study the rational solutions X, Y of the equation

y 2 ~_ X 3 D (1)

where D is a given integer, a problem of a type considered by Bachet over three centuries ago. When D -: :k I Euler 1 [10] showed t h a t the only solutions are X -- 2, Y - - T3 and trivial ones with X - - 0 or Y - - 0. Apart from a t r e a t m e n t of the special case when D is a perfect cube by Nagell [29], the first significant advance for m a n y years was made by Fueter [12] who writes the equation as

X 3 - - y 2 ~ _ D ,

assumes t h a t D > 0, and studies factorisation in R ( ~ / ( - - D ) ) . This work 'has been extended by Brunner in a doctorate thesis [3]. The case D < 0 was considered by Mordell [26] and then by Chang Kuo-Lung [5].

2. The integral solution ~, ~], ~ of the equation

~ - ~ --~ A~ ~ , (~ ~ 0 )

where A is a given integer, is trivially equivalent to the rational solution of (1) with D ~- 243aA 2 by putting

X : Y : A = 223~:2232(~--~1):~-~rt.

The case A = 1 is, of course, F e r m a t ' s problem with exponent 3. The equation with general A was extensively investigated in the 19th Centu?y by Lucas [19], Pdpin [36, 37] and Sylvester [40]; and Sylvester states t h a t he either had a s o l u t i o n or

1 F o r references see end of p a p e r .

(2)

244 J . W . S . C a s s e l s .

knew the equation to be insoluble for all positive A < 100 except 1 A ~-- 66. Further results have been given b y Hurwitz [17], Faddeev [11] and Holzer [16]. Much of this work is summarized b y Nagell [31]. [added in the proof]. Since this was written new and interesting work has been done b y Dr. E. S. Selmer (so far unpublished).

3. The equation (1) is, of course, a special case of

y 2 = x ~ C X _ D (2)

where C and D are integers. This was studied b y Poincar~ [38] who noted that the values of the parameter u corresponding to rational solutions form an additive group, II, when the usual parametrization Y ~ 1 , ~4) (u), X ~ 4~(u) is employed.

This group was shown to have a finite basis by Mordell [25]. A more precise form of this result was given b y Weil (cf. theorem II) who gives an elementary proof [42]

as well as a deep proof of a far-reaching generalization [41]. In a doctorate thesis, Billing [2] has given a general study of (2) using methods based on Weil's theorem and, in particular, he gives a complete solution of (1) for all IDf < 25 in the sense that he gives a complete basis for U. He does not, however, give a detailed account of the method of obtaining these results. The present work was done in ignorance of Billing's paper; indeed, it was not until a late stage that I realized t h a t the algorithm which I employed was that underlying Weil's theorem II. In it, I have developed a more detailed theory of (1) than is given b y Billing and have given general theorems as well as carrying the solution up to f D! < - 5 0 . With one exception (D ~ - - 1 5 ) , m y results confirm Billing's in the range IDi < 25 studied b y him. I have been led to compute a table 2 of class-numbers and units for all cubic fields R(~/D) with ]D I < 50; which I do not think has been given before, although a number of partial tables exist. Finally, it should be remarked that (2) is the subject of a series of papers b y Nagell [30, 32, 34, 35] and that other aspects of the problem have been studied b y Ch~telet [6, 7], Lutz [20] and Lind [18].

4. In part I, I give a resumd of the general theory of (2) and discuss its relevance to (1) in general terms. In part I I the general discussion is carried further using the specific arithmetical properties of the relevant cubic number-fields, and in part I I I the actual applications s r e made.

1 I n s o l u b l e b y t h e o r e m V I I I . Table 2.

(3)

T h e R a t i o n a l S o l u t i o n s of t h e D i o p h a n t i n e E q u a t i o n s y 2 _~ X 3 _ D . 2 4 5

P a r t I.

5. Let (X', Y') and ( X " , Y " ) be any two rational solutions I of y2 = X 3 C X _ D with parameters u', u" and let (X'", Y'") be the solution with parameter u ' " --- u ' q - u " . Then (X', Y'), (X", Y") and (X'", -- Y'") lie on a straight line y -~ A x q - B b y a known result 2, where A and B must be rational. Hence X', X " , X ' " are the roots of

X 3 - - C X - - D - - ( A X q - B ) 2 --- O. (3) The left-hand side of (3) must be identical with ( X - - X ' ) ( X - - X " ) ( X - - X ' " ) and so, if (~ is a root of ~ 3 - - C ~ - - D = O,

( X ' - - 6 ) ( X " - - 6 ) ( X ' " - - 5 ) = (A6q-B) 2 , i . e .

= e ( 4 )

In other words, if squared factors are ignored, the values of X - - 6 form a multi- plicative group homomorphic to 11. There are three groups (~1, (~2, (~s (say) corre- sponding in this w a y to the three values 51, ~2, 6a (say) of ~. If 5 a - - C S - - D is irreduc- ible, the numbers X - - S j (j = 1, 2, 3) are conjugate algebraic numbers, and the three groups (~j run entirely parallel to one another. If, however, 5 3 - - C ~ - - D is reducible, this parallelism does not necessarily hold and so we are compelled to introduce a group (~ in terms of "triplets".

A triplet {aj} is defined as a set of three numbers al, a2, as such that o~j E R(Sj) and the operations of addition and multiplication for triplets are defined b y

= =

Then the set of triplets { X - - d j } is clearly also a multiplicative group N homomorphic to 11, when squared (triplet) factors are ignored. Obviously, when 6 3 - - C S - - D is irreducible (~ is isomorphic to each of the groups gO;..

We denote, further, b y 211 the set of 2u, u E 11. Clearly 211 forms a group. We denote the quotient group of 1I and 211 b y 11/(211). Then the following three theorems hold.

T h e o r e m I (Mordell). The group 1I has a finite basis.

T h e o r e m II (Wail). (~ is isomorphic to 1I/(21I). The element of ~ and the element

I (X, Y) (with or w i t h o u t affixes) will a l w a y s be a r a t i o n a l s o l u t i o n of Y ~ ~ X a - - C X - - D . 2 cf. W h i t t a k e r a n d W a t s o n [44].

(4)

246 J . W . S . Cassols.

of tt/(21l) belonging to the same solution of y3 ~ x a _ C X _ D correspond to one another in the isomorphism.

T h e o r e m I I I . Let (I) w be the number of independent generators of infinite order in l~t, (II) g be the number of generators of ~ and (III) s • 0, 1, 2 according as O a CO--D = 0 has no, has one or has three rational solutions. Then w ~ g--s.

Theorem I I I is really a corollary of theorem I I . F o r proofs we refer to t h e paper of Weil [42] or the book of D e l a u n a y a n d F a d d e e v [9].

6. I f (~ is known, then, b y theorems I I a n d I I I , the s t r u c t u r e of 1I is k n o w n , except for its generators of finite order. A t h e o r e m has been given b y L u t z [21]

which, while n o t completely characterizing the solutions of finite order of y 3 = X 3 - - C X - - D (i. e. those solutions whose p a r a m e t e r s are of finite order in H), reduces t h e problem, w h e n C a n d D are given, to t h e s t u d y of a manageable n u m b e r of cases. We shall n o t need it here, b u t quote it for completeness.

T h e o r e m IV (Lutz). I f X , Y is a rational solution of y3 ~ X a _ C X _ D of finite order, then X and Y are integers and Y3/(4Ca--27D3).

This is superseded in t h e case C ~ 0 b y

T h e o r e m V (Fueter-Billing). Solutions of y3 X a - - D with X = 0 or Y ~ 0 are of order 3 and 2 respectively. The only other solutions of finite order are the two

following:-- X -- 2, Y ~ • D -- --1 ; (5)

X = 233, Y ~ 32333 , D ~ 2433; (6)

of order 6 and 3 respectively.

7. A n o t h e r general t h e o r e m is

T h e o r e m VI (Fueter-Billing)i The number w* (say) of independent generators of infinite order of the group lI* (say) of the equation y3 _~ XaA_27D is equal to the corresponding number w for y 2 = Xa D.

The interdependence between these two equations has been k n o w n for a long time. I t is connected with t h e possibility of " c o m p l e x m u l t i p l i c a t i o n " of t h e para- m e t e r u b y 1/(--3).

8. Finally, we enunciate t h e a l m o s t trivial

T h e o r e m V I I . There is a 1--1 correspondence between the rational solutions X , Y of y3 = X3 C X _ D and the integer solutions x, y, t of

(5)

T h e R a t i o n a l S o l u t i o n s o f t h e D i o p h a n t i n e E q u a t i o n y 2 _: X a D . 247

y2 ~ x a _ C x t 4 Dt6, t > O, (x, t) _~ (y, t) = 1. (7) This follows immediately by putting X ~ - x ~ r , Y ~ y / s where x, y, r, s are integers and the fractions are in their lowest terms. Comparison of denominators on both sides of y 2 =_ X a C X _ D g i v e s s2 _= r 3 and hence s ~ t 3, r --- t 2 for some t.

I t will be more convenient to use this form in future. We note t h a t the multiplicative group (~ of the triplets {X--~j} m a y also be defined as the grou~ of the {x--t2(Sj}, squared factors again being ignored.

P a r t II.

9. We shall now confine ourselves to the equation

y 2 = x 3 D t ~ , t 4 = O , (x,t)~-- ( y , t ) : 1, (8) where x, y, t are integers. We m a y clearly assume t h a t D is sixth-power-free and, by theorem VI t h a t 27r Any such D can be put in the form 1

D : E F 2 G a, E > O, F > O, 3 ~G , (9)

(E, F) = 1 , (10)

E , F , G squarefree. (11)

By theorems I I I and V the structure of the group 1I of solutions can be found from t h a t of the group (~. Until further notice, we shall assume t h a t D is not a perfect cube and so, by theorem I I I , the number of independent generators of infinite order of 11 is equal to the number of generators of ~ . Further, all three expressions x - - t 2 6 j (j = 1, 2, 3) where ~j runs through the roots of 63 = D, are conjugate, and so we need study only one, say x--t26 where 5 is the real cube root of D. We first state some properties of the cubic fields R(6). For proofs see a paper by Dedekind [8]

or the general theory in Weyl [43].

10. Write

(~ -~ GA, D * -~ E F " ~- A3 > 1 .

Small Greek letters denote numbers in R ( A ) , Gothic small letters denote ideals, as also do square brackets enclosing a (possibly redundant) basis. If D * ~ie :~ 1 rood 9 integers in R(A) have the basis {1, A, ~ 2/F} b u t if D* ~ -~-1 rood 9 the basis is {1, A, A 2 / F , 8 9 In particular

1 F o r l e t pS]]D w h e r e p i s a r a t i o n a l p r i m e . A c c o r d i n g a s s = 1, 2, 3, 4, 5 w e m a k e

(s = 1) PilE, p~FG; (s = 2) p]]F, p~EG; (s = 3) p]/G, p~EF; (s = 4) PilE, pfF, p]]G;

(s = 5) p~E, p]]F, p//(~. F u r t h e r , s i g n G = s i g n D .

(6)

248 J . W . S . Cassels.

L e m m a 1. The number a + b A , where a and b are rational, is an integer in R ( J ) if and only i f a and b are integers.

T h e r a t i o n a l p r i m e s p f a c t o r i s e as follows in R ( J ) :

p/D*: p - = p~ w h e r e p ~-- [p, J ] or p --- [p, JJ/F] a c c o r d i n g as p i E or p/F.

p ~ 3 ~ D * , D * ~!-: :}=1 rood 9 : 3 =- ~3, 1: ~ [3, T z l ] w h e r e D * _~_ =kl m o d 3.

p : 3 / D * , D * -~ ! l rood 9 : 3 =- 1:2~ w h e r e -- [3, 1 T J , ~ ( l I J §

= [3, ~=~J, ~ ( - 2 + + J + J ~ ) ] . H e r e r~ = [3, 1 ~= J ] .

p : = - - 1 m o d 3, p / D * : p = pq w h e r e

= [p, d - - A ] , q = [p, d J + d J + A ~]

a n d d is t h e u n i q u e r o o t of t h e c o n g r u e n c e d a ~ D * m o d p.

p a n d q are of t h e first a n d s e c o n d d e g r e e s r e s p e c t i v e l y . ~

p ~ 1 rood 3,

p/D*,

D* a cubic r e s i d u e of p : p ~ P~PJPa w h e r e pj --- [p, d j - - J ] a n d d~, dj, d3 a r e t h e d i s t i n c t r o o t s of d a ~ D* m o d p.

p ~ 1 rood 3,

p/D*,

D* n o t a cubic r e s i d u e of p : p r e m a i n s p r i m e in R ( J ) . T h e following a r e q u o t e d f o r r e f e r e n c e as l e m m a s . T h e p r o o f s a r e e l e m e n t a r y . L e m m a 2. Let a, b be rationa$ integers and p / ( a , b) a rational prime. Suppose p ~ 3 if D* ~ • mod 9. Then either p is prime to a § or

[p, a + b J ] =- pw where p is some first degree prime divisor of p.

L e m m a 3. I f 0 is a prime ideal of the first degree the rational integers O, 1, 2 , . . . , p - - 1 are a complete set of incongruent residues rood p where p -~ N o r m p.

L e m m a 4. I f q is a prime ideal of the second degree the numbers a § ( a , b = 0, 1 , 2 . . . p - - l )

are a complete set of incongruent residues m o d q where p2 ~ N o r m q.

L e m m a 5. Let t be a prime ideal and t~/2 for some s > O. Then ~ ~ fl rood i ~

1 i e N o r m p ~ p , N o r m q = p J .

(7)

T h e R a t i o n a l S o l u t i o n s o f t h e D i o p h a n t i n e E q u a t i o n y 2 = X a _ D . 249 implies a 2 ~ f12 m o d t ~. Indeed it implies a 2 ~ f12 m o d t ~+1 i f t is

of

the first degree.

I n particular a 2 ~_~ 1 m o d t s i f t is of the first degree and t ~ a.

11. T h e u n i t s of R(z]) are all of t h e f o r m ~:e n w h e r e s > 0 is t h e f u n d a m e n t a l unit. F o r o u r p r e s e n t p u r p o s e it is e n o u g h t o k n o w a n y o d d p o w e r ~ ~ -~ e ~n+~ > 0 of s. Values of ~ a n d of t h e c l a s s n u m b e r h of R(A) are g i v e n in t a b l e 2. As a special case of a k n o w n general t h e o r e m we h a v e 2

L e m m a b. I f h is odd, ~ is not a quadratic residue of 4.

L e t n o w ~7~be t h e p r i n c i p a l class of ideals in R(A) a n d gl, g2 . . . . , t~k t h e classes of o r d e r 2, if any, i.e. ~. 4= ~ 8 2 -~ ~ . L e t c j e ~ a n d choose ?~- > 0 such t h a t [?j] -~ c~. T h e n e v e r y n u m b e r 0 > 0 of R(A) for which [0] is t h e s q u a r e of an ideal has one of t h e f o r m s

T h e yj can be chosen t o be integers p r i m e t o a n y g i v e n ideal m. H e n c e , if 0 is an integer, ~ c o n t a i n s in its d e n o m i n a t o r o n l y ideals p r i m e to m. I n p a r t i c u l a r , we shall suppose h e n c e f o r t h t h a t t h e ~j are p r i m e t o 2. T h e r e is a g e n e r a l i s a t i o n of l e m m a 5 which s t a t e s t h a t t h e n precisely half of t h e n u m b e r s

1, V, ~j, W~- (j = 1, 2 . . . . , k)

are q u a d r a t i c residues of 4. W e shall n o t use this g e n e r a l i s a t i o n in t h e general t h e o r y b u t in n u m e r i c a l w o r k we shall use t h e c o r o l l a r y t h a t if V is n o t a q u a d r a t i c residue of 4 t h e ~ / m a y be chosen all t o be q u a d r a t i c residues, t o give a n o r m a l i s a t i o n of t h e ~j w h e r e possible. This is a l w a y s possible in t h e r a n g e ID[ < 50, since t h e r e is n o t a q u a d r a t i c residue of 4.

12. Consider t h e f a c t o r i s a t i o n

y2 = ( x - - Gt2z])(x2 +Gt~xA + G~t4A 2).

1 I t is d i f f i c u l t to decide if a g i v e n u n i t ~1 ~ 0 is a f u n d a m e n t a l u n i t b u t e a s y to decide if it is a p e r f e c t s q u a r e . I f n o t , p u t ~] ~ ~1.

2 L e m m a 6 b e l o n g s to t h e g e n e r a l t h e o r y of class-fields as e x p o u n d e d b y H a s s e [13, 14]. T h e full force of t h i s t h e o r y is n o t r e q u i r e d a n d it is p o s s i b l e to b a s e a p r o o f o n t h e s i m p l e r t h e o r y of r e l a t i v e - q u a d r a t i c fields d e v e l o p e d b y H i l b e r t [15]. B y S a t z 4 o n p a g e 374 of [15] if ~ is a q u a d r a t i c r e s i d u e of 4, t h e r e l a t i v e - d i s c r i m i n a n t of R(z~, ~/~) o v e r R(A) is u n i t y , s i n c e it h a s n o p r i m e f a c t o r s . B y S a t z 94 o n p a g e 155 ( a n d t h e r e m a r k o n p a g e 156 e x t e n d i n g it t o 1 ~ 2 in t h e t h e r e n o t a t i o n if a f u r t h e r c o n d i t i o n is satisfied) it follows t h a t h is e v e n .

I n t h e l a n g u a g e of class-field t h e o r y if ~ is a q u a d r a t i c r e s i d u e of 4 t h e field R ( A , ~/~) is u n r a m i f i e d (unverzweigt) o v e r R(A) a n d so is t h e class-field to s o m e a b s o l u t e ideal g r o u p of i n d e x 2. T h i s i m p l i e s t h a t h is e v e n .

(8)

250 J . W . S . Cassels.

A n y c o m m o n divisor a of t h e two t e r m s on t h e r i g h t h a n d side m u s t divide x2-~ Gt2xA ~-Get4A ~ _ (x--Gt2z~ )~ = 3Gt~xA

a n d so a / 3 G A since (x, t) = 1. H e n c e [ x - - G t 2 A ] -= ab 2 for some ideal b a n d a / 3 G A . W e classify t h e p r i m e divisors of ~ as follows

(i) p / d . T h e n p a _ [p] where p = N o r m p . Since p occurs in y e = N o r m ( x - - G t 2 d ) t o an e v e n power, p occurs in x - - G t 2 d to an e v e n power, a n d so m a y be a b s o r b e d in b.

(ii) q / G b u t q f A , so q f 3 b y (9). T h e n q / x since q / G a n d q / ( x - - G t 2 A ) i. e. q / x where q is t h e r a t i o n a l p r i m e d i v i s i b l e b y q. W r i t e x = qxl, G -= qG 1. B y l e m m a 2, e i t h e r x l - - G ~ t 2 A is p r i m e to q or [q, x~--Glt~A] --~ q,W for some first degree p r i m e divisor q' of q, since qT~Glt 2 [as q ~ G 1 b y ( l l ) a n d q ~ t b y (8) (and q/x)]. B u t y~ =- N o r m ( x - - G t 2 A ) = q 3 N o r m ( x ~ - - G l t 2 A ) a n d so t h e second a l t e r n a t i v e holds a n d q' divides x ~ - G l t 2 A to a n o d d power.

(iii) p/3 b u t p f G z l . H e n c e 3/~D b u t 3 / y since y ~ = N o r m ( x - - G t 2 A ) . Conse- q u e n t l y x a ~ GateD * m o d 9 so this case occurs o n l y w h e n D* ~ • 1 m o d 9 i. e.

w h e n [3] = r2~. N o w x 3 ~ G3t6D * ~- ! G 3 t e m o d 9 implies x ~ • 2 m o d 3 a n d so r ~ / ( x - - G t 2 ~ ) since r~ = [3, 1-TA]. B u t 3 ~ ( x - - G t 2 ~ ) (lemma 1) so r / / ( x - - G t 2 ~ ) . H e n c e ~ occurs in x - - G t 2 A t o an o d d p o w e r since y 2 = N o r m ( x - - G t 2 A ) a n d N o r m ~ = N o r m ~ = 3.

All this p r o v e s

L e m m a 7. L e t ql,. . ., ql be the rational p r i m e s such that qj/(x, G) but q j t D * . T h e n

[ x _ G t 2 A ] = q~ . . . q_L. b2 ' (12)

q~ qz

where qj is some f i r s t degree p r i m e divisor o f qj a n d b is some ideal; except that, w h e n D * ~ i i rood 9 a n d 3/y,

[ x _ G t 2 A ] _= q~ . . . q_t. ~ . b2 (13)

q~ q~

I n p a r t i c u l a r [ x - - G t 2 A ] = ab 2 where a is one of a finite set. H e n c e ~ T f : ~7/~ 2 w h e r e ~ a n d ~ are t h e ideal classes to which a a n d b belong a n d ~7[(as b e f o r e ) i s t h e principal class. F o r g i v e n a a n d so for g i v e n ~71, this e q u a t i o n for ~ m a y be insoluble

(9)

T h e R a t i o n a l S o l u t i o n s of t h e D i o p h a n t i n e E q u a t i o n y 2 = X a D . 2 5 1

(e. g. when 1 the class-number h ~- 2 and ~ 4: gT(). If however ~/~2 = ~7( has the solution ~--- ~ , , the other solutions are all the ~ = ~16" where 6" (as before) runs t h r o u g h M1 the solutions of b ~" = ~ , t? 4: ~ . We m a y choose bl E ~ , and prime to a n y given ideal m. Then ab~ is a principal ideal, say ab~ = [~t]. Now [ x - - G t 2 ~ ] = ab ~ : [ab~][bb~-l] 2 where bb~-lE ~j~-11 : ~. for some j, or : ~Tf.

Hence finally

x _ G t 2 A : •162 or • or + 7 j ~ ~ or • say

x _ G t 2 A : / ~ 2 (14)

where # is an integer in R ( A ) taken from a finite set, which m a y be chosen so t h a t a, though not necessarily an integer, has in its denominator only factors prime to a n y given 2 m. We note t h a t # > 0 since xa--(Gt2A) 3 = y2 > O.

We shall say t h a t two values of # are essentially s i m i l a r if their quotient is a square in R(A), otherwise essentially dissimilar. The values of # which actually correspond to solutions of (8) form the multiplicative group | when squared factors arc ignored, which we discussed earlier. We shall use this group-property frequently.

We note in particular t h a t we can assume t h a t # is essentially distinct from 1 when investigating the number of generators of (~. As we remarked earlier, the number of generators of (~ is the number of generators of infinite order of lt.

13. All the argument so far applies equally to the equation y2 : x3_~Dt 6 in which the sign of D is changed and leads to the equation

x + G t 2 A : #~2 (15)

in which # has the same a priori a possible values as for (14). I t will often be con- venient to discuss (14) and (15) simultaneously and then, in numerical work, we shall always mean by D, ~ the positive values and make the appropriate changes in the formulae when discussing negative D. General theorems will, however, apply equally to either positive or negative D.

1 A n u m e r i c a l case is D = ~:88 a n d 2Ix. T h e n G = 2, D* = l l , h = 2 a n d ~t = II is t h e second-

3 (

degree divisor of [2] in R( U 11), w h i c h is n o t a p r i n c i p a l ideal. H e n c e t h e r e are no s o l u t i o n s w i t h D = -t- 88, 2Ix [indeed n o n e w i t h D = + 88 a t all]. A similar a r g u m e n t in a q u a d r a t i c field h a s b e e n u s e d b y Mordell a n d i n d e p e n d e n t l y b y Marshall H a l l ( b o t h u n p u b l i s h e d ) .

2 W e r e q u i r e o n l y 111 ~ 6.

a i. e. so far as t h e discussion in p a r t I I is concerned. W e shall use a priori in t h i s sense t h r o u g h o u t p a r t I I I .

(10)

2 5 2 J . W . S . C a s s e l s .

P a r t I I I .

14. I n this p a r t w e give a n u m b e r of general t h e o r e m s covering m o s t o f t h e values of D such t h a t IDI < 50 a n d t h e n dispose of t h e rest individually.

15. D odd. W e e x a m i n e (14) m o d u l o powers of f a n d H, t h e p r i m e divisors of [2] of t h e first a n d second degrees respectively. W e n o t e t h a t

f = [2, 1-~-6], [ 2 = [4, D - - 6 ] , f3 = [8, n - - 6 ] ,

u = [2, 1--kS-kS2], u 2 = [4, 1--kDSq-52], u 3 = [8, 1 - k D O - k 5 2 ] . W e p r o v e first

T h e o r e m V I I I . I f D is odd a n d (14) is true then either/~ is a quadratic residue o f 4 or

~ D - - 5 , 2 - - 5 , D - - 2 6 rood u 2 . (16) One a n d o n l y one of x, y, t is e v e n since (x, t) = (y, t) = 1 a n d we t a k e t h e possibilities in t u r n .

(i) t even. T h e n x ~ x 3 ~ y 2 ~ 1 m o d 8 so / ~ 2 = x _ t 2 6 ~ 1 m o d 4 a n d /~

is a q u a d r a t i c residue of 4.

(ii) y even. T h e n x ~ x 3 ~ D t ~ ~ D m o d 4 a n d s o / ~ 2 = x _ t 2 6 ~ D - - 6 m o d 4.

B u t ~ is p r i m e to u since x - - t 2 5 is ( b y l e m m a 2). H e n c e t~ = ( x - - t 2 6 ) ( 1 / ~ ) 3 ~ ( D - - 6 ) ( 1 / ~ ) 2 m o d u 2 .

B y l e m m a 4, ( l / s ) ~ 1, 6, 1 + 6 m o d u so, b y l e m m a 5, ( 1 / ~ ) 2 ~ 13 , ~2, ( 1 + 5 ) 2 m o d u 2 a n d t h e n (16) holds.

(iii) x even. T h e n D ~ Dt~ ~ _ y 2 ~ - - 1 m o d 8. I f 4/x, t h e n / ~ 3 = x - - t 3 5 ~ --5 ~ (53) 3 m o d 4 so/~ is a q u a d r a t i c residue of 4. If, h o w e v e r , 2]]x t h e n

/ ~ 2 = x _ t 2 6 ~ 2 - - 5 m o d 4 a n d so (16) holds.

This concludes t h e proof.

C o r o l l a r y 1. I f D is odd a n d / ~ is not a quadratic residue o f 4 at least one o f (14) or (15) is insoluble.

F o r if (16) is t r u e t h e c o r r e s p o n d i n g congruences in which t h e signs of D a n d are s i m u l t a n e o u s l y c h a n g e d c a n n o t be t r u e .

I n p a r t i c u l a r ,

C o r o l l a r y 2. I f D -j~ ~: 1 m o d 9 is odd a n d cube-free 1 a n d i f h D is odd, n o n - 1 I t is e n o u g h t h a t t h e r e is n o p r i m e p w i t h pS//D.

(11)

T h e R a t i o n a l S o l u t i o n s of t h e D i o p h a n t i n e E q u a t i o n y 2 ~ X a _ D . 2 5 3

trivial solutions do not exist for both y2 ~ x a • I f non-trivial solutions do exist for one of these equations then the corresponding group 1I has precisely one generator of infinite order.

F o r u n d e r t h e conditions of c o r o l l a r y 2 t h e o n l y a priori possible v a l u e of # essentially dissimilar f r o m 1 is # : ~, which is n o t a q u a d r a t i c residue of 4 b y l e m m a 6.

H e n c e (~ has a t m o s t one g e n e r a t o r , i. e. 11 has at m o s t one g e n e r a t o r of infinite o r d e r ( t h e o r e m I I I ) and, b y corollary 1, such a g e n e r a t o r exists for a t m o s t one of t h e t w o equations. F i n a l l y , b y t h e o r e m V, t h e o n l y solutions of finite o r d e r for t h e D u n d e r c o n s i d e r a t i o n are trivial.

W e n o w consider some n u m e r i c a l examples.

N o n - t r i v i a l solutions a c t u a l l y exist (table 1) for t h e following values of D for which h D is odd (table 2) a n d which satisfy t h e o t h e r conditions of corollary 2:

D ~-- - - 3 , --5, ~-7, - - 9 , ~ 1 3 , -~21, ~ 2 3 , ~ 2 5 , ~-29, - - 3 1 , - - 3 3 , - - 4 1 , -t-45, ~ 4 9 . H e n c e 1I has one g e n e r a t o r of infinite o r d e r for these D whereas t h e r e are no non- trivial solutions a t all for

D ~ ~ 3 , -k5, - - 7 , + 9 , etc.

Consider n o w D -[- • 1 m o d 9 a n d cube-free, b u t w i t h h D even. T h e n t h e o n l y possible values of/~ essentially d i f f e r e n t f r o m 1 are /~ ~-- ~, ~j, ~l~j. Suppose f u r t h e r t h a t tDI < 50. T h e n (table 2) t h e g r o u p of ideal-classes is cyclic, so essentially o n l y one v a l u e of ~j : ~ exists~ a n d ~ is a q u a d r a t i c residue of 4 b u t ~ a n d ~ are not.

As t h e values of/~ for which (14) is soluble f o r m t h e m u l t i p l i c a t i v e g r o u p (~, t h e g r o u p U has no, one or t w o g e n e r a t o r s of infinite o r d e r a c c o r d i n g as none, o r one or all t h r e e possible v a l u e s of # essentially dissimilar f r o m 1 do in f a c t h a v e solutions in (14).

I n p a r t i c u l a r , consider D ~- q - l l . N e i t h e r of t h e solutions (x, y, t) --~ (3, 4, 1) or (15, 58, 1) l e a d s to a v a l u e of # which is a q u a d r a t i c residue of 4 (as in t h e p r o o f of t h e o r e m V I I I ) n o r do t h e y belong t o t h e same # since t h e r a t i o

(3-~)/(15-~)

is n o t a p e r f e c t s q u a r e 1. H e n c e solutions exist b o t h f o r / ~ ~ ~/ a n d for # ~ V~, so also for ~ ---- ~ b y t h e g r o u p - p r o p e r t y of #. T h e c o r r e s p o n d i n g g r o u p 1111 has t h u s t w o g e n e r a t o r s of infinite order. B y c o r o l l a r y 1 t h e r e are t h e n no solutions for D : -- 11 e i t h e r w i t h /~ ~--V or # ~--V~, so w h e n D - ~ --11 t h e o n l y possible v a l u e for /~

essentially dissimilar f r o m 1 is /~ ~ ~ i. e. t h e g r o u p 11-11 can h a v e a t m o s t one

1 I t is not a quadratic residue rood [5, (~--1], the first-degree prime divisor of 5.

(12)

254 J . W . S . Cassels.

g e n e r a t o r of infinite order. I t h a s p r e c i s e l y one s u c h g e n e r a t o r since n o n - t r i v i a l s o l u t i o n s do in f a c t exist. H o w e v e r / ~ = 1 o r / ~ = ~+ is a q u a d r a t i c r e s i d u e of 4 f o r all t h e s e solutions a n d h e n c e so is I x~-t26. Since - - 1 1 : : - - 1 rood 8, t h i s implies 2/t, as in t h e p r o o f of t h e o r e m V I I I . I n p a r t i c u l a r X = x/t 2 a n d Y = y/t 3 c a n n o t be integers. T h e s o l u t i o n g i v e n in t a b l e 1 for D ~- - - l l , n a m e l y (x, y, t) = ( - - 7 , 19, 2) c o r r e s p o n d s t o ~ x~-t"5 = ~+~2 a n d n o t to x~-t25 = ~2 since - - 7 ~ - 4 6 =~ 5 m o d t a b u t a s ~ I m o d t 3 b y l e m m a 5.

S i m i l a r a r g u m e n t s a p p l y to D = ~ 3 9 , --+43, - + 4 7 . T h e o n l y m o d i f i c a t i o n n e c e s s a r y w h e n D = -+ 15 is t h a t a l t h o u g h we c a n p r o v e t h a t , w h e n D = ~-15, x - - t 2 b is a q u a d r a t i c residue of 4 t h i s does not i m p l y 2/t since 15 _= - - 1 m o d 8 a n d we m a y h a v e 4/x as in t h e case (iii) of t h e p r o o f of t h e t h e o r e m . T h i s in f a c t does occur.

W e l e a v e f o r l a t e r c o n s i d e r a t i o n t h e cases D _= -+ 1 m o d 9.

16. W e m a y s t r e n g t h e n t h e o r e m V I I I s o m e w h a t b y considering c o n g r u e n c e s to p o w e r s of t as well as to p o w e r s of u. W e p r o v e t h e s t r e n g t h e n e d f o r m a l t h o u g h it is n o t r e q u i r e d to deal w i t h ID] < 50. W e r e q u i r e first

L e m m a 8. I f D is odd a n d (14) is true but/~ is not a quadratic residue of 4 then either 2/y or 2//x, the second case occurring only when D ~ - - 1 mod, 8. Further/~ ~-~ 3 m o d ~2 and ~ ~ 7 or ~ 3 m o d ia, in the first case according as 2//y or 4/y, and i n the second case according as x ~ - - 2 or x --= -+ 2 m o d 8.

T h e p r o o f of t h e first s e n t e n c e h a s a l r e a d y b e e n g i v e n in t h e p r o o f of t h e o r e m V I I I . W e r e c o n s i d e r cases (ii) a n d (iii) of t h a t proof.

(ii) 2/y. S u p p o s e 2"//y. T h e n t~"//(x--t25) since y 2 : N o r m (x--t2~) a n d u/~(x--t25) b y l e m m a 2. H e n c e

y2 = xa Dt6 = / ~ 3 ~ 6 ~ _ 3 / ~ x 4 t 2 ~ . . ~ 3 / ~ X 2 t 4 ~ 2

on s u b s t i t u t i n g for x in t e r m s o f / ~ a n d ~ a n d so

y )2 3~2/~ /~2~4

= - - ) 2 T " ( ! 7 )

I f a > 1 t h e second a n d t h i r d t e r m s on t h e r i g h t a r e divisible b y t 4 a n d t h e first, b y l e m m a 5, is c o n g r u e n t t o 1 m o d t 3. H e n c e 3/~ ~ 1, # _~ 3 m o d t 3. I f h o w e v e r

i ~ ~ ~ 1 1 i n a c c o r d a n c e w i t h t h e c o n v e n t i o n i n t r o d u c e d a t t h e e n d o f p a r t I I .

(13)

T h e R a t i o n a l S o l u t i o n s of t h e D i o p h a n t i n e E q u a t i o n Y ~ = X a - - D . 2 5 5 a = 1, t h e t h i r d t e r m is still divisible b y t 4 b u t t h e s e c o n d o n l y b y t 2 a n d so ~ is c o n g r u e n t t o 4 r o o d i a. H e n c e 3/, ~ 5, /~ ~ 7 r o o d t a.

(iii) 2/x so D ~ - - 1 r o o d 8. H e r e ~ is p r i m e t o t since y is t o 2 a n d so

# ~- tta 2 = x - - t 2 6 =~ x - - 6 ~_ x + l m o d t a .

Since w e h a v e a l r e a d y s h o w n t h a t 2 2 / x if:/, is n o t a q u a d r a t i c r e s i d u e of 4 t h i s c o n c l u d e s t h e p r o o f of t h e l e m m a .

I f # is n o t a q u a d r a t i c r e s i d u e of 4 we m a y n o w w r i t e

# ~ 3 - ~ 4 k m o d t a , w h e r e k ~ 0 or 1, a n d p r o c e e d t o p r o v e

T h e o r e m I X . T h e o r e m V I I I r e m a i n s true i f (16) is replaced by

# ~ D - - 6 ~ 4 k + 4 / ( l + 6 ) , - - 2 D - - 6 ~ - 4 k - ~ 4 1 6 , 2 - - D - - 2 6 + 4 k 6 + 4 1 m o d u 3 , (18) where k has j u s t been d e f i n e d a n d 1 m a y take both values 0 or 1.

I t is e a s i l y v e r i f i e d t h a t o n l y h a l f t h e n u m b e r s w h i c h a r e q u a d r a t i c r e s i d u e s o f u 2 a r e q u a d r a t i c r e s i d u e s of u a. T h u s if fl ~ 1 r o o d u t h e n fl~ ~_ 1, 5 m o d u a b u t

1-{-4~ a n d 5 + 46 a r e n o t q u a d r a t i c r e s i d u e s of u ~. T o p r o v e t h e o r e m I X w e n e e d n o w o n l y r e c o n s i d e r cases (ii) a n d (iii) of t h e o r e m V I I I a n d use l e m m a 8.

(ii) 2/y. H e r e

x ~ x a ~- y 2 + D t ~ ~- 4 k N D m o d 8 , b y l e m m a 8. H e n c e

# = (x--t26)(1/o~) 2 ~_ ( D N 4 k - - 6 ) ( 1 / o ~ ) 2 m o d u a a n d so (18) h o l d s .

(iii) 2/x. T h i s m a y be s i m i l a r l y d e a l t w i t h .

17. 2 / / D . W e c o n s i d e r c o n g r u e n c e s t o p o w e r s of t w h e r e t - - [2, 6], t ~ = [2, 65], t 3 = [2]

T h e o r e m X . I f 2 / / D a n d (14) is soluble then either # is a quadratic residue o f 4 or /~ ~ 1 • , 1 + D - - 6 , l - - D + 6 r o o d t 7 --- 4[2, 6 ] . (19) I f e i t h e r x or y w e r e e v e n t h e n so w o u l d t h e o t h e r be, a n d t h e n D t ~ -~ x a - - y ~ ~ 0 r o o d 4 i. e. 2/t c o n t r a r y t o (x, t) = (y, t) ~ 1. H e n c e 2 ~xy. T h e r e a r e t w o cases (i) t e v e n a n d (ii) t o d d .

1 If tf fll a n d tf/32 t h e n / 3 1 ~ / 3 2 raod t since N o r m t = 2; similarly if t'~11/31 a n d ts/I/32 t h e n / 3 1 ~ / 3 . , rood t s+l.

(14)

256 J . W . S . Cassels.

(i) t even. H e r e x ~ x 3 _= y~ ~ 1 m o d 4, s o / z ~ 2 = x--t2~ ~ 1 m o d 4 a n d ~u is a q u a d r a t i c r e s i d u e of 4.

(ii) t odd. T h e n x ~ x a - ~ y 2 + D t 6 : ~ I + D rood 8 so I~o~ = x--t25 ::_ I + D - - ~ m o d [8] ---- f g .

B u t y is odd, so ~ is p r i m e to f a n d t h e n ( l / a ) ~ 1, 1 + ~ , 1 + 5 3 , 1 + ~ + 5 2 m o d [ 2 ] - - - - t 3. H e n c e , b y l e m m a 4,

(1/~) 2 ~ 1, 1 + 2 ~ + ~ 2, 1 + 2 ~ + 2 5 2 , 5 + 3 5 ~ m o d t 7 , (20) a n d /z ---- (x--t25)(1/oO 2 satisfies (19).

T h i s c o n c l u d e s t h e p r o o f . W e n o t e t h a t t h e r i g h t h a n d side of (19) r e m a i n s u n a l t e r e d w h e n - - D , - - ~ a r e s u b s t i t u t e d f o r + D , + ~ r e s p e c t i v e l y .

L e t us n o w consider s o m e n u m e r i c a l e x a m p l e s . I f D ~1- • 1 m o d 9 is c u b e - f r e e a n d if h D is o d d t h e o n l y a priori possible v a l u e o f / , e s s e n t i a l l y d i f f e r e n t f r o m / , ---- 1 is/~ ---- ~. T h u s ~ h a s a t m o s t o n e g e n e r a t o r a n d U a t m o s t o n e g e n e r a t o r of infinite order. Since n o n - t r i v i a l s o l u t i o n s (i. e. s o l u t i o n s of infinite order) do e x i s t f o r D ---- +-2, • • • • • t h e c o r r e s p o n d i n g g r o u p lI h a s p r e c i s e l y o n e i n f i n i t e g e n e r a t o r . T h e o r e m X , u s i n g t a b l e 2, shows t h a t /, ---- ~ is i m p o s s i b l e f o r D ---- + 6 , • • +-42. H e n c e f o r t h e s e D t h e r e a r e n o n o n - t r i v i a l solutions.

T a b l e 2 s h o w s t h a t t h e r e a r e no e v e n v a l u e s of D w i t h e v e n c l a s s - n u m b e r s in t h e r a n g e ID[ < 50 u n d e r c o n s i d e r a t i o n . If, h o w e v e r , a n y e v e n v a l u e s of D e x i s t w i t h e v e n c l a s s - n u m b e r t h e y could be t r e a t e d as w h e n D is odd.

W e c o n s i d e r l a t e r t h e cases D ~ +- 1 m o d 9.

18. 2~//D. W r i t e

D = 4 J , 2 ~ J . W e c o n s i d e r c o n g r u e n c e s t o p o w e r s of t w h e r e

f = [2, 89 t ~ = [2, 6], t 3 = [ 2 ] .

T h e o r e m X I . I f 2211D and (14) is soluble then either tt is a quadratic residue of 4 or (I) i f J ~ - - 1 m o d 4,

/~ := 5 - - 5 , 1 - - 2 5 , 1-}-5 2, 1 + 5 - - 5 2 m o d t 7 , (21) or ( I I ) i f T ~ + 1 m o d 4,

3 2 1 + 5 + 8 9 1 + 5 + ~ 5 2 m o d t7 ( 2 2 )

/~ ~ - - 1 + 8 9 2, 3 + ~ 5 ,

As (x, t) = (y, t) = 1 it is e a s y t o see t h a t o n e of t h e t h r e e cases holds (i) 2~xy, 2/t (ii) 27~xyt (iii) 2/x, 2//y, 2ft.

(15)

The Rational Solutions of the Diophantine Equation Y~ ~ Xa--D. 257 (i) 2~xy, 2It. This is a n a l o g o u s to case (i) in t h e previous t w o sections: W e h a v e x :~ x a ~ y2 ~ 1 m o d 8 a n d so/~a2 __ x _ t 2 6 ~ 1 rood 4 i. e./~ is a q u a d r a t i c residue of 4.

(ii) 2r Here x ~ x s = y 2 + D t G ~ l + D ~ - ~ 5 rood 8 a n d so tto~ 2 = x--t26 ~ 5 - - 6 rood 8 .

B u t ~ is p r i m e to t since y is prime, to 2 a n d so

( I / a ) ~_ 1, 1-{--6, 1+ 89 2, 1-{-6-1--89 ~ m o d t a = [ 2 ] . Hence, b y l e m m a 5,

(1/~) 2 ~ 1, 1 + 2 6 + 6 2 , 1+J6=l-62, 5 + 3 J 6 m o d t 7 . (23) T h u s if J ~ g= 1 m o d 4, # is a q u a d r a t i c residue of t 7 a n d afortiori of 4 a n d if J ~ - - 1 m o d 4 one of t h e congruences (21) holds.

(iii) 2/x, 2//y, 27~t. W r i t e x = 2x', y = 2y' so t h a t 2~y' a n d 2x 'a ~-- y'2-+-Jt6 ~ l + J rood 8 . H e n c e J - - I : 3 m o d 8 a n d

4/x if J ~ 7 m o d 8 .

(2~)

x - ~ 2 x ' ~ l + J m o d 8 if J ~ 1 m o d 4 . L e t a -~ 89 ' so t h a t a ' is p r i m e to t a n d

/ ~ ' ~ = (2/6~)2(x--t26) ~ - - J + x 5 2 / 4 m o d t 7 . (25) W e n o w consider t h e t w o cases J ~ 7 rood 8 a n d J ~ 1 rood 4 s e p a r a t e l y .

(iiil) J ~ 7 rood 8. T h e n (24) implies either t h a t t h e r i g h t h a n d side of (25) is c o n g r u e n t t o 1 rood t 7 so t h a t # is a q u a d r a t i c residue of ff a n d a f o r t i o r i of 4 or t h a t it is c o n g r u e n t t o 1 + 6 ~ rood ff a n d t h e n (2I) holds.

(iii2) J ~ 1 rood 4. B y (24) t h e right h a n d side of (25) is c o n g r u e n t to - - J + ( l + J ) 6 2 / 4 rood t 7. Since (1/~') is p r i m e to t, (1/a') 2 satisfies one of t h e con- g r u e n c e s (23) a n d h e n c e (22) holds.

This concludes t h e p r o o f of t h e t h e o r e m .

C o r o l l a r y 1. I f 22//D and/~ is not a quadratic residue of 4 at least one of (14) or (15) is insoluble.

F o r (21) is i n c o m p a t i b l e w i t h t h e set of c o n g r u e n c e s o b t a i n e d f r o m (22) b y writing - - 6 for 6.

I n p a r t i c u l a r , precisely as corollary 2 of t h e o r e m V I I I is d e r i v e d f r o m corollary 1, we h a v e here also

17. Acta mathematiza, 82. I m p r i m 6 le 9 mars 1950.

(16)

258 J . W . S . Cassels.

C o r o l l a r y 2. I f 2~//D, D =i~ • 1 rood 9 is cube-free and if h D i8 odd, non-trivial solutions do not exist for both y2 = xa =~ Dt 6. I f non-trivial solutions do exist for one of these equations then the corresponding group U has precisely one generator of infinite order.

W e n o w consider s o m e n u m e r i c a l e x a m p l e s .

N o n - t r i v i a l solutions a c t u a l l y e x i s t f o r t h e v a l u e s D = + 4 , - - 1 2 , + 2 0 a n d - - 3 6 w h i c h s a t i s f y t h e c o n d i t i o n s of c o r o l l a r y 2. H e n c e t h e r e is p r e c i s e l y one infinite g e n e r a t o r for e a c h of t h e c o r r e s p o n d i n g g r o u p s 1I. Moreover, b y t h e s a m e corollary, t h e r e are no n o n - t r i v i a l solutions for D - ~ - - 4 , + 1 2 , - - 2 0 , + 3 6 .

W e l e a v e for l a t e r c o n s i d e r a t i o n t h e cases D ~ ~_ 1 rood 9.

19. 2a//D. As (x, t) = (y, t) = 1 it is n o t difficult to see t h a t one of t h e t h r e e cases holds: (i) 2 t x y , 2/t (ii) 2 f x y t (iii) 2~Ix, 2~/y, 2tt. Of t h e s e (iii) gives rise to t h e n e w p o s s i b i l i t y t h a t [x--t~6] is n o t t h e s q u a r e of a n ideal.

Since we a r e e x c l u d i n g p e r f e c t cubes a t p r e s e n t , t h e o n l y v a l u e s in t h e r a n g e IDl ~ 50 u n d e r c o n s i d e r a t i o n a r e D = ~:24, 2=40. F o r all t h e s e D = + 2 a D * w h e r e D * is o d d a n d c u b e - f r e e a n d hD. ~-= 1. As b e f o r e let A a = D * . W e consider c o n g r u e n c e s t o p o w e r s of t a n d u, t h e f i r s t a n d s e c o n d d e g r e e p r i m e d i v i s o r s r e s p e c t i v e l y of 2, w h e r e

t = [2, I + A ] , t 2 -= [4, D * - - A ] , t ~ = [S, D * - - A ] ,

tt = [2, I + A + A 2 ] , n z --- [4, I + D * A + A 2 ] , u ~ = [8, I + D * A + A Z ] . B y t h e discussion in w 12 t h e o n l y a priori possible v a l u e s of/~ a r e / ~ = 1, ~ in eases (i) a n d (ii) a n d / ~ = 2, 2 9 in case (iii) w h e r e 2 > 0 a n d [2] = u. T h e g r o u p U h a s no, h a s one or h a s t w o g e n e r a t o r s of i n f i n i t e o r d e r a c c o r d i n g as no, o n e or all t h r e e v a l u e o f / ~ e s s e n t i a l l y d i s t i n c t f r o m 1 c a n a c t u a l l y o c c u r in (14). Case (i) is c o m p l e t e l y a n a l o g o u s to ease (i) p r e v i o u s l y . I t implies t h a t / ~ is a q u a d r a t i c r e s i d u e of 4 i. e. t h a t # = 1 a n d so it m a y b e n e g l e c t e d in t h e r e s t of t h i s w

W e n o w t r e a t D = + 2 4 , D = - - 2 4 , D = ~=40 s e p a r a t e l y . W e shall s h o w t h a t t h e c o r r e s p o n d i n g g r o u p 1I h a s no, t w o a n d one g e n e r a t o r of infinite o r d e r r e s p e c t i v e l y . D ~ - - + 2 4 , A 3 = D * = 3. (ii) 27~xyt. H e r e x ~ x 3 ~ y ~ - ~ 1 rood 8 a n d so

i ~ 2 -= x - - 2t2A

1 - - 2 A m o d 8 3 mo~t t 3 .

B u t ~ is p r i m e to t, since y is p r i m e to 2, a n d so ~2 ~ 1 rood t a ( l e m m a 5). H e n c e

(17)

T h e R a t i o n a l S o l u t i o n s o f t h e D i o p h a n t i n e E q u a t i o n y 2 ~ X a _ D . 2 5 9

# ~ 3 m o d ia. This is clearly impossible for # ~ 1 a n d it is also false for t h e o n l y o t h e r possibility # ~ ~ -= A 2 - - 2 ~ - - 1 m o d t a.

(iii) 2//x, 22/y, 2 f t . L e t x -~ 2x' where x'.is o d d a n d l e t ~ l d e n o t e either 1 or~. T h e o n l y a priori possibility for # is ~, 2 where ~ > 0 a n d [4] -~ u, s a y ), ~ 2(A - - 1) -1. T h e n

~l~s -- x ' - - t s z l ~ x ' - - A m o d 4 . A - - 1

N o w ~ is p r i m e to u since x ' - - t S A is b y l e m m a 2 a n d so ( l / s ) ~ 1, I + A , A rood u b y l e m m a 4. H e n c e ( I / a ) s _ ~ l, - - A , - - I + A m o d u s' b y l e m m a 5, a n d t h e n

~1 ~ ( x ' - - A ) ( A - - I ) ( 1 / ~ ) 2 m o d u s 1 - - x ' + x ' A , - - l + ( 1 - - x ' ) A , x ' - - A m o d u s .

Since x' is o d d this c o n g r u e n c e is impossible b o t h for ~1 ~ I a n d for V~ ~ ~ ~ A s _ 2 I + A m o d u s.

H e n c e w h e n D ~ + 2 4 n o n e of t h e a p r i o r i possible values of # essentially different f r o m 1 a c t u a l l y c a n occur, i . e . 1I has no g e n e r a t o r s of infinite order.

D - ~ - - 2 4 , A a D * = - 3 . (if) 2~xyt. ' S o l u t i o n s of this t y p e do exist w i t h

# = 7- A n e x a m p l e is

l a - - 5 2 --- - - 2 4 since 1 + 2 A ~ / ~ s is n o t a p e r f e c t s q u a r e L

(iii) 2//x, 2S/y, 2 f t . Solutions do exist of this t y p e i. e. w i t h / t : 2 ~ / ( A - - 1 ) w h e r e ~ ~ 1 or y. A n e x a m p l e is

( - - 2 ) a - - 4 s -~ - - 2 4 .

H e n c e for D ~ - - 2 4 solutions exist for a t least two, a n d so for all t h r e e a priori possible values of # essentially d i s t i n c t f r o m 1 i. e. 1I hs t w o g e n e r a t o r s of infinite order.

D ~ i 4 0 , A ~ ~- D * =- 5. (if) 2 $ x y t . H e r e x ~ x a ~ yS ~ 1 m o d 8. T h e o n l y a p r i o r i possible v a l u e of # essentially different f r o m 1 (which we neglect) is # ~ ~.

I f this a c t u a l l y o c c u r r e d we should h a v e

~7~ ~ =- x ~ 2tSA ~ l + 2 A m o d 4 , a n d so

~ l + 2 A , 2 - - A , 1 - - A m o d u s

b y a f a m i l i a r a r g u m e n t . This is a c o n t r a d i c t i o n since ~ : = 1 - - d A + 2 z l ~ =~ - - 1 - - A m o d u s.

I 1 -}- 2A ~ -- 1 m o d t a w h e r e a s a p e r f e c t s q u a r e is c o n g r u b n t to + 1 b y l e m m a 6.

(18)

260 J . W . S . Cassels.

(iii) 2~Ix, 22/y, 2 / t . Solutions do exist of this t y p e , i . e . with /~ : ~12, for b o t h D : § (see t a b l e 1). B y t h e g r o u p p r o p e r t y o f / t a n d since/~ = ~ was s h o w n n o t to occur, solutions with/~ = 2 a n d tt : ~]2 c a n n o t b o t h o c c u r for t h e s a m e value of D.

H e n c e w h e n D = -+ 40 precisely one of t h e a priori possible values of/~ essentially different f r o m 1 a c t u a l l y occurs i . e . lI has one g e n e r a t o r of infinite order.

20. 24//D. Since (x, t) : (y, t) : 1 it is n o t difficult to see t h a t one of t h e t h r e e cases holds (i) 2 f x y , 2It (ii) 27~xyt (iii) 22/x, 22//y, 27~t.

T h e o n l y values of D to discuss are D : -+ 16, -+48. Since for these D zl~ -+ 1 rood 9, G has no f a c t o r s which are n o t a l r e a d y f a c t o r s of D * : E F 2 a n d hD, = l, t h e discussion of w 12 shows t h a t t h e o n l y a priori possible v a l u e o f / t essentially dissimilar to 1 is/~ : ~. T h e r e is t h u s one or no g e n e r a t o r of infinite order a c c o r d i n g as solutions of infinite order (i. e. n o n - t r i v i a l solutions) do or do n o t occur.

D - - -+48. N o n - t r i v i a l solutions o c c u r for b o t h these values of D (table 1).

H e n c e for b o t h D : -+ 48 t h e g r o u p 1I has one infinite g e n e r a t o r .

D - - + 1 6 . A n : D* = 2. W e shall show t h a t no n o n - t r i v i a l solutions exist.

I t is e n o u g h to show t h a t n o n e exist for w h i c h / t = ~. W e consider c o n g r u e n c e s t o p o w e r s of f where

f = [2, A], t ~ = [2, AS], t ~ = [ 2 ] .

As before, this implies t h a t / ~ is a q u a d r a t i c residue of 4, i. e.

(i) 2 f x y , 2It.

t h a t / ~ - - 1.

(ii) 2,r H e r e x ~ : x 3 ~ y 2 ~ 1 m o d 8 a n d so i f # = ~ we should h a v e

~o~ ~ = x • 2 :~ 1-+2A m o d 8 . H e n c e b y a familiar a r g u m e n t

~] ~ l + 2 A , 5 + A "~, l + 2 A - 4 - 3 A 2, 1-4-2A 2 m o d t 7 . This is a c o n t r a d i c t i o n since ~ = - - I + A .

(iii) 22/x, 22//y, 2~t. W r i t e x = 22x ', y = 2~y ' so y ' is odd. T h e n 4x'3 : y ' 2 - + t n .

T h e u p p e r sign is impossible rood 8 a n d if t h e lower is to hold we h a v e 2/x'. F u r t h e r , if /~ - - 0 we h a v e (taking o n l y t h e lower sign)

~o~ 2 = x + 2t2A = 4x' + 2t2A : (A2)2(t2+x'A2.) .

I f 4Ix', t 2 + x ' A 2 ~ 1 m o d 4 a n d so ~ w o u l d be a q u a d r a t i c residue of 4, w h i c h is

(19)

The Rational Solutions of the Diophantine Equation y2 = X a _ D . 261 u n t r u e . I f 2//x' we also h a v e a c o n t r a d i c t i o n since t h e n t e ~ x ' A 2 ~ 1 + 2 A e m o d t ~ = 4[2, A] a n d so

~ l + 2 A 2, l ~ 2 A ~ 3 A ~ , 5 ~ A 2, l + 2 A m o d i f , w h e r e a s r 1 ~ - - I ~ A .

T h i s concludes t h e p r o o f t h a t t h e r e a r e no n o n - t r i v i a l solutions w h e n D ~ ~ 1'6.

21. 25//D. Since (x, t) ~ (y, t ) = 1 it is e a s y t o see t h a t e i t h e r (i) 2~xy, 2It or (ii) 27~xyt.

T h e o n l y v a l u e s of D to discuss arc D ~ =E32. H e r e A 3 ~ D* ~ 4, hD, ~ 1.

T h e o n l y a priori possible v a l u e of # o t h e r t h a n 1 is # ~ ~ / a n d so 1I h a s one or no g e n e r a t o r s of infinite order a c c o r d i n g as solutions of infinite o r d e r (i. e. n o n - t r i v i a l solutions) do or do n o t exist, W e shall show t h a t no n o n - t r i v i a l solutions exist. I t is e n o u g h to show t h a t n o n e e x i s t w i t h /z -~ ~.

W e consider c o n g r u e n c e s to p o w e r s of t w h e r e t = [2, ~A~], t 3 = [2, ~ ] , t ~ = [ 2 ] .

(i) 2~xy, 2It. As before this implies t h a t # is a q u a d r a t i c residue of 4, i. e./~ ~ 1.

(ii) 2r H e r e x ~ x ~ y 2 _ ~ 1 m o d 8 a n d so w h e n # = ~ we h a v e

~ z _~ x:j:2t2A ~_ 14-2A rood 8 1 - - 2 A m o d t 7 . H e n c e

~ 1 2A, I + A 2, 5 + A , 1 A - - A 2 m o d U , b y a k n o w n a r g u m e n t . T h i s c o n t r a d i c t s V ~ l ~ - 8 9

22. D ~ =E 1 rood 9, D cube-free, h D odd. All t h e r e m a i n i n g v a l u e s of D in t h e r a n g e D 1 __< 50 w h i c h are n o t p e r f e c t cubes fall in t h i s c a t e g o r y . W e shall consider c o n g r u e n c e s t o p o w e r s of ~ a n d ~ where

~ 2 ~ _ [ 3 ] , ~ - - [3, D 6 ] .

B y t h e a r g u m e n t of w 12 t h e o n l y a priori possible v a l u e s of # are

# - - 1, V, ~t, ~ , w h e r e Z is d e f i n e d b y

T h e v a l u e s 2, 2, t o c c u r if a n d o n l y if 3/y. T h e g r o u p U h a s no, or one, or t w o g e n e r a t o r s of infinite o r d e r a c c o r d i n g as no, or one, or all t h r e e of t h e v a l u e s of # o t h e r t h a n 1 a c t u a l l y occur.

(20)

262 J . W . S . Cassels.

S u p p o s e 3/y so t h a t # = ~ , ) t w h e r e ~,--- 1 or ~. T h e n 3 f t , a n d so x ~ x 3 =-- D t 6 ~ D rood 3. H e n c e

~ , ~ = x - - t 2 6 ~ D - - J z!_: 0 m o d ~25, 0 rood ~$.

Since r - ~ a n d c o n s e q u e n t l y ~2 ~ 1 m o d ~, we d e d u c e

~, ~ ( D - - 6 ) ~ - ' m o d ~. (26)

W e n o w p r o v e t w o g e n e r a l t h e o r e m s a c c o r d i n g as ~] ~ ~ 1 m o d v.

T h e o r e m X I I . T h e group 11 has at most one infinite generator i f (I) D ~ ~: 1 m o d 9, ( I I ) D is cube-free ( I I I ) h D is odd (IV)~ ~ - - 1 rood r.

F o r if ~ ~ - - 1 m o d r t h e c o n g r u e n c e (26) c a n n o t be t r u e b o t h w i t h ~ -= 1 a n d w i t h ~ = ~l i. e. n o t all t h r e e v a l u e s o f / ~ o t h e r t h a n 1 a c t u a l l y occur.

T h e o r e m X I I I . A t least one of the two equations y2 _ xS ~ D t ~ has no solutions with 3/y i f (I) D ~ ~: 1 m o d 9 ( I I ) D is cube-free ( I I I ) h D is odd (IV) ~7 ~ + 1 m o d ~.

F o r if (26) is t r u e either w i t h ~, -=-- 1 or w i t h ~, = z] t h e c o r r e s p o n d i n g c o n g r u e n c e in which t h e signs of D a n d ~ a r e s i m u l t a n e o u s l y c h a n g e d is false both f o r ~ = 1 and f o r ~1 = ~.

W e n o w consider s o m e n u m e r i c a l e x a m p l e s .

T h e conditions of t h e o r e m X I I a r e satisfied f o r t h e following v a l u e s of D, D =- ~ 1 9 , J:28, ~ 3 5 , ~ 4 4 .

Since n o n - t r i v i a l solutions e x i s t for t h e s e D (table l) t h e c o r r e s p o n d i n g g r o u p U h a s p r e c i s e l y one infinite g e n e r a t o r .

T h e r e a r e solutions w h e n D--- - - 1 7 b o t h f o r /~ = ~ a n d f o r /x-= ~ 2 since ( - - 1) 3 _ 42 _ ( _ 2) 3 _ 3 ~ ~ - - 17. H e n c e t h e g r o u p 1I_17 h a s t w o infinite g e n e r a t o r s . F o r D ---- + 17 t h e r e a r e c o n s e q u e n t l y no solutions e i t h e r w i t h / ~ --- ~ ( t h e o r e m V I I I c o r o l l a r y 1) or w i t h # ---- Vl~ ( t h e o r e m X I I I ) . H e n c e t h e r e are no n o n - t r i v i a l s o l u t i o n s a t all for D---- +4-17. S i m i l a r l y for D---- J=37.

W h e n D ~ ~=10 t h e r e a r e no solutions w i t h / ~ ---- ~ b y t h e o r e m X. As a n o n - t r i v i a l solution ( - - 1 ) 3 32 _ _ 10 does e x i s t for D ---- - - l 0 t h e c o r r e s p o n d i n g g r o u p 1110 h a s p r e c i s e l y one infinite g e n e r a t o r . B y t h e o r e m X I I I t h e r e a r e c o n s e q u e n t l y no solutions w i t h 3/y f o r ~D ---- ~ l0 i. e. n o n e w i t h # ---- ~1~. Since t h e r e a r e also n o n e w i t h / ~ ~- ~ t h e r e a r e n o n e a t all.

]By a p r e c i s e l y s i m i l a r a r g u m e n t t h e g r o u p 1146 h a s no a n d t h e g r o u p

114~

p r e c i s e l y one infinite g e n e r a t o r . W e n o t e f u r t h e r t h a t t h e s o l u t i o n f o r D -~ - - 4 6 ,

(21)

T h e R a t i o n a l S o l u t i o n s of t h e D i o p h a n t i n e E q u a t i o n y 2 ~ X a _ D . 263 ( - - 7 ) 8 - - 5 1 2 ~_ --46.26

m u s t correspond to a # other t h a n 1 since 3/y, a n d hence to t h e only other occurring value of ,u. Consequently t h i s value of ,u is also a q u a d r a t i c residue of 4, i.e. # is a q u a d r a t i c residue of 4 for all solutions w i t h D - ~ --46. This implies t h a t 2It a n d hence X -= x/t 2, Y ~ y / t 3 c a n n o t be integers (ef. w 15).

F i n a l l y D -- -}-26 has a group 1I w i t h two generators. H e n c e D ~ --26 can h a v e a group 1I w i t h at most one generator, b y t h e o r e m X I I I a n d so precisely one, as non-trivial solutions do exist.

23. D = G 8. W e discuss now t h e case w h e n D is a perfect cube. B y t h e r e m a r k s at the beginning of p a r t I I we m a y assume

G s q u a r e - f r e e , 3/~G.

The roots ~1, 82, ~a of ~8--D ~ 0 are G, 5G, 52G where 5 is a complex cube root of u n i t y . Since ~ , (~2, 53 are n o t all conjugate we m u s t use t h e " t r i p l e t s " i n t r o d u c e d in w 5 to define the group (~. W e recollect t h a t t h e set of triplets ~ (x--t2(~i} f o r m t h e multiplicative group 6J w h e n squared f a c t o r s are ignored. W e shall first prove

L e m m a 9. The set of triplets {x--t2~j} corresponding to solutions with 3~y f o r m a subgroup G ~ of ~ with one less generator.

We n o t e t h a t R(~I) = R(1), R(52) = R(Sa) = R(Q) a n d t h a t (l--Q) is a prime divisor of 3 in R(5 ) satisfying

( 1 - 5 ) 2 = - 3 5 .

W r i t e Oj ~- x--t2(~j so t h a t

01 -~ x--Gt2, ' 02 = 93 -~ x - - s G t 2 ,

where t h e bar denotes the complex conjugate. Now it would follow from 3./02 t h a t 3Ix, 3/Gt 2 c o n t r a r y to (x, t) ~ 1 a n d 3~G. H e n c e (1--5)2202 a n d it is easy to verify t h a t (1-5)202 or (~-5)//02 according as a/y or

a/y.

Clearly t h e set of {Oj} for which ( 1 - - 5 ) f 0 ~ form a subgroup (~o of (~ which either coincides w i t h (~ or is of i n d e x 2, i. e. t h e set of {Oj} corresponding to solutions w i t h 32y does this. F u r t h e r (~0 c a n n o t coincide with ~ since there is always the trivial solution (x, y, t) =- (G, O, 1) which does n o t belong to G ~ Since all t h e elements of (~ are of order 2 it follows t h a t (~0 has one fewer generator t h e n (~, which proves t h e lemma.

1 el. w 8.

(22)

264 J . w . s . Cassels.

Suppose now t h a t 3/~y so t h a t all the Oj are p r i m e to 3 (and non-zero). W e shall find a b o u n d e d set of triplets {/tj} ---- {/~1,/~2, ~2) such t h a t

0 ~ = / ~ a 2, a E R ( 1 ) ; 02----/~2x -+, ~ E R ( ~ )

always holds for one of t h e set, a n d i n d e e d with /q,/~2, a, ~ all integers. Since

0 1 ~ 1 - ~ 0 2 - ~ 0 2 0 3 : 0

t h e c o m m o n f a c t o r of an.y two of t h e Oj m u s t also divide t h e t h i r d . This c o m m o n f a c t o r m u s t also divide 02--01 : (1--o)Gt 2 a n d 02--~01 : (1--Q)x a n d so since (x, t) = 1 a n d t h e Oj are p r i m e to 3 : - --~2(1--~))2 we h a v e

(01, 02, 03) = (x, G) = K > 0 ( s a y ) .

W r i t e 0j : K ~ j where t h e ~vj are co-prime in pairs. N o w y2 :_ 010203 : K3~vl~v3 a n d K , being a divisor of G, is square-free. H e n c e y : K2b, where b E R(1) is an i n t e g e r a n d

~ 1 ~ 2 ~ 2 = ~/71~92q73 = K b 2 "

Since K > 0 a n d t h e ~ j a r e co-prime in pairs it follows t h a t t h e r e are integers H > 0, H E R(1) a n d v E R(ff) such t h a t

q~l -~ Ha2, a E R(1); ~v 2 ~- ~ - - v~ 2, ~ E R(C); K ~- Hv~ - H N ( s a y ) , i . e .

01 : K H a 2, 02 --- Oa = K v ~ 2 . W e m a y t h e r e f o r e p u t

{/~j} ---- {,ul, ,u2,/~a} : { K H , K v , K ~ } . (27) F u r t h e r , b y eliminating x b e t w e e n 01 a n d 02 we o b t a i n

i. e .

w h e r e

K v a ' 2 - - K H a 2 = ( 1 - - e ) G t 2 H a e - j - ( 1 - - ~ ) J t 2 ~- vo~ 2, t :4: O, a # 0 , G = J K ~- H J N , N ~- r~ , H > O.

(28) (29) Conversely a solution of (28) gives a solution of t h e original e q u a t i o n y2 _~ x ~ _ G S t 8 w i t h 3/~y. Since t h e groups @0 or (~ i n v o l v e triplets t h e y are difficult to handle.

W e n o w show t h a t we m a y use a g r o u p n o t involving triplets.

T h e o r e m X I V . T h e values o f v / H f o r which (28) is soluble f o r m a m u l t i p l i e a t i v e g r o u p ~ i f squared factors are ignored w i t h the s a m e n u m b e r o f generators as there are i n d e p e n d e n t generators of i n f i n i t e order i n 1I.

(23)

The Rational Solutions of the Dioi)hantine Equation y2 = X a _ D . 265 Since t h e set of t r i p l e t s

{~gl' ~2' /~3}

of t h e f o r m which a c t u a l l y o c c u r w i t h s o l u t i o n s of y2 = x a G 3 t 6 f o r m t h e m u l t i p l i c a t i v e g r o u p 650 w h e n s q u a r e d f a c t o r s a r e i g n o r e d t h e v a l u e s of l~2//~1 ~ v / H do f o r m a m u l t i p l i c a t i v e g r o u p ~ w h e n s q u a r e d f a c t o r s a r e ignored. N o w (v, H ) = 1 since v~H - - N H is a divisor of G, w h i c h is s q u a r e free.

T h u s , since H > 0, t h e r a t i o v / H d e t e r m i n e s v a n d H u n i q u e l y i. e. b y (27) a n d (29) it d e t e r m i n e s {#j} u n i q u e l y . H e n c e ~ is i s o m o r p h i c to 650 a n d , in p a r t i c u l a r , t h e t w o g r o u p s h a v e t h e s a m e n u m b e r of g e n e r a t o r s , i. e. one f e w e r t h a n 65 b y l e m m a 9.

T h e t h e o r e m n o w is a n i m m e d i a t e c o n s e q u e n c e of t h e o r e m I I I since 6 3 - - D - - 0 h a s j u s t one r a t i o n a l r o o t .

C o r o l l a r y 1. I f (28) is insoluble except, possibly, when v -~ H ~ 1, the group li has no generators of infinite order.

F o r t h e n ~ h a s no g e n e r a t o r s . I n p a r t i c u l a r , b y t h e o r e m V,

C o r o l l a r y 2. I f D 4= - - 1 and (28) is insoluble except, possibly, when v ~ H ~- 1 there are no non-trivial solutions of y2 ~ x3 G3t%

W e n o w p r o v e a useful l e m m a .

L e m m a 10. I f v -= ~ 1 and (28) has solutions then v H : N o r m Z where Z E R O / 3 ).

F o r s u p p o s e c~ ~-- e + f ~ w h e r e e a n d f are r a t i o n a l integers. B y e q u a t i n g coef- ficients of 1 a n d ~ in (28) a n d e l i m i n a t i n g t we o b t a i n

~,Ha 2 .~ e2 + 2ef--f~ = ( e - F f ) ~ - - 2 f f w h i c h p r o v e s t h e l e m m a .

Since we are a s s u m i n g 37~G t h e o n l y v a l u e s of D ~- G 3 in t h e r a n g e [D I < 50 are D --~ + 1 a n d D = :~ 8. T h e y are b o t h c o v e r e d b y t h e g e n e r a l t h e o r e m d u e t o N a g e l l [29].

T h e o r e m X V . I f every p r i m e divisor p > 0 of G is of the f o r m 12n~-5, the equations y2=_ x a • 6 have no solutions of infinite order (and so no non-trivial solutions except when D = - - 1 ) .

F o r N o r m v -~ v~ = N ~ 1 is i m p o s s i b l e in R(~) if t h e f a c t o r s of N are to b e of t h e r e q u i r e d t y p e . H e n c e v = + 1 , ~ , -~-e 2 a n d b y a b s o r b i n g f a c t o r s ~ = (~2)2 or ~2 in ~2 we m a y a s s u m e t h a t ~ = + 1 . H e n c e , b y l e m m a 10, v H - ~ N o r m ~, Z E R(~/3) a n d t h i s a g a i n implies v H = 1, i. e. v = H = 1 (since H > 0). T h e o r e m X V n o w follows f r o m c o r o l l a r y 1 t o t h e o r e m X I V .

Références

Documents relatifs

For stable spaces (~hat is, for spaces isomorphic to its square) one has the following stronger result.. isomorphic for every

Later on the identity (6) was used to obtain estimates from below for analytic capacity [Me] and to describe uniform rectifiability via the mapping properties

Last on the agenda, the Lasry-Lions approximates of functions f (defined on Hilbert space) which are locally convex up to a positive multiple of the square of

This test is related to other integral tests due to Benedicks and Chevallier, the former in the special case of a Denjoy domain.. We then generalise our test,

There exists a coarse moduli scheme M for the equivalence classes of semistable parabolic vector bundles (on an irreducible nonsingular complete curve X}.. of

We prove that, if 7 is a simple smooth curve in the unit sphere in C n, the space o pluriharmonic functions in the unit ball, continuous up to the boundary, has a

construct a reflexive sheaf from Y using the Serre construction, and then to describe this sheaf by means of a monad, where the family of monads involved

FIGIEL, T., LINDENSTRAUSS, J., MILMAN, V., The dimension of almost spherical sections of convex bodies, Acta Math.. FIGIEL; T., TOMCZAK-JAEGERMANN, N., Projections onto