• Aucun résultat trouvé

C A U C H Y ' S T H E O R E M A N D I T S C O N V E R S E B Y M A N S O O R A H M A D 1 . L e t C b e a s i m p l e c l o s e d c o n t o u r w h i c h h a s a c e n t r a l p o i n t z 0 . B y a ' c e n t r a l p o i n t ' o f a s i m p l e c l o s e d c

N/A
N/A
Protected

Academic year: 2022

Partager "C A U C H Y ' S T H E O R E M A N D I T S C O N V E R S E B Y M A N S O O R A H M A D 1 . L e t C b e a s i m p l e c l o s e d c o n t o u r w h i c h h a s a c e n t r a l p o i n t z 0 . B y a ' c e n t r a l p o i n t ' o f a s i m p l e c l o s e d c"

Copied!
11
0
0

Texte intégral

(1)

CAUCHY'S THEOREM AND ITS CONVERSE

BY

MANSOOR AHMAD

1. L e t C be a simple closed contour which has a central point z 0. B y a 'central point' of a simple closed contour, we m e a n a point within the contour, such t h a t every radius vector, drawn from it to the contour lies wholly in the closed domain bounded b y the contour and intersects it in only one point.

The existence of a central point z 0 imposes the restriction t h a t the inside of C be a star with respect to z 0. Among such star domains m a n y , including all convex domains, h a v e the required p r o p e r t y for all points %.

We shall first prove a form of Cauchy's theorem which imposes restrictions, b o t h on the form of the contour a n d on the derivative of the function. We then remove these restrictions later on.

The point of affix

= z0 + ~ (z - z0),

when z lies on C; and 0 < 2 < 1, lies on a similar closed contour lying within C a n d having z o as its central point. Call this contour Ca.

L e t us further suppose t h a t

(i)

/(z)

is a function of z, which has got a definite finite value at e v e r y point of the closed d o m a i n which consists of all the straight lines drawn from z o to the contour C; a n d of all contours Ca, 0_<2__ 1, s a v e possibly a t the point Zo;

(ii) /(z) is one-valued a n d continuous along every contour Ca, 0_<~_< 1; and differentiable along every contour Ca, 0 < ~ t < l , at every p o i n t of Ca;

(iii) the m a x i m u m - m o d u l u s of /(z) on the contour Ca is bounded, when 2 tends to zero and also when ~t tends to u n i t y ;

(iv)

](z)

is continuous along e v e r y straight-line joining z o to the contour C, a t e v e r y point of the straight line;

(v) /(z) is differentiable along every straight line, joining z 0 to the contour C, at every point of the straight line, save p o s s i b l y a t one or b o t h of its e n d points;

(2)

16 M A N S 0 0 R A H M A D

(vi) the derivative of ] ($), at a n y point ~ of the contour CA, is the same whether taken along C~ or along the straight line joining ~" to %;

(vii) the derivative of ]($), at the point $, taken along the straight line passing through ~ a n d z 0 is uniformly bounded with respect to z and i, when z lies on C and 1 lies in a n y closed interval (}-1, t2), 0 < t l <~2 < 1.

Then

f l(z) dz=O.

C

Proof. We define the Lebesgue integral of a function

/(z),

round a simple dosed contour C, b y the relation

T T

f f(z) dz= f Re~/(z) dt +i f Im~/(z)dt,

C t o t,

where z is a function of a real p a r a m e t e r t, when z lies on C; and the two integrals on the right-hand side are Lebesgue integrals.

Now, if 21 and 21 + h 1 be a n y two points in the open interval (0, 1), b y the condi- tion (vii) there exists a positive n u m b e r M, depending only on 21 and h l, such t h a t [ ] ' ( ~ - ) [ < M , w h e n X lies in the closed interval whose end-points are 21 and

'~1

~ - h l '

1' ($) being the derivative of /(~) along the contour Ca.

Therefore, b y the F u n d a m e n t a l theorem of the Lebesgue integration, we have

zo+(~l+h) (z - z o)

I ] ( z ~ 1 7 6 1 7 6 1 7 6 =

f f(~)d~ <M.1,

(A)

Zo+At(Z Zo)

when 1 1 + h lies in the closed interval whose end-points are tj and t 1 + h l ; and z lies on C. The p a t h of integration is a straight line; and 1 is the greatest distance of the point z 0 from C. B y the condition (v), we have

lim ] (% + (11 + h) (z - %)) - [ (z o + 11 (z - zo) )

= (z - Zo) 1' (zo + t~ (z - Zo))

h--~O h

when z lies on C.

Consequently, applying Lebesgue's convergence theorem to the real and imaginary parts of the following integral on the left-hand side, we can easily show t h a t

limh..+O

.f [(z~ + (ll + h) ( z - z ~ t" (z~ (z- z~ f (z- z~ ]' (z~ 4- ~l (z-z~

C C

( B )

where we m a k e h tend to zero through an enumerable sequence.

(3)

~AUCHY'S THEOREb[ AND ITS CONVERSE 17 Also, b y the relation (A), we have

Now, let

lim

fl(Zo+(gl+h)(z-zo))dz= fl(zo+2~(z-zo))dz.

h ~ O C

v/(g)=fg/(zo+g(z-zo))dz,

C

(c)

where 0 < 2 < l ; and the left-hand side is a Lebesgue integral.

Combining (B) and (D), we have y, (21 + h) (~,) F

~v' (2~) = lim ~- ~v = / {/(z~ + 2, (z - Zo) ) § 2, (z - Zo)/' (z o + ,~, (z - Zo))}

dz

h..-*.O h o,I

C

= ~ {/(~) + ( r zo) I' (r d r CA,

where r lies on Ca,.

B u t the inequality [/' (~)[< M holds at all points of Ca,; and /(~) is continuous along Ca,, therefore by the F u n d a m e n t a l t h e o r e m of the Lebesgue integration, we have

, 1 f

v, (~.,) = ~ - j {I(;) + (~-~o)

r

(~-)} d~"

Ca,

Ca I

1 [(~ - Zo) I (~')]%

21

= 0 .

Proving t h e r e b y t h a t the derivative y/(2) of the function y)(2) vanishes, when 0 < 2 < 1. Therefore y}(2) is independent of 2.

B y the conditions (iii) and (iv) and by Lebesgue's convergence theorem, we can very easily prove t h a t yJ(2) is continuous at the points 2 = 0 and 2 = 1. But ~f(0)is zero; and hence

f/(z) dz=O.

c

2. If r a n d ra be a pair of corresponding arcs of the contours C and Ca re- spectively; and if /(z) satisfy all the conditions of w l, with respect to the similar

2 - 543809. A c t a M a t h e m a t i c a . 93. I m p r i m 6 le 7 mai 1955.

(4)

1 8 ~ A ~ S O O R AHMAD

c o n t o u r s r~, ~t 1 __2 _< 1; a n d t h e segments of s t r a i g h t lines d r a w n f r o m z0, which he between r a n d r~,, t h e n

f I(~) d~=0,

A

where A is t h e closed c o n t o u r f o r m e d b y r, ra, a n d t h e segments of s t r a i g h t lines, joining t h e corresponding end-points of r a n d r~,.

Proof. L e t a a n d b be t h e e n d - p o i n t s of r; a n d let

(~) = f ~ I (Zo + ~ ( z - zo)) dz,

where ~t 1 _~ ~t _~ 1.

Replacing C b y r in (B) a n d (C) of w 1, we h a v e

~' (~) = ~. [(~-

1

Zo) I (~)1,~

= (b - Zo) / (z o + ~t (b - Zo) ) - (a - Zo) / (z o + ~t (a - Zo)), where ~'1 < ~. < 1.

I n t e g r a t i n g each side of this relation, between the limits ;t I a n d 1, we g e t

1 1

(1) - F (~1) = S (b - %) ] (z o § ~t (b - Zo) ) d~t - S (a - z0) / (z o § ~t (a - Zo) ) d~

b a

= I11 lez- I1(z)dz,

bl a .

where a 1 a n d b 1 are t h e e n d - p o i n t s of r~,; a n d t h e last t w o integrals are t a k e n along segments of straight lines d r a w n f r o m z 0.

H e n c e we h a v e

b a

A ~ b, r,~ I a l

~ O .

3. If a function [(z) satisfy all t h e c o n d i t i o n s . o f w 1, with respect t o a simple closed c o n t o u r C; a n d if e be a n y point within C o t h e r t h a n t h e central p o i n t z 0, t h e n

1 f /(z)

dz

1 (~) = ~ ~_---~'

C.

where 1(~) is t h e value of /(z), a t t h e p o i n t ~, as defined in w 1.

Proof. L e t us suppose t h a t t h e p o i n t ~ lies on a similar c o n t o u r C~..

t h e following figure:

Consider

(5)

CAUCHY'S THEOREM AND ITS CONVERSE 19 Z!

( I'

Let L' and L " denote the arcs of Cr and Cr, respectively, which join ~ to ~ ; and

~'[' to ~'2'; and let r' and 1:" denote the remaining portions of Cr and Ca,. respec- tively. Let R 1 and R 2 be ,t.he segments of straight lines joining ~ to ~'1' and ~s to ~', respectively.

Now, if F ( z ) = ] ( z ) - / ( ~ ) , b y w 2, we have

Therefore

f ~'(z)d:- f~(z)dz= f F(z)dz- f F(z),~:

r I:" R~ R~

f F (z) dz - f F (z) dz = f F (z) dz, (D)

cx,, c r a

where A denotes the closed contour formed b y L', L", R 1 and R~.

L e t A, A1, As, ... An . . . . be a sequence of closed contours, each contained ill its predecessor, such t h a t e v e r y one of them contains ~; and is formed b y the arcs of similar contours C~; and the segments of straight lines drawn from %. L e t us assume t h a t the second derivative of ] ($) exists along every contour of the sequence A, A1, A~ . . . . , at every point of it; and is uniformly bounded with respect to z and 4, when z lies on an arc of C joining z I and z2; and ~[ lies in the closed interval (~', ,~").

Integrating b y parts, we have

f F(z) d z = [{l (z) - / ( a ) - (z - a ) / ' (z)} log (z - a)]~ + f l " (z) {(z - a) log (z - ~) - (z - a)} dz.

A A

I n the last equation, the integrated part becomes 2 zt,;

[!

(z) - I (~) - (z - ~) l' (z)],,.

Here the second term in the bracket tends to zero, since [' (z) is bounded.

The first term tends to zero if, in evaluating the variation of the integrated part, the initial point of A is taken to be a point where the contour Ca, or the straight

(6)

2 0 M A N S O O R A H M A D

line through z 0 and ~ cuts A. This is possible because the second integral in the equation tends to zero independently of the initial point, in virtue of the hypo- thesis on /" (z).

W e have thus shown t h a t

f F(z) dz~O,

(E)

A

when we make z 1 tend to zz; and each of 2' and 2" tend to 21, b y taking the sequence of contours A, A1, A~ . . .

Now, b y the method of w 1, we can prove t h a t the function (2) = f 2 F (z o + 2 (z - z0)) d z

c

is independent of 2, when 0-<2 <21; and also when 21 < 2 - < 1. But, b y (D) and (E),

~(2) is continuous for 2 = 2 1 ; therefore y)(2) is constant in the closed interval (0, 1).

Proving t h e r e b y t h a t

~(1)= f l(z)-l(~)

c

Hence

f

C

We can easily deduce from this formula t h a t

f /(z)dz

1" (~)

= ~

( z -

~)~+'"

C

when

[ n (~)

is the n t h derivative of

/(z)

at ~; a n d this derivative is independent of t h e p a t h along which it is taken.

We, now, prove t h a t it is unnecessary to assume the existence and the uniform boundedness of the second derivative of

/(z).

Z

L e t

q)(z)=f/(z)dz,

where

[(z)

satisfies all the conditions of w 1 with respect

Zl

to C; and the p a t h of integration is the straight line joining z 0 and z. I f ~1 and ~2 be a n y pair of points lying on a contour Ca, b y w 2, we have

r

f/ c)dr

l i r a r ( ~ s ) - r (~1) ___ l i r a -r

=

1(~',),

(7)

C A U C H Y ' S T H E O R E M A N D I T S C O N V E R S E 21 where the integral on the right-hand side is taken along an arc of CA, whose end- points are ~1 and $2. Therefore, the function ~ (z) satisfies all the conditions of w 1.

The second derivative ~ " ($) of ~(~) at any point $ of the contour CA, exists along CA; and is equal to its second derivative along the straight line passing through and %. Since ~ " ($) = / ' (~), ~" ($) is uniformly bounded with respect to z and 2, when z lies on C; and 2 lies in any closed interval (21, 2e), 0 <21 <~2 < 1.

Consequently, if a lies within CA, 0 < 2 < 1 , we have

1 f cf(z) dz

~'(~)=~ (z-~)~'

c A

where ~' (~r denotes the derivative of ~(z), at the point ~. Proving thereby t h a t

1 f ](z)dz

/

(o:)

= ~-~ z~ ~

c~

Hence, making 2 tend to unity, we have

1 f!(z)dz

1(~)= ~ -~-~

C

Corollary

l, If [(z) satisfies all the conditions of w l, with respect to a simple closed contour C which has a central point %; and if

l(z)

has got the value

1(%)

at the point %, then

and

1 f l(z)dz

c

[n [ (z) dz /~(z0)= ~ f (Z_Zo)~+l,

C

where [n (%) denotes the nth derivative of [ (z) at the point z o taken along any path.

Proof. If ~r be any point within C other t h a n Zo, then b y w 3, we have

1 f l ( z ) d z

1(~) = ~ z - ~ "

c

Now, making ~ tend to z 0, along the straight line passing through ~ and z 0, we obtain the first formula; and the second formula is easily deducible from this.

Corollary 2. If f(z) satisfies all the conditions of w l, with respect to a simple closed contour C which has a central point z0, then /(z) is an analytic function of z, regular within C.

(8)

22 M A N S 0 0 R A H M A D

4. L e t us suppose t h a t a f u n c t i o n /(z) satisfies t h e following c o n a m o n s : (i) /(z) is continuous along e v e r y s t r a i g h t line joining a n y p o i n t z of a simple closed c o n t o u r C to its central p o i n t z 0, a t e v e r y p o i n t of t h e s t r a i g h t line, s a v e possibly a t its e n d - p o i n t z;

(ii)

/(z)

is o n e - v a l u e d a n d continuous along e v e r y similar c o n t o u r Ca;

(iii) t h e integral of /(z), r o u n d e v e r y c o n t o u r f o r m e d b y an arc of a n y c o n t o u r Ca a n d the s t r a i g h t lines joining t h e end-points of the arc to %, vanishes;

(iv) the m a x i m u m - m o d u l u s of ]($) on Ca is b o u n d e d in e v e r y closed i n t e r v a l (21, 22) , where 0 < ~t 1 < 2 2 < 1. T h e n / (z) is r e g u l a r within C.

Proof. L e t ~0(z) be a f u n c t i o n of z, defined b y the relation

z

rp(z)= f ](z) dz,

Zo

where the p a t h of i n t e g r a t i o n is the s t r a i g h t line joining z o a n d z.

B y hypothesis, we can easily show t h a t t h e function ~ ( z ) i s one-valued a n d continuous along e v e r y similar c o n t o u r Ca; a n d also along e v e r y s t r a i g h t line joining z 0 to a n y point z of t h e c o n t o u r Ca.

Also, if z I a n d z 2 be a n y t w o points of a c o n t o u r Ca, then, b y hypothesis, we h a v e

z2

f [(z) dz

( z 2 ) - q~ ( z ~ ) _ z,

Z 2 - - Z 1 Z 2 - - Z 1

where t h e integral on the r i g h t - h a n d side is t a k e n along a n arc of Ca whose end- points are z I a n d z 2.

Consequently, we h a v e

~0' (zl) = lim ~ (z2) - ~0 (zl) / (zl)"

zz.-.~ z~ Z 2 - - Z 1

P r o v i n g t h e r e b y t h a t t h e d e r i v a t i v e of ~0(z) a t a n y p o i n t z of t h e c o n t o u r

Ca,

exists along Ca; a n d is equal to its d e r i v a t i v e a t t h e s a m e point, t a k e n along the s t r a i g h t line passing t h r o u g h % a n d z.

Moreover, b y t h e condition (iv), t h e m a x i m u m - m o d u l u s of this d e r i v a t i v e on Ca is b o u n d e d in e v e r y closed i n t e r v a l (2j, 22), 0 < 21 < 23 < 1.

W e h a v e t h u s s h o w n t h a t /(z) satisfies all t h e conditions of w 1, with respect t o C. Hence, b y Corollary 2, / ( z ) i s r e g u l a r within C.

(9)

C A U C H Y ' S T H E O R E M A N D I T S C O N V E R S E 23 5. If [(z) satisfies all t h e conditions oi w 1~ e x c e p t (vii), a n d if /(z) is b o u n d e d in the open d o m a i n enclosed b y C, t h e n

$/(z) dz=O.

C

Proof. L e t 2 a n d 2 + h~ be a n y t w o points of t h e open i n t e r v a l (0, 1); a n d let z be a function of a real p a r a m e t e r t, t 0_< t_< T, w h e n z lies on C.

Consider t h e function

/ (z0 + (2 + h~) (z - z0)) - / (z0 + 2 (z - z0)) I.

(2,

~n t)

h~

I

T h e function q~n (2, t) m a y be expressed b y ~ (2, t, ~]), a function of the t h r e e vari- ables 2, t, 9, where 9 = - . 1 T h e function ~ (2, t, ~) is in the first instance defined o n l y

n

for values of 9, of t h e f o r m 1 , b u t it m a y be e x t e n d e d to the case in which ~ / h a s

n

all values in the i n t e r v a l 0 < ~ < 1, b y such a rule as t h a t , w h e n ~ is in t h e i n t e r v a l n + l ' '

1 1

( n

v(2, t , ~ ) = ~ 2, t, + 1 1 n n + l

T h e f u n c t i o n r (2, t, 9), so defined for the t h r e e - d i m e n s i o n a l set of points 0 < 2 < 1, t 0~< t ~ T a n d 0 < 9 _ < 1 is, e v e r y w h e r e continuous with respect to each variable.

Therefore, b y a t h e o r e m of Baire ([1], p. 422, ex. 2) t h e r e m u s t be points in e v e r y d o m a i n lying in the plane ~ = 0, a t which v (2, t, 9) is continuous w i t h respect to (2, t, 9); a n d there- fore with respect to (2, t). C o n s e q u e n t l y [ / ' ( % + 2 ( z - z0))l, which is lim r (2, t, ~), is

9-->0

point-wise discontinuous with respect to (2, t). I t follows t h a t the points of infinite discontinuity of the d e r i v a t i v e /' (~') of /(~') a t a n y p o i n t ~ of the c o n t o u r C~, t a k e n along C~, f o r m a set which is non-dense in the open d o m a i n b o u n d e d b y t h e con- t o u r C.

Now, if a be a n y point within C, which is n o t an infinite d i s c o n t i n u i t y o f / ! (~), there exists a closed c o n t o u r A of the s a m e f o r m as t h a t of w 2, such t h a t no p o i n t of infinite d i s c o n t i n u i t y of /'(~) lies within or on it; a n d a is a n interior point of it.

z

L e t q J ( z ) = f / ( z ) d z , where b is a fixed p o i n t w i t h i n A, z is a n y p o i n t w i t h i n

b

or on it; a n d the integral is t a k e n a l o n g a p a t h which consists of t w o p a r t s : (i) t h e

(10)

24 ,~NSOOR A H ~ D

s e g m e n t of the straight line d r a w n from z 0 t h r o u g h b, joining b to t h e point z 1 where this s t r a i g h t line intersects t h e c o n t o u r C~ on which z lies; a n d (ii) t h e arc of t h e c o n t o u r C~., lying inside A, whose end-points are z a n d z 1.

If ~1 a n d ~ be a n y two points within or on A, lying on the same straight line t h r o u g h %, t h e n b y w 2, we h a v e

/ / (~) d~

lim r ( ~ 2 ) - r (~1) _ lim "

= 1 ( $ ~ ) ,

where t h e integral on t h e r i g h t - h a n d side is t a k e n along the s t r a i g h t line.

Also, if ~1 a n d ~2 lie on the same c o n t o u r Cz, b y t h e definition of T(z), we h a v e

lim ~ ( $ 2 ) - ~ (~1) _ l i m c,

= / ($1),

where the p a t h of integration is an arc of CA.

Since

/(z)"

is b o u n d e d in t h e closed d o m a i n enclosed b y A, ~(z) satisfies all t h e conditions of .~ 2 with respect t o A. Moreover, t h e second d e r i v a t i v e of ~ ( $ ) a t a n y p o i n t $ within or on A, t a k e n in t h e sense of w 1 along a p a t h inside A, is /' ($) which is bounded. Therefore, b y t h e m e t h o d of w 3, we can easily prove t h a t

(z) is regular within A. Consequently, /(z) is regular w i t h i n A.

W e have t h u s p r o v e d t h a t /(z) is r e g u l a r in a n e i g h b o u r h o o d of e v e r y point within

C,

with t h e possible exception of a non-dense set.

L e t r be a closed c o n t o u r f o r m e d b y an arc of a n y c o n t o u r Ca, 0 < ~ t < 1, a n d t h e straight lines joining t h e e n d - p o i n t s of t h e arc to %. T h e set of points w i t h i n or on r, which are n o t infinite discontinuities of /' ($), is open. I t can be covered b y an enumerable set of closed c o n t o u r s A.

Since no b o u n d a r y point of A is an infinite d i s c o n t i n u i t y of ]' (~), t h e f u n c t i o n

/(z)

can be c o n t i n u e d a n a l y t i c a l l y outside A. We t a k e a point on A a n d d r a w a closed c o n t o u r of t h e same f o r m as A, corresponding to this point. W e t h e n r e p e a t t h e same process at t h e c o m m o n b o u n d a r y points of this c o n t o u r a n d A ; a n d so on.

I t .should be observed that, in this process of analytical continuation, isolated p o i n t s or unclosed curves of infinite discontinuities of /'(~) can n o t occur. F o r an end- point of such a curve will be a singularity of t h e a n a l y t i c f u n c t i o n /' (z) a n d conse-

(11)

CAUCHY'S THEOREM AND ITS CONVERSE 25 quently of /(z); which is untenable~ under our hypothesis. Since /(z) is one-valued and bounded within C, we can easily show t h a t /(z) can be represented b y a Cauchy's integral formula, at all points in a small neighbourhood of such an end-point, which do not lie on the curve. B y the conditions (ii) and (iv) of w 1, this integral for- mula can be proved to be valid also for t h e points of the curve in the small neigh- bourhood. Proving thereby t h a t [(z) is regular at all lcoints in this neighbourhood.

So there are two possibilities: either f(z) is regular within r or in continuing /(z) outside A, w e reach a natural boundary of /(z) which is composed of arcs of similar contours C~ and segments of straight lines drawn from %. We call such a closed contour A'. A n y point of infinite discontinuity of /' ($) within or on r, lies on a contour A ' ; and the closed domain bounded by r is thus covered b y an enu- merable set of non-overlapping contours A'.

Moreover, the closed domain bounded by a contour A' can be divided up into a finite number of contours A; and therefore, by w 2, the integral of / ( z ) r o u n d A' vanishes. Since /(z) is one-valued and bounded, the integrals of / ( z ) a l o n g an arc of C~ or along a segment of a straight line drawn from %, taken in opposite direc- tions cancel. Consequently, if we e xVlnde the portions of the contours A' lying out- side r, the integral of /(z) round r vanishes.

Hence, b y w 4, /(z) is regular within C.

Finally) we can remove the restriction on the type of the contour C in two ways: (i) these theorems can be applied to a closed contour C, the inside of which can be divided up into a finite number of sub-domains, such t h a t each sub-domain has a central point, provided that /(z) satisfies all the conditions of these theorems with respect to each sub-domain; and is one-valued and bounded within C; and (ii) the inside of C can be represented conformally ([2], w 8.2) on a domain which is a star with respect to one or more of its interior points.

Lucknow (India).

[1], [2].

References

E. W. HOBSON, Theory o] ]unctions of a real variable, Vol. I, Cambridge, 1921.

E. T. CoPso~, Functions o] a complex variable, Oxford, 1935.

Références

Documents relatifs

From these estimates and the quasiadditivity of the Green energy we will obtain a Wiener type criterion for boundary layers in terms of capacity.. By cap we denote the

Last on the agenda, the Lasry-Lions approximates of functions f (defined on Hilbert space) which are locally convex up to a positive multiple of the square of

This test is related to other integral tests due to Benedicks and Chevallier, the former in the special case of a Denjoy domain.. We then generalise our test,

There exists a coarse moduli scheme M for the equivalence classes of semistable parabolic vector bundles (on an irreducible nonsingular complete curve X}.. of

We prove that, if 7 is a simple smooth curve in the unit sphere in C n, the space o pluriharmonic functions in the unit ball, continuous up to the boundary, has a

construct a reflexive sheaf from Y using the Serre construction, and then to describe this sheaf by means of a monad, where the family of monads involved

Nous 6nonr ~t la fin du second paragraphe, le r6sultat d'approximation dans le eas particulier des points minimaux, et, dans le troisi6me paragraphe, nous l'appli- quons pour

MANKIEWICZ, P., On the differentiability of Lipschitz mappings in Fr6chet spaces, Studia Math.. MANKIEWICZ, P., On spaces uniformly homeomorphic to Hilbertian Fr6chet