• Aucun résultat trouvé

Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results

N/A
N/A
Protected

Academic year: 2021

Partager "Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-02778542

https://hal.archives-ouvertes.fr/hal-02778542

Submitted on 27 Aug 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Lateral evolution of the rift-to-drift transition in the

South China Sea: Evidence from multi-channel seismic

data and IODP Expeditions 367&368 drilling results

Weiwei Ding, Zhen Sun, Geoffroy Mohn, Michael Nirrengarten, Julie Tugend,

Gianreto Manatschal, Jiabiao Li

To cite this version:

Weiwei Ding, Zhen Sun, Geoffroy Mohn, Michael Nirrengarten, Julie Tugend, et al.. Lateral evolution

of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and

IODP Expeditions 367&368 drilling results. Earth and Planetary Science Letters, Elsevier, 2020, 531,

pp.115932. �10.1016/j.epsl.2019.115932�. �hal-02778542�

(2)

Earth and Planetary Science Letters 531 (2020) 115932

Contents lists available atScienceDirect

Earth

and

Planetary

Science

Letters

www.elsevier.com/locate/epsl

Lateral

evolution

of

the

rift-to-drift

transition

in

the

South

China

Sea:

Evidence

from

multi-channel

seismic

data

and

IODP

Expeditions

367&368

drilling

results

Weiwei Ding

a

,

b

,

,

Zhen Sun

c

,

∗∗

, Geoffroy Mohn

d

,

Michael Nirrengarten

d

,

Julie Tugend

e

,

f

,

Gianreto Manatschal

g

,

Jiabiao Li

a

aKeyLaboratoryofSubmarineGeosciences,StateOceanicAdministration,SecondInstituteofOceanography,MinistryofNaturalResources,

Hangzhou310012, China

bShanghaiJiaoTongUniversity,SchoolofOceanography,Shanghai20030,China

cCASKeyLaboratoryofOceanandMarginalSeaGeology,SouthChinaSeaInstituteofOceanology,ChineseAcademyofSciences(CAS),Guangzhou510301, China dLaboratoireGéosciencesetEnvironnementCergy(GEC),MaisonInternationaledelaRecherche,UniversitédeCergy-Pontoise,Paris95000, France

eSorbonneUniversité,CNRS-INSU,InstitutdesSciencesdelaTerreParis,ISTePUMR7193,F-75005Paris,France fTotalSA,R&DdepartmentCSTJF,64000Pau,France

gInstitutdePhysiqueduGlobedeStrasbourg,UniversitédeStrasbourg,Strasbourg-CNRS,F-67084, France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received4April2019

Receivedinrevisedform18October2019 Accepted27October2019

Availableonline8November2019 Editor:A.Yin

Keywords:

rift-to-drifttransition tectono-magmaticprocesses breakup

SouthChinaSea IODPExpedition367&368

TheSouthChinaSeamarginsrepresentacriticalnaturallaboratorytostudytheprocessesandparameters controllingtherift-to-drifttransition.Highqualityseismicdatapreviouslysuggestedtheoccurrenceofa relativelysharptransitionbetweenthecontinentalandoceanicdomains,ahypothesisrecentlyvalidated bythe resultsoftheIODPExpedition367&368drilledinthenorthern SouthChina Seadistalmargin. DrillingresultsinthistransitioncoredMid-OceanRidgetypebasalticbasement(SiteU1502),whileits lateralequivalentshowedcontinentalaffinities(SiteU1499).Seismicdatadocumentthelateralevolution ofthisnarrowtransitionzone(∼15to25kmwide)andtectono-magmaticcontextrelatedtobreakup.A short-periodmagmaticeventoccurredduringthelateststageofcontinentalriftingandintrudedtheedge ofthethinnedcontinentalcrust,triggeringcrustalbreakupandonsetofsteady-stateseafloorspreading. Thearchitectureofthetransitionaldomaindocumentedinthisworkisinmarkedcontrastwiththose interpreted as eithermagma-starvedor magma-richatbreakuptime, suggesting thatthe continental marginoftheSCSisintermediatebetweentheclassicalend-membermagmaticarchetypes.Wepropose thatthemagmaticeventtriggeringcontinentalbreakupisrelatedtodecompressionmeltinglinkedtothe ascendingasthenosphere.Itisassumedthatthiseventwasrapidatgeologicaltimescale(<10Ma)and wasfavoredbyahighmantletemperature.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Newobservationsandtheacquisitionofnewdataarecrucialto describethearchitectureandnatureoftransitionaldomains lying betweencontinentalandoceanic crustsandunderstand the evo-lutionofthethermalstateandstrengthofthelithosphereduring breakup andsubsequent onset ofseafloor spreading. Transitional

domainshavebeeninvestigatedinbothmagma-rich and

magma-*

Corresponding author at: Key Laboratory of Submarine Geosciences, State OceanicAdministration,SecondInstituteofOceanography,MinistryofNatural Re-sources,Hangzhou310012,China.

**

Correspondingauthor.

E-mailaddresses:wwding@sio.org.cn(W. Ding),zhensun@scsio.ac.cn(Z. Sun).

poorrifted marginsthanksto datasetsfromtheOceanic Drilling Program (ODP) (e.g. Larsen andSaunders, 1998), high-resolution multichannel seismic(MCS)data(e.g. Péron-Pinvidicetal., 2007) andfield studiesinfossil analogues(e.g.Abdelmalaketal.,2015). These observations enabledthe development of conceptual ideas

inspired by analogue and numerical modeling (e.g. Lavier and

Manatschal,2006; Bruneetal.,2014).Magma-rich COTs,as inter-pretedintheSouthAtlanticandNorthwestAustralianmargins(e.g. Frankeetal.,2010; Sticaetal.,2014),arecharacterizedbySeaward Dipping Reflector sequences (SDRs). SDRs are built by the stack-ingoflandwardflowingbasalticmeltsinterbeddedwithsediments duringbreakup.Theirformationiseitherrelatedtolandward dip-pingfaultsand/orrelatedtooceanwardflexure(Patonetal.,2017). SDRs are typically floored by high-velocity bodies (Vp

7.2-7.6

km/s) that are interpreted to result from magmatic

underplat-https://doi.org/10.1016/j.epsl.2019.115932

0012-821X/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

ing/intrusions (e.g. White et al., 1992). Magma-poor transitional domainsshowevidenceforhyper-extendedcontinentalcrust, and locallyalso of exhumedsub-continental serpentinizedmantle, as exemplified by the Iberia-Newfoundland margins (e.g., Boillot et al.,1980; Whitmarshetal.,2001).However,thisbipolarvisionof rifted margin is an over simplification and case studies are ex-pectedtoexistin-between.

InthenorthernSouthChinaSea(SCS)marginneitherSDRsnor exhumedmantle havebeen drilled,dredged or observedin seis-mic sections. However, evidence for a high-velocity layer (HVL) in the lower crust (Yan et al., 2001; Chiu, 2010), magmatic ad-ditionsinthecontinentalslope(Zhaoetal.,2016; Fanetal.,2017) andoccurrenceofdetachmentfaultsaffectingthehyper-extended crust have been described (Franke et al., 2014; Gao etal., 2015; Zhaoetal.,2018).TheSouthChina Seamargindoesnotresemble

the classical end-member magmatic archetypes and hasrecently

been recognized as an “intermediate” type (Larsen et al., 2018) based on the results of the International Ocean Discovery Pro-gram (IODP) Expeditions 367&368. Seven sites, spanning from a basement high in the distal margin to the initial oceanic crust, have been successfully cored (Sun et al., 2018). In complement to Larsen et al. (2018), herewe interpret four crustal-scale MCS profilestoinvestigatethedeformationpattern,magmatic architec-tureandlateralvariabilityoftheCOTarchitectureofthenorthern SCS. We tentatively characterize the location, amount, and tim-ingofmagmaticadditionsthat occurredduring breakup,andaim to document further the mechanisms controlling the rift-to-drift transitioninthenorthernSCSbyfocusingonitstectono-magmatic evolution.

2. Geologicalsetting

SincetheTriassic,therealmfromwhichtheSCSdevelopedwas in a convergent setting caused by the subduction of the paleo-Pacific(TaylorandHayes,1983).DuringthePaleogene,the

paleo-stress field changed from compression to extension as a result

ofsubduction rollback(Taylor and Hayes,1983). This resultedin episodicrifting eventswith uplifting shouldersand local erosion thatcontinuedintoCenozoictime.Theextensionaltectonicsofthe

Cenozoicis evidencedby the development ofbasins boundedby

serial,parallel,toenechelonfaults,someofthesestructuresbeing interpreted aslong offset detachmentfaults (Franke etal., 2014; Zhaoetal., 2018).Twomain rifteventscan be distinguished:an earlier Paleocene to Eocene and a late Eocene to early Miocene (Cullenetal.,2010).Theformereventwaswidespreadandcanbe identifiedinnearlyallsedimentarybasinsinthecontinentalshelf. Conversely,thelattereventresultedinseafloorspreadingandthe formationoftheSCS.

AmodelfortheopeningscenariooftheSCSwasfirstproposed by Taylor and Hayes (1983) and Briais et al. (1993) on the ba-sis of the magnetic anomalies, indicating that seafloor spreading occurred between32 and 16Ma. In contrast,Barckhausen et al. (2014) suggestedacessationageof20.5Mabasedonmorerecent ship-borne magnetic data.Althoughthere is 3–4Myr differences inthe cessationtime, mostauthorsagreethat seafloorspreading occurredintheEastSub-basinfirst,followedbyasouthwardridge jumpandare-orientationofthespreadinggeometryfroma west-ward to a southwestward ridge propagation (Briais et al., 1993; Dingetal.,2018).

Shipboardresultsofmicrofossilbiostratigraphyand palaeomag-netic results from the IODP Expedition349 (Li et al., 2015) and theIODPExpeditions 367&368(Sun etal., 2018),combined with analysisonrecently-acquireddeeptow magneticanomalies(Li et al.,2014),and40Ar/39Ardatingofbasaltsnearthefossilspreading ridge(Koppers,2014),haveshownthatseafloorspreadingoccurred

between

30Maand16Ma,supportingagemodelsproposedby

TaylorandHayes (1983) andBriaisetal. (1993).Thecessationtime coincideswiththeonsetofcollisionbetweenPalawanandBorneo andMindoro-CentralPhilippines(Cullenetal.,2010),suggestinga causalrelationshipbetweenthetwoevents.

Theseismicsectionspresentedheremainlyrunacrossthe dis-taldomainofthenorthernSCSmargindocumentingthestructure ofthe Continent-Ocean Transition(COT). TotheNW, thesections imagethemostdistal/southernpartofthePearlRiverMouthBasin

(PRMB) and adjacent oceanic crust. The PRMBconsists of

Ceno-zoic basins that formed during a syn-rift stage (

53 Ma to 32 Ma), followed by a post-riftstage (32 Ma to 10.5Ma), anda fi-nal rejuvenation stage (10.5 Ma to recent) (Clift and Lin, 2001; Wang et al., 2018). The crustal architecture of the southern part

of the PRMB has been well documented using wide-angle

seis-mic surveysandpresentsaseaward crustal thinningfrom24km to 12 km (e.g. Yan et al., 2001). The Cenozoic rift extension is

accommodated by detachment faults forming deep basins with

rampsynclineandroll-overanticlinestructures(Zhaoetal.,2018; Wangetal.,2018).

3. Reflectionseismic,drillholedataandinterpretational

approach

3.1. Reflectionseismicdataandprocessing

FourMCSsectionshavebeeninterpretedinthisstudy(for loca-tions ofsectionsseeFig.1).SeismicsectionsN2,N3andN4were obtainedduringthenationaloceanicprojectcruisebytheSecond Institute ofOceanography,MinistryofNaturalResources,in2004. The sectionswere obtainedby R/VTanbao through480channels, 6237.5 m-longstreamer, andwere recordedinSeg-Dformat at2 ms sampling intervals and 12 second (s) trace length. The shot interval is37.5 m. Seismic section SO49-17 was obtainedduring the“JointSino-GermanSouthChina SeaCruise”in1987.The

sec-tion was obtained by R/VSONNE through 48 channels. Pre-stack

processing ofthe seismic data includes amplitude compensation, staticcorrection,gainandmuteanalysis,predictivedeconvolution, multiple attenuation, velocity analysis, residual static corrections and frequency filtering. Post-stack deconvolution, band-pass and coherencyfilteringare appliedto thestacked data,followedby a finite-differencemigration.

3.2. Drillholedataandagecalibrationsofseismicunits

Drilling sites fromODP Leg184 (ODP Site 1148), IODP Expe-ditions 349,367&368 (U1435, U1499, U1500, U1501,U1502, and U1504)areusedtocalibratetheageofseismicunits.Seismic sec-tionN4liesveryclosetotheIODPExpedition367&368drillsites, andthereforethelithologiesandagesofbothsedimentsand base-ment rocks along this section are well constrained by the Sites

U1500, U1502 and U1504. Age of the unit boundaries is based

on biostratigraphic data (Li et al., 2015; Sun et al., 2018), and the locationofunit boundariesintheseismicsectionshavebeen estimated converting drilled depth to two-way travel time using P-wavevelocitiesderived fromtheloggingdataofrelativedrilling sites(Fig.2)(Sunetal.,2018).

The combination of seismic anddrill-hole data enabledus to definecharacteristicseismicunitsintheCenozoicinfillofthe dis-tal northern SCS margin that are interpreted to record distinct tectonic phases.The tectono/seismicunitsare describedhereafter frombottomtotop:

Thepre-riftunit: mainly identified below Cenozoic grabens in the distal margin and oftenits top is recognized asthe acoustic basement. A distinct angular unconformity (Tg) separates indis-tinctly thepre-rift or basement fromthe Cenozoicsediments on top.TheinternalreflectionpatternbelowTg ismainlychaoticand

(4)

W. Ding et al. / Earth and Planetary Science Letters 531 (2020) 115932 3

Fig. 1. (a)MorphologicalfeaturesofthemiddlepartofthenorthcontinentalmarginandadjacentregionsoftheSouthChinaSea.Yellowlinesshowthelocationsofexample seismicsectionsdiscussedinthisstudy.Whitedashedlinesarethewide-angleseismicprofiles.RedsquaresindicatethemagneticlineationfromBriaisetal. (1993).Drill sitesofODPLeg184,IODPExpeditions349,367&368areindicatedbyyellowcircles.(b)MajortectonicunitsandsedimentarybasinsintheSouthChinaSea.Reddashed squareshowsthestudyarea.(c)RTPmagneticanomalymap. (d)Free-airgravityanomalymap.(Forinterpretationofthecolorsinthefigure(s),thereaderisreferredtothe webversionofthisarticle.)

discontinuous withvarious frequency andintensities. Site U1501 located on a broad regional basementhigh, referred to as Outer MarginHigh(OMH)(Fig.1),drilledlithifiedpre-riftsandstonesand conglomeratesofuncertainage(Mesozoic?)belowanangular un-conformity (Sun et al., 2018; Larsen et al., 2018). Site U1504 is locatedintheeastwardprolongationoftheOMH,andpenetrated

a metamorphic basement composed of fine - to coarse-grained

epidote-chloriteschiststhat lie belowtheTglevel. Theexact

na-tureoftheprotolithaswellasitsrelatedP-T-tevolutionremains unconstrainedforthemoment(Sunetal.,2018).

Unit1,orsyn-riftunit: deposited before the onset of seafloor spreadingrangesfromEocenetoEarlyOligocene(before

30Ma). Theacousticbasement(including thepre-riftunit) formsthebase

of this unit. This unit shows subparallel and low to -

moder-atelycontinuous reflectorswithlow frequencyandvarious inten-sities,sealedbyaregionalunconformityT70withanagebetween

(5)

Fig. 2. CalibrationofseismichorizonsfromSiteU1502.Theinterpretedboundaries arecalibratedfromrecoveredlithostratigraphy.P-wavevelocityanddensityalong thesiteareshownindepth.SiteU1502haspenetratedintobasalticbasementand recoveredmostoftheNeogenedeposits.SeelocationinFig.1.

32-30 Ma (Sun et al., 2018). Major thicknessvariations in the profiles imply that this unit has a syn-tectonic origin. This unit hasbeenpenetratedatSiteU1501,whereitrecoveredlateEocene siliciclasticsedimentspresentinga finningupward sequence(Sun etal., 2018). Thesesediments aresimilar in ageandtype tothe syn-rift sedimentsof Site U1435 (Li etal., 2015). A further sub-division ofthesyn-rift unit sequencewas not attemptedbecause ofalack ofdrillsitesinthe distalmargin. Furtheroceanward,at SiteU1499onabasementridge(referredtoasRidgeAFig.3),an undatedgravelunit withsiltyandsandy intervalshasbeen pene-trated(Sunetal.,2018).

Unit2:depositedsincetheinitialseafloorspreading(

30Ma) andlimitedbyaregionalunconformityT60,whichcorrespondsto ahiatusat

23Ma,sampledatIODPSiteU1435 (Lietal.,2015). ThishiatusisalsopresentatSitesU1501andU1502corresponding toaremarkablelithologicalchangewithanageof

24-

26Ma (Sunetal.,2018).InseismicsectionsT60canbetracedbasin-wide byastrongnegativephasechange.Thisunitisinternally character-izedbysubparallelto- parallel reflectionsofhighto- intermediate continuityandmoderateintensity.Thearchitectureandlithological contentofthisunitchangesignificantlyacrossthedistalmarginas afunctionoftopographyandrelatedpaleowaterdepth.The repre-sentativesedimentary faciesof theOMHis found atSitesU1501 andU1505andiscomposedofnannofossilrichclay.AtSiteU1499, above the gravel Unit a condensed section of breccia (from

30 to 26 Ma) was drilled. In addition, Site U1502 located on Ridge AeastwardofSite U1499(Figs.1&5),recovered veryhard,poorly sortedbrecciaandbiosiliceousclays(Sunetal.,2018).

Units3&4: depositedafterT60,spanningtheearlyMiocene syn-driftandmiddleMiocenetopresentpost-driftbasindevelopment.

These two units have very similar seismic reflectors separated

by T30 with an age of

5Ma, characterized by parallel reflec-tionswithlow-to-moderateintensity,locallytransparentfaciesare observed as well. They are made of nannofossil-rich clays, silty clay,foraminifer-richclayeysiltstonetosandstone,andnannofossil oozes depositedindeepmarine environments,withminorcalcite andchalk(Sunetal.,2018).

3.3. Interpretationofmagmaticadditions:methodologyand terminology

While thecombinationofdrilling resultsandseismicdata en-ables the determination of sedimentary units that can be corre-lated across the distal margin, the identification of the amount of magmatic additions related to breakup is challenging and re-latedtolargeuncertainties(Tugendetal.,2018).Inthisstudy,we used seismic criteria, locally supported by drilling results of the IODP expeditions 367&368,to interpret magmatic additions that occur as magmatic sills characterized by spatially limited, high-amplitude reflectors, which can be easily distinguished from the relativelow-amplitude,chaoticinternalsurroundingseismic reflec-tions.(e.g.Trudeetal.,2003; Zhaoetal.,2016).

4. Stratigraphicandtectono-magmaticcharacteristicsoftheSCS

structuraldomains

We use four seismic sectionsimaging the along strike north-ernSCSmargintodocumentthetectonicandmagmaticstructures

related to breakup. Based on these seismic data combined with

geophysical dataanddrillingresults,wetentativelyidentified dif-ferentbasementtypesalongthemargin:theunambiguousthinned continentalandoceanicdomains.Atransitionaldomain,wherethe rift-to-drifttransitionisrecorded,occursinbetween.

Therecognitionoftheseriftdomainsonreflectionseismicdata ismainlybasedoncrustalthicknessvarications,changesinMoho reflectivity, stratigraphic architecture, andtop-basement architec-ture (Figs. 3–6). Magnetic data and the free-air anomaly signals wereinvolvedtoprovidecomplementaryconstraintstodelimitthe spatial extent ofthesedomains onthe profiles(see map view in Fig.1c&d,andalong-profileviewinFigs.3–6).Thesedatawere col-lectedbythe1:500000scalingGravity,Magnetic,andBathymetric Survey in2003to 2007by theSecond Institute ofOceanography, MNR.VariableinclinationRTP(reduction-to-the-pole)isemployed forthemagneticdata.

4.1. Thinnedcontinentaldomain

Based onseismicobservationsthethinnedcontinentaldomain ischaracterized by:(1)well developedfaultboundedbasinswith thick syn-tectonic sediments; (2) a major reflector around 9-10

s TWT that shallows oceanwards identified as the Moho; and

(3) generally negative free-air anomaly, increasing oceanwards to the SE endof thisdomain.Exception is SO49-17,where the FAA signalschange alot. The crustalthicknessranges from5.5to 3s TWT(16-

7km),graduallythinningoceanward.Thecrustinthis domainissignificantlythinnedcomparedwiththe

30km

thick-ness of the continental crust documented onshore South China

(Braitenbergetal.,2006).

OnbothN2andN3seismicsections,twomainbasementhighs

delimit a

30 kmwide sedimentary basin. The most

continent-wardbasementhigh(between0- 15kminN2,Fig.3;between0 -13kminN3,Fig.4)isdelimitedbyseveral normalfaultsaffecting

(6)

W. Ding et al. / Earth and Planetary Science Letters 531 (2020) 115932 5

Fig. 3. MCSsectionN2inasoutheasterndirectionandthealongprofilefree-airgravity(blue)andRTPmagneticanomaly(red).Middleistheoriginalseismicsection.Black arrowsindicatestronginternalreflectorsandMoho;Blowisageologicalinterpretationwithlinedrawing.Coloreddashedlinesarethesequenceboundariesseparating differentsedimentaryunit.Ahugebasementhighwithpeakclosetotheseafloorcanbeobservedinthedistalpartofthemargin,boundedbyseverallistricnormalfaults. Boththegravityandmagneticanomaliesofthisbasementhighincrease.Verticalexaggerationis3.

thecontinental crust andthe overlying syn-rift sediments.These normalfaults dipgenerallytoward theocean. Locallystrong hor-izontalintra-basement reflectorsare identified in seismic section N2(Fig. 3) at8.0 sTWT. The observed normalfaults are consis-tentlysolingoutintheseintra-basementreflectors,showinga typ-icallistricfaultshape.Thereforethesereflectorsat

8.0sTWTare interpreted asa major decollement corresponding to the brittle-ductile transition. The syn-riftUnit1 shows locally growth struc-turesconfirmingtheirdepositionduringactivefaulting(Fig.8).

Abasement high(between45- 75 kminN2,Fig. 3;40– 50 kminN3,Fig.4)markstheoceanwardterminationofthethinned continentaldomain.InseismicsectionsN2andN3,thebasement highis onlappedon both sidesby post-driftsediments while no clearevidenceforsyn-riftsedimentsareobserved.

Towardsthewest,thisthinnedcontinentaldomainshowsa dif-ferentarchitecture.InseismicsectionN4,abasementhigh, identi-fiedastheOMH(between20-40km,Fig.5),showsaremarkable moundshapewithitstopbeingexposedattheseafloor.TheOMH

(7)

Fig. 4. MCSN3inasoutheasterndirectionandthealongprofilefree-airgravity(blue)andmagneticanomaly(red).Middle:Originalseismicsection;Blow:ageological interpretationwithlinedrawing.Coloreddashedlinesarethesequenceboundariesseparatingdifferentsedimentaryunit.Abasementhighseparatesthecontinentaldomain fromthetransitionaldomain.Twooceanwarddippinglistricfaults(solidblackline)boundstheSEsideofthisbasementhighandsolesoutintheMoho.Verticalexaggeration is3.

was drilled at three locations (Sites U1504, U1501 and U1505). TwoSiteswereabletopenetratethepre-riftunit/acousticbasement. SiteU1504liesveryclose(

10km)totheeastofthesectionN4, recoveringfine- tocoarse-grainedepidote-chloriteschistwith un-knownage(Sunetal.,2018).InSite U1501,locatedfurthertothe SW,thepre-riftUnit/acousticbasement iscomposedofwelllithified sandstones interbedded with siltstones and conglomerates, con-tainingmagmaticclastspossiblyofMesozoicage(Sunetal.,2018; Larsenetal.,2018).

On the NW side of the OMH, a thick sedimentary package

(1.2

1.7sTWT)isobservedthatconnectswiththesouthern part

ofthe PRMBtowards theNW. Inthisarea,the topofthe pre-rift unit/acousticbasement ismarked by a continuous strongreflector without evidenceforsignificant normalfaulting.ThisOMHis de-limitedbytwooceanward-dippingnormalfaultsintheSEside.

Seismic section SO49-17 lies in the westernmost part of the studyarea(Figs.1,6).TotheNW(between0- 40km,Fig.6),the acoustic basement documents contrasted topographies related to bothlandwardandoceanward-dippingnormalfaults.These exten-sionalstructurescontrolled theformationofriftbasinsassociated withwedge-shapedgeometriesbelongingtothesyn-riftunit1. Lo-cal intra-basement reflectors are identified at about 6.5 s TWT,

(8)

W. Ding et al. / Earth and Planetary Science Letters 531 (2020) 115932 7

Fig. 5. MCSsectionN4inasoutheasterndirectionandthealongprofilefree-airgravity(blue)andmagneticanomaly(red).Middle:Originalseismicsection;Below:a geolog-icalinterpretationwithlinedrawing.LocationsofSitesU1502andU1500areprojectedalongtheline.Coloreddashedlinesarethesequenceboundariesseparatingdifferent sedimentaryunit.Abasementhigh(referredasOuterMarginHigh,OMH)withamoundshapecanbeobserveddrilledatSiteU1504P,withthetoppiercingtheseafloor. Severalstronginternalreflectorsareinterpretedasoceanwarddippinglistricnormalfaults(dashedblackline)developedwithintheRidgeAinthedistalmargin.RidgeAis penetratedatU1502P.FurtheroceanwardistheRidgeBofbasalticbasement,drilledbyU1500P.Verticalexaggerationis3.

possible corresponding to the depth of the décollement level of listricfaultscharacterizingthethinnedcontinentaldomain.Similar to theother profiles, the endof thethinned continentaldomain ismarkedbyacontinentalhigh(between30- 50km,Fig.6)that showsquitehighgravityandmagneticsignals(Fig.1a,c&d). Two oceanward-dippingnormalfaults can be identifiedin theSE side ofthisbasementhigh, whichare associatedwithseveralstepsof thetopofthe acousticbasement.Thecrustal thicknessdecreases graduallywiththeMohoshallowingupfrom

9sto

8sTWT. Thebasementisruggedandoverlainbywavysyn-riftUnit1with varyingthickness. Thisunit extendsoceanwardtoabouttheedge ofabasementhigh.

Onlylittle evidenceformagmaticactivityisinterpretedinthe thinned continental domain. Discontinuous sub-horizontal strong reflectors within the sedimentary packages present a saucer- or bowl-shaped geometry characteristic of magmatic sills (seismic sectionN4between15- 20km,Fig.5).Localdiscontinuous

reflec-tivepackagesabovetheMohocould correspondtointrusivedikes inthelowercrust,notably towardstheoceanwardendofthe do-main (Fig.3–6).Twowide-angle seismicprofiles (OBS2008(Chiu, 2010) andOBS1993(Yanetal.,2001)),whichliebetweenthe seis-mic sections N2-N3 andN3-N4 respectively(Fig. 1) indicatethat thelowercrustbelowthecontinentalslopecorrespondstoahigh velocity layer(HVL)interpretedasrelatedto magmaticmafic un-derplating.

However,thedeterminationofthetimingofmagmaticaddition

emplacement is challenging notably within basement and some

are likely to predate continentalbreakup. In addition, the lateral repartition ofthesepotential maficunderplating islikely variable assuggestedbythelackofevidencefora HVLinthewide-angle seismic profile OBS2006-1 lying in the west (Fig. 1, Ding et al., 2011).Thelowresolutionofboththegravityandmagneticsignals provides limitedconstraintsgiventhesmallamountof magmatic additions that can be interpreted. Still, they do not support the

(9)

Fig. 6. MCSsectionSO49-17inasoutheasterndirectionandthealongprofilefree-airgravity(blue)andmagneticanomaly(red).Middle:Originalseismicsection;Below:a geologicalinterpretationwithlinedrawing.Coloreddashedlinesarethesequenceboundariesseparatingdifferentsedimentaryunit.Abasementhighseparatestheabyssal basinandthecontinentalslope.Fragmentary,butoccasionallystronginternalreflectorscanbeidentifiedbelowthisbasementhigh.Verticalexaggerationis3.

occurrenceoflargemagmaticintrusionsalongtheprofiles investi-gated.

4.2. Transitionaldomain

Thetransitional domainalong thefourseismicsections repre-sentsa

15

25kmwideareabetweenthecontinentalandthe oceanic domains. This domain is characterized by (1) an irregu-larcrustalthicknessrangingfrom1.2to1.8s TWT(

7kmto 11 km);and(2)complexandchaoticintra-basementhigh-amplitude reflectors(Fig.8).Evidenceofmagmaticadditionsismorefrequent inthisdomainthaninthethinnedcontinentaloneandtheyseem tobecontrolledbytectonicactivity.

The transitional domain in seismic section N2 starts at the southeastward edge of the basementhigh (Fig. 7a). This edge is characterizedby anoceanwarddippinglistricfaultrootingdeeper than in the thinned continental domain, possibly nearthe

inter-preted Moho. The top basement of the transitional domain lies

at

7 s TWT and appears faulted. Several strong amplitude

re-flections are observed within the basement above the Moho at

9 s TWT (between68 – 84km,Figs. 3&7a). Some ofthem have

bowl shape withsharp edges and could correspond todykes

in-truded in the lower crust. We propose that the footwall of the majorlistricnormalfaultiscomposedofthinnedcontinentalcrust withmagmaticadditions,whereasthehanging wallisinterpreted asvolcanoclasticmaterial(includingsedimentsandbasalticflows) possibly restingon remnants ofcontinentalcrust. Thelower part

(10)

W. Ding et al. / Earth and Planetary Science Letters 531 (2020) 115932 9

Fig. 7. Enlargedoriginal(left)andinterpreted(right)sectionsdisplayexpandedviewofthetransitionaldomain.Fig.7afromN2,Fig.7bfromN3,Fig.7cfromN4,andFig.7d fromSO49-17,respectively.

oftheUnit2 (Tg-T60)presentsgrowthstructuresonlappingonthe majorfaultandsealedbyundeformedsediments.

Inseismic section N3,the architecture of the transitional do-mainisverysimilarwiththatofN2.Twooceanwarddipping nor-malfaults boardtheNEpartwithstepped-downbasement possi-blyrootingneartheMohoat

9sTWT(Fig.7b).Thesefaultsseem toseparatedifferenttypesofacousticbasement,showingdifferent seismicfacies. The footwallis characterized by low - to medium amplitude, discontinuous reflectors which are similar with those ofthethinnedcontinentalcrust inthenorthwest. Stronginternal reflectorsexistwithinthebasementabovetheMoho(between45 - 55 km,Figs. 4&7b). We interpretthese light reflectorsas

mag-maticdykesinthelowercrust.Thetop basementonthehanging wallsideshowsmediumto- strong amplitude,sub-continuous re-flectors, overlain by very strong amplitudereflectors on the top (basalticflows?).ThesedimentsofUnit2 areundeformedand un-affectedbymagmatism whichimpliesa shortinterval of magma-tismatbreakup.

ThetransitionaldomaininseismicsectionN4isseparatedfrom the continental domain by the Ridge A (Fig. 7c). Disconnected strong oceanward dipping reflectors can be identified within the basement.Weinterpretedthemasmarkersoflistricnormalfaults

possibly rootingnearMoho between8- 9 s TWT.The basement

(11)

am-Fig. 8. Gatheredgeologicalinterpretationsofallfourseismicsectionsfromeasttowest.Threebasementdomainsareidentified,includingthethinnedcontinentalcrustwith magmaticadditions;thetransitionaldomain,andtheoceanicdomainwithslightnormalfaults.Thethinnedcontinentalcrustthinstowardtheoceanicbasinwiththickness between7and16km,andisdominatednormalfaultingwithsyn-tectonicsediments.Thetransitionaldomainisnarrow(<20km)anddominatedbyhyper-extendedcrust complicatedbymagmaticintrusion,indicatingarapidrift-to-drifttransitionandinteractionbetweentectonicsandmagmaticprocesses.Theoceanicdomainissteady-state oceaniccrustwithslightnormalfaulting.

(12)

W. Ding et al. / Earth and Planetary Science Letters 531 (2020) 115932 11

plitude,sub-continuous,parallelto sub-parallelreflectors.Drilling resultsat Site U1502 locating a few km east of the lineon this ridgepresentalteredbasalticbreccia,brecciatedbasaltsandaltered pillowbasalts(Sunetal.,2018),confirmingmagmaticactivity. Dif-ferent typesof veins, including composite silica-rich veins, com-posite epidote-richveins andcomposite carbonateveins crosscut thebasaltsandindicate intense hydrothermalcirculation.Clay to claystonewascoredimmediatelyabovebasalticbasementwithan assemblage ofagglutinated benthicforaminifera,indicating a late Eoceneage(Sunetal., 2018). SiteU1499,which is

40kmwest ofSite1502alongRidgeA,endedbelowTginundatedgravel.The

last age datum comes from matrix-supported breccia deposited

between 30 to 26 Ma (Sun et al., 2018). All these drilling re-sultsprovethattheRidgeAwasformedbeforetheinitialseafloor spreading.Thesyn-riftunit1is depositedrightabovethebasement betweenthe OMH andRidge A, and isoverlain by Units 3, 4&5 withhorizontal,parallelreflections.Transparentandcoherent pat-terns are observed in the footwall of the normal faults and are interpreted to consist of rotated continental blocks. Some strong internalreflectorsexistwithinthebasementabovetheMoho (be-tween55 –70km,Figs. 5&7c),possibly indicatingmagma intru-sions. As emphasized by Larsen et al. (2018), the Moho can be followedfrom the thinned continentalcrust until the oceanward

edge of Ridge A sampled by the Site U1502 on the section N4.

This suggests that first magmatic additions were emplaced over

andwithinthinnedcontinentalcrust.

Thetransitional domainin seismicsection SO49-17 isdefined

asa

15km-widesegmentbetweenthethinnedcontinentaland

the oceanic domains (Figs. 6, 7d), characterized by a highly re-flectivetop andshallowest Mohodepth (

8 s TWT).No obvious normalfaulthasbeenidentifiedwithinthebasement.Thedeposits aboveareun-deformedfeaturedwithparalleltosub-parallel, con-tinuousreflectors.

4.3.Oceanicdomain

Alongthe fourseismic sections(Fig. 8) the following features characterizethe architecture ofthe oceanicdomain: (1)thebase ofthe crust isclearly markedby a set ofmoderate tohigh con-tinuity reflections, interpreted as oceanic Moho located between 8-9s TWT. (2) the top of igneous basement is characterized by high-amplitude,subhorizontalandcontinuousreflections; (3)The crustalthicknessvariesfrom1.8to2.8s TWT,butranges mostly

between1.8 and 2.2 s TWT; and (4) The appearance of oceanic

magneticanomaliesontheprofiles(MagneticanomalyC10onN3, Fig.4;C11onN4,Fig.5;andC11,C10onSO49-17,Fig.6).In ad-dition,usingwideanglevelocities(Chiu,2010),theoceaniccrustal thicknesswas inferredto rangebetween5.4and8.4km,andthe

top basement morphology is not entirely flat and smooth, but

complicatedbyasetoffaults andtiltedblocks.Inseismicsection N4,the acoustic basementis clearly offsetby severaloceanward normalfaults, forming severalisolated basins (Fig. 5). The lower partoftheUnit2 appearstobesyn-tectonic,forminggrowth struc-tureswiththicknessvariation.TheupperpartoftheUnit2,andof Units3&4 aregenerallynotperturbedbydeformationandsealsthe fault-boundedtiltedblocks.

ThisdomainwasdrilledduringIODPexpeditions367&368.The Site U1500 is located close to the seismic section N4 and sam-pledtheedgeofRidgeB.IODPSite U1500cored

115mbasaltic

basement with a recovery of 77%. Shipboard petrological

stud-ies showed that the basalts have a classical MORB composition

similar to the basalts sampled on the central part of the SCS

oceanicdomain during the IODPExpedition 349 (Liet al., 2015; Sunetal.,2018).Thesebasaltsareoverlainbypost-driftsediments madeofdeepmarineclay,claystone,sandstonewithsiltandsandy siltintervals.

5. Discussion

5.1. ArchitectureoftheCOTandlateralvariability

Some along-strikesimilaritiescan befoundinthearchitecture ofthe transitional domainshownin thiswork.The thinned con-tinentaldomain isgenerallyterminated by a basementhigh sep-arated from the transitional domain by one or two major listric normal fault(s)rooting nearthe interpreted Moho.Oceanward of themajorlistricfault(s),theupperpartofthebasementis reflec-tive, locallyshowinggrowthsequences towardsthe fault(seismic sections N2&N3),possibly corresponding to volcano-clastic mate-rial.Thesmootherandhighly reflectivetopbasementtowardsthe oceanicdomainmightindicatebasalticflow,whichhasbeen pen-etrated by Site U1502. Below thissequence, we suggest the oc-currenceofpieces ofcontinentalremnants.Wethusinterpretthis

domain as an igneous crust with possible variable remnants of

continentalcrust. Thehybrid typeof crustof thetransitional do-mainisinterpretedtorecordtherift-to-drifttransition.Referredto astransitionaldomaininthiswork(usingthesameterminologyas Welfordetal.,2010)(Fig.8),itcomparestothe‘embryonicoceanic crust’ (Jagoutz et al., 2007), ‘proto-oceanic’ (Gillard et al., 2015; Tugendetal.,2018) or‘outerdomain’(Péron-Pinvidicetal.,2007) describedatotherriftedmargins.

A lateral variability of the COT architecture nevertheless oc-curs along strike. In the Epart asshown inseismic sections N2 and N3 (Fig. 8), the transitional domain shows very similar ar-chitecturesfeaturedwithabruptchangesfromthinnedcontinental domainwithlistricnormalfault(s),extremelythinnedcontinental blocksinthelowerpartcoveredbypossiblevolcanoclastic materi-als.Thelowerpartofthesedimentarysuccessioniscontrolledby normal faults.While further to the W,theequivalent ofRidge A isthickerthanintheseismicsectionsN2andN3,possiblerelated withthickercontinentalcrustremnantandintensivemagmatic ac-tivities.

The transitional domain ofthe SO49-17 lying inthe western-mostpartshowssomedifferences. Noobviousnormalfaultswere observed(thiscouldbeduetothelowerresolution)andthewidth isnarrower(

15kmcomparedwith

15-

25kmoftheabove three sections in the east) (Fig. 8). Magmatic additions appear more limited, andno HVL is evidenced beneaththe lower crust. Cameselleetal. (2017) suggestedthatthenarrowcharacterofthis transitionaldomainwasduetoanabruptthinningofthe continen-tal lithosphere in the Northwest Sub-basin(NWSB). A transform faulttermedasZhongnanFracturezonehasbeenreported,which separatestheNWSBfromtheESB,delimitingachangeinthedepth ofacoustic basement(e.g.,Lietal., 2015; Cameselleetal., 2017; Larsenetal.,2018)andmayalsomarkthechangeinthe architec-tureofthetransitionaldomain.

5.2. Tectono-magmaticevolutionoftherift-to-drifttransitionatthe SCS

Rifting at the SCS margin appears at first order as a

sym-metric process, strongly controlled by the occurrence of a weak lower crust (Franke et al., 2014; Brune et al., 2017). Polyphase extension was mainly controlled by a major décollement located between the brittle upper crust and ductile lower crust (brittle-ductiletransition),interpretedtoformintra-basementshearzones actingasthemaincrustalthinningmechanism(Frankeetal.,2014; Gao et al., 2015; Zhao etal., 2018). In additionto thismain dé-collement, additional shallower décollement levels can be inter-preted on seismic sections (Fig. 8), controlling the variability in the structural style observed in the thinned continental domain. The occurrence of severaldécollements atvarious depths is also

(13)

Groundarea(e.g.Dingetal.,2013; Liangetal.,2019),highlighting alongstrikevariationsofthearchitectureoftheSCSmargins. How-ever,theyallimagelistricnormalfaultssolingoutinlowercrustal levelsandminorhigh-angle normalfaults showingonlylittle off-set(Fig.8).Thishigh-angle typefaults cannotaccommodatea lot of extension suggestingthat normalfaulting in thebrittle upper crustcannot bethe onlymechanismthat thinnedthecontinental crust.Thepresenceofaweaklower crustattheonsetoftheSCS rifting might havetriggered a ductilenecking of the lower crust withinintra-basementshearzonesinterpretedasthemaincrustal thinningmechanism(e.g.Clift andLin,2001; Franke etal., 2014; Zhaoetal., 2018). Crustalthinning attheSCSwas therefore con-trolledbya non-uniformextensionalmoderesultingfroman im-portantpartitioningofextensionaldeformationbetweenthebrittle uppercrustandaweakductilelowercrust.

Studieson major andtrace elements ofEocenevolcanic rocks frompetroleumdrillholesamplesinthePRMBindicatethelocal occurrence of basaltic rocks emplaced during rifting (Zou et al., 1995).Theyappearlimitedintimeandspace(Gaoetal.,2015).

Thedistal marginrecordsthe latestrifting stageofthe north-ern SCSduring late Eocene(Larsen etal., 2018).Extension likely

remainedsymmetric,accommodatedby pureshearextension

un-tilprogressive coupling betweencrustal andmantle deformation triggeredbreakup(Brune etal.,2014).Thiscouplingbetween up-per crustalandmantledeformation maybeexplained bythe ex-treme thinning of ductile lower crustal levels enabling a crustal embrittlementenhancedbycrustalcoolingduringthinning.Faults that cut the entireresidual crust androoted near the Moho are interpretedasstructuringtheedgeoftheextremelythinned con-tinental crust (locally lessthan 10 km thick). Oceanward, inthe transitionaldomain,magmaticadditionsbecomedominant(Fig.8). The transitional domain seems characterized by the emplace-mentofextrusivebasaltsontopofthehyper-extendedcontinental

crust (MORB-typemagmatism drilledatSitesU1500 andU1502),

intrusivedykesinthelowercontinentalcrust.

Based on theseinterpretations, we suggestedthat continental breakupalongthecentralnorthernSCSoccurredrapidlyduringthe lateststageofrifting,andmagmapotentiallyusedfaultsystemsof thedistalmargintopercolateandinjectthroughthehyper-thinned continentalcrustasexemplifiedatSiteU1502wereavolcanic ed-ifice built over a fault block. The transitional domain of the SCS margin seems characterizedby a progressiveincrease of magma-tism in time andspace fromlatest rifting to breakup, overprint-ing the hyper-thinned continental crust. Breakup likely occurred rapidly in continuum with the crustal and lithospheric thinning thattriggereddecompressionmelting.Thismagmaticeventmight also contribute to the formation of the HVL beneaththe middle andeastpartofthecontinentalslope.

5.3. ImplicationsfortheinterpretationoftheSCSmargintype

Consideringtheapparentreasonableamountofmagmatic sup-plyduringrifting,theabsenceofexhumedmantleorSDRsinthe transitionaldomain,theSCSdoesnotseemtofitintoclassical

end-member magmatic archetypes. Instead, the SCS margin appears

‘intermediate’ in term of magmatic volumes at breakup. Instead ofconsideringmagmaticvolumes,riftedmarginsmayalsobe con-sideredbasedontherelativetimingofdecompressionmeltingand meltextractionrelativetotheamountofcrustalthinning(Tugend etal.,2018).Interestingly,magma-poorsystems,suchasthe Iberia-Newfoundlandcontinentalmargins,arecharacterizedbyadelayin decompression meltingandmeltextraction thatpost-dates litho-sphericbreakup(e.g.Péron-Pinvidicetal.,2007; Bruneetal.,2017; Tugend et al., 2018). This enables the formation of several tens

to hundreds of kilometerswide zones of exhumed

subcontinen-tal mantle potentially experiencing long-duration tectonism and

multi-stage stuttering magmatic activity (Sutra et al., 2013). In

contrast, magma-rich systems show an early onset of magmatic

production and emplacement relative to crustal separation. Ex-treme crustal andlithospheric thinning of the SCS margin likely triggered a rapid onset decompression melting of the ascending asthenosphere.

5.4. Originofsyn-breakupmagmatism

The parameterscontrollingtheonset ofmagmaticactivityand

magmatic supply at breakup are numerous. These include the

mantletemperature(e.g.NielsenandHopper,2004),theupwelling rateofasthenosphere(e.g.Forsyth,1992), theinheritedextension history before seafloorspreading (e.g. Minshullet al., 2001), and possiblethesedimentaryinsulation(e.g.Lizaraldeetal.,2007).An anomalouslylowmantletemperaturewillsuppressmeltingatthe time of continental breakup. These “cool” mantle spots are rare andexistedundersome typicalmagma-poormargins,suchasthe Australian-Antarcticmargin(Cochranetal.,1997) andWestIberia margin(Minshulletal.,2001).Regionsofanomalouslyhighmantle

temperatureappearcommonlyassociatedto magma-richmargins

(e.g. Skogseid,2001). CliftandLin (2001) suggestedthe presence of a significant positivemantle thermalanomaly in the northern continentalmarginoftheSCSatthetimeofbreakupbasedonthe calculation of the total amountof subsidence. Other studies also

confirmed anomalously hot thermal condition of the continental

lithosphereatthetimeofextension,implyingthatthecontinental crustwasthermallyweakened(Clift,2015).

We suggest that magmatic additions in the transitional

do-main mainly originated from decompression melting of the

as-cending asthenosphere resulting in typical MORB signatures, as

confirmed by preliminary geochemical data on Sites U1502 and

U1500(Larsenetal.,2018).FastextensionintheSCSmargin even-tually leadingtocontinentalbreakup,seems likeakeyfactorthat enhanced the magmatic production (Larsen et al., 2018). Exten-sion appears to have started in the Eocene (Briais et al., 1993; Bruneetal.,2017), asalsoevidencedfromtheSiteU1501.Inthis site,thelastagedatumisat34Ma,recordedat200m abovethe baseofthesyn-riftsequence. Basedonthisdataset,Larsenetal., 2018inferredalateEoceneagefortheoldestsedimentslyingjust above acousticbasement.Thus,themainrift eventthat preceded breakuplastedlessthan10Myrs.Thisrapidextensionwouldhave favored theupwellingofhotmaterial,withaminimalcooling ef-fect. This mayexplain the generation ofenhanced and localized

magmaduringbreakup.

Future geochemical studies on the cored basaltic rocks from IODPSitesU1500andU1502couldprovidemoredetailed informa-tionaboutthetype ofmantlethat isatthe originofthemagma, themantletemperatureanddegreeofdepletion.

6. Conclusions

Thanks to high quality seismic data and benefiting from the IODPExpeditions367&368thatdrilled acrosstheCOT,the north-ernSouthChinaSeamarginrepresentsacriticalnaturallaboratory to studytheprocessesandparameterscontrolling therift-to-drift transition. Threetypesofbasementdomains havebeenidentified basedonthebasementarchitectureanditsinterpretednature,i.e. thinnedcontinentaldomain withtypicalextensionalstructures, tran-sitionaldomain whererift-to-drift processesarerecorded,andthe oceanicdomain.

Preliminary drilling results in the rift-to-drift transition zone

coredMOR-type basalticbasementwithno evidenceofexhumed

mantle, implying a remarkable difference with the end-member

(14)

W. Ding et al. / Earth and Planetary Science Letters 531 (2020) 115932 13

suggestthatthistransitionisnarrowandcharacterizedbya com-plexbasementstructure,includingremnantsofhyper-thinned con-tinentalcrustoverprintedbyextrusiveandintrusivemagmatic ma-terial.We suggest that the formation of thishybrid basement is bestexplainedby a magmaticeventthatoccurredrapidly during thelateststage ofrifting totrigger continentalbreakup,followed bysteady-stateseafloorspreading.

Consideringthelimitedmagmaadditionsduringriftingandthe

absence ofexhumed mantle or SDRs, the SCS does not seem fit

into the classical end-member magmatic archetypes. Instead, re-gardingthemagmaticvolumesatbreakup,theSCSmarginappears ‘intermediate’.Breakup occurredafterthecrustal andlithospheric thinningwouldhavetriggeredthedecompressionmeltingonsetof theascendingasthenosphere,andthefollowingseafloorspreading.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgement

We are grateful to Dieter Franke, AnneBriais, and Brian Tay-lor for the constructive suggestions and fruitful comments for themanuscript. Funding forthisresearch is provided by the Na-tionalNaturalScience Foundation ofChina (91858214,41890811, 41676027),andtheGlobalchangeandAir–SeaInteractionspecial project(GASI-GEOGE-01,GASI-02-SHB-15).IODPChina isthanked forofferingthepositionsin“JODIESRESOLUTION”.

References

Abdelmalak,M.M.,Andersen,T.B.,Planke,S.,Faleide,J.I.,Corfu,F.,Tegner,C., Shep-hard,G.E.,Zastrozhnov,D.,Myklebust,R.,2015.Theocean-continenttransition inthemid-Norwegianmargin:insightfromseismicdataandanonshore Cale-donianfieldanalogue.Geology 43,1011–1014.

Barckhausen,U.,Engels,M.,Franke,D.,Ladage,S.,Pubellier,M.,2014.Evolutionof theSouthChinaSea:revisedagesforbreakupandseafloorspreading.Mar.Pet. Geol. 54(B),599–611.https://doi.org/10.1016/j.marpetgeo.2014.02.022. Boillot,G.,Grimaud,S.,Mauffret,A.,Mougenot,D.,Kornprobst,J.,Mergoil-Daniel,J.,

1980.Ocean-continentboundaryofftheIberianmargin:aserpentinitediapir westoftheGaliciaBank.EarthPlanet.Sci.Lett. 48(1),23–34.https://doi.org/ 10.1016/0012-821X(80)90166-1.

Braitenberg,C.,Wienecke, S.,Wang,Y.,2006.Basementstructures from satellite-derived gravity field: South China Sea ridge. J. Geophys. Res. 111, B05407.

https://doi.org/10.1029/2005JB003938.

Briais, A., Patriat, P., Tapponnier, P., 1993. Updated interpretation of magnetic anomaliesandseafloorspreadingstagesintheSouthChinaSea:implications fortheTertiarytectonicsofSoutheastAsia.J.Geophys.Res. 98(B4),6299–6328.

Brune,S.,Heine,C.,Pérez-Gussinyeé,M.,Sobolev,S.V.,2014.Riftmigrationexplains continentalmarginasymmetryandcrustalhyper-extension.Nat.Commun. 5, 4014.https://doi.org/10.1038/ncomms5014.

Brune,S.,Heine,C.,Clift,P.D.,Perez-Gussinye,M.,2017.Riftedmarginarchitecture andcrustalrheology:reviewingIberia-NewoundlandCentralSouthAtlanticand SouthChinaSea.Mar.Pet.Geol. 79,257–281.

Cameselle,A.J.,Ranero,C.R.,Franke,D.,Barckhausen,U.,2017.Thecontinent-ocean transitiononthenorthwesternSouthChinaSea.BasinRes. 29(S1),73–95. Chiu, M., 2010. The p-WaveVelocityModeling ofthe Transitional Crust inthe

Northern South China Sea Continental Margin. Natl. Taiwan Ocean. Univ., Keelung.

Clift,P.D.,2015.Coupledonshoreerosionandoffshoresedimentloadingascauses oflowercrustflowonthemarginsofSouthChinaSea.Geosci.Lett. 2(1),1–11.

https://doi.org/10.1186/s40562-015-0029-9.

Clift,P.D.,Lin,J.,2001.PreferentialmantlelithosphericextensionundertheSouth Chinamargin.Mar.Pet.Geol. 18(8),929–945.https://doi.org/10.1016/S0264 -8172(01)00037-X.

Cochran,J.R.,Sempere,J.C.,SEIRScientificTeam,1997.TheSoutheastIndianRidge between88oEand118oE:gravityanomaliesandcrustalaccretionat intermedi-atespreadingrates.J.Geophys.Res. 102,15463–15487.

Cullen,A.,Reemst,P.,Henstra,G.,Gozzard,S.,Anandaroop,R.,2010.Riftingofthe SouthChinaSea:newperspective.Pet.Geosci. 16,273–282.

Ding,W.W.,Franke,D.,Li,J.,Steuer,S.,2013.Seismicstratigraphyandtectonic struc-turefromacompositemulti-channelseismicprofileacrosstheentireDangerous Grounds,SouthChinaSea.Tectonophysics 582,162–176.

Ding,W.W.,Schnabel,M., Franke,D.,Ruan,A.G.,Wu,Z.L.,2011.Crustalstructure acrossthenorthwesternmarginofSouthChinaSea:evidenceformagma-poor riftingfromawide-angleseismicprofile.ActaGeol.Sin. 86(4),854–866. Ding,W.W.,Sun,Z.,Dadd,K.,Fang,Y.,Li,J.,2018. Structureswithinthe oceanic

crustofthecentralSouth ChinaSeabasinandtheirimplications foroceanic accretionaryprocesses.EarthPlanet.Sci.Lett. 488,115–125.

Fan,C.,Xia,S.,Zhao,F.,Sun,J.,Cao,J.,Xu,H.,Wan,K.,2017.Newinsightsintothe magmatisminthenorthernmarginoftheSouthChinaSea:spatialfeaturesand volumeofintraplateseamounts.Geochem.Geophys.Geosyst.https://doi.org/10. 1002/2016GC006792.

Forsyth,D.W.,1992.Geophysicalconstraintsonmantleflowandmeltgeneration beneathmid-oceanridge.In:Morgan,J.P.,Blackman,D.K.,Sinton,J.M.(Eds.), MantleFlowandMeltGenerationatMid-OceanRidges.In:Geophysical Mono-graphs,vol. 71.AmericanGeophysicalUnion,pp. 1–65.

Franke,D.,Ladage,S.,Schnabel,M.,Schreckenbergen,B.,Reichert,C.,Hinz,K., Pater-lini,M.,Abelleyra,J.,Siciliano,M.,2010.BirthofavolcanicmarginoffArgentina, SouthAtlantic.Geochem.Geophys.Geosyst. 11(2),1–20.

Franke,D.,Savva,D.,Pubellier,M.,Steuer,S.,Mouly,B.,Auxietre,J.,Meresse,F.,2014. ThefinalriftingevolutionintheSouthChinaSea.Mar.Pet.Geol. 58B,704–720. Gao,J.,Wu,S., McIntosh,K.,Mi,L.,Yao,B.,Chen,Z.,Jia,L.,2015.The continent-oceantransitionatthemid-northernmarginoftheSouthChinaSea. Tectono-physics 654,1–19.

Gillard,M.,Autin,J.,Manatschal,G.,Sauter,D.,Munschy,M.,Schaming,M.,2015. Tectonomagmaticevolutionofthefinalstagesofriftingalongthedeep conju-gateAustralian-Antarcticmagmapoorriftedmargins:constraintsfromseismic observations.Tectonics 34,2015TC003850.

Jagoutz,O.,Muntener,O.,Manatschal,G.,Rubatto,D.,Peron-Pinvidic,G.,Turrin,B.D., Villa,I.G.,2007. Therift-to-drifttransitioninthe NorthAtlantic:astuttering startoftheMORBmachine?Geology 35(12),1087–1090.

Koppers,A.,2014.Onthe39Ar/40Ardatingoflow-potassiumoceancrustbasaltfrom

IODPexpedition349,SouthChinaSea.In:2014AGUFallMeeting.T31E-03. Larsen,H.C.,Saunders,A.D.,1998.ProceedingsoftheOceanDrillingProgram.

Scien-tificResults(OceanDrillingProgram),vol. 152.

Larsen,H.C.,Mohn,G.,Nirrengarten,M.,etal.,2018.Rapidtransitionfrom conti-nentalbreakuptoigneousoceaniccrustintheSouthChinaSea.Nat.Geosci.

https://doi.org/10.1038/s41561-018-0198-1.

Lavier,L.L.,Manatschal,G.,2006.Amechanismtothinthecontinentallithosphere atmagma-poormargins.Nature 440,324–328.

Li,C.F.,Lin,J.,Kulhanek,D.K.,theExpedition349Scientists,2015.In:Proceedingsof theInternationalOceanDiscoveryProgram,vol. 349,SouthChinaSeaTectonics. InternationalOceanDiscoveryProgram,CollegeStation,TX.

Li,C.F.,Xu,X.,Lin,J.,Sun,Z.,Zhu,J.,Yao,Y.J.,Zhao,X.X.,Liu,Q.S.,Kulhanek,D.K., Wang,J.,Song,T.R.,Zhao,J.F.,Qiu,N.,Guan,Y.,Zhou,Z.,Williams,T.,Bao,R., Briais,A.,Brown,E.,Chen,Y.,Clift,P.,Colwell,F.,Dadd,K.,Ding,W.,Almeida,I., Huang,X.,Hyun,S.,Jiang,T.,Koppers,A.,Li,Q.,Liu,C.,Liu,Z.,Nagai,R., Peleo-Alampay,A.,Su,X.,Tejada,M.,Trinh,H.,Yeh,Y.,Zhang,C.,Zhang,F.,Zhang,G., 2014.AgesandmagneticstructuresoftheSouthChinaSeaconstrainedbydeep towmagneticsurveysandIODPExpedition 349.Geochem.Geophys.Geosyst. 15 (12),4958–4983.https://doi.org/10.1002/2014gc005567.

Liang,Y., Delescluse,M., Qiu,Y.,Pubellier, M., Chamot-Rooke,N., Wang,J., Nie, X.,Watremez, L.,Chang, S., Pichot,T., Savva,D., Meresse, F., 2019. Decolle-ments,detachmentsandraftsintheextendedcrustofDangerousGround,South China Sea: the role ofinherited contacts.Tectonics. https://doi.org/10.1029/ 2018TC005418.

Lizaralde,D.,Axen,G.J.,Brown,H.E.,Fletcher,J.M.,Gonzalez-Fernandez,A.,Harding, A.J.,Holbrook,W.S.,Kent,G.M.,Paramo,P.,Sutherland,F.,Umhoefer,P.J.,2007. VariationinstylesofriftingintheGulfofCalifornia.Nature 448,466–469. Minshull,T.A.,Dean,S.M.,White,R.S.,Whitmarsh,R.B.,2001.Anomalousmelt

pro-ductionaftercontinentalbreakupinthesouthernIberiaAbyssalplain.In: Wil-son,R.C.L.,Whitmarsh,R.B.,Taylor,B.,Froitzheim,N.(Eds.),Non-VolcanicRifting ofContinentalMargins:AComparisonofEvidencefromLandandSea.In: Spe-cialPublication,vol. 187.GeologicalSociety,London,pp. 537–550.

Nielsen,T.K.,Hopper,J.R.,2004.Fromrifttodrift:mantlemeltingduring continen-talbreakup.Geochem.Geophys.Geosyst. 5(7),Q07003.https://doi.org/10.1029/ 2003GC000662.

Paton,D.A.,Pindell,J.,McDermott,K.,Bellingham,P.,Horn,B.,2017.Evolutionof seaward-dippingreflectorsattheonsetofoceaniccrustformationatvolcanic passivemargins:insightsfromtheSouthAtlantic.Geology 45,439–442. Péron-Pinvidic,G., Manatschal,G.,Minshull, T.A.,Sawyer, D.S.,2007.

Tectonosedi-mentaryevolutionofthedeep Iberia-Newfoundlandmargins:evidencefor a complexbreakuphistory.Tectonics 26,TC2011.

Skogseid,J.,2001.Volcanicmargins:geodynamicsandexplorationaspects.Mar.Pet. Geol. 18,457–461.https://doi.org/10.1016/S0264-8172(00)00070-2.

Stica,J.M.,Zalan,P.V.,Ferrari,A.L.,2014.Theevolutionofrifting onthevolcanic marginofthePelotasBasinandthecontextualizationoftheParana-Etendeka LIPintheseparationofGondwanaintheSouth Atlantic.Mar. Pet.Geol. 50, 1–21.

(15)

Sun,Z.,Jian,Z.,Stock,J.M.,Larsen,H.C.,Klaus,A.,AvRarezZarikian,C.A.,the Ex-pedition367/368Scientists,2018.In:ProceedingsoftheInternationalOcean DiscoveryProgram,vol. 367/368,SouthChinaSeaRiftedMargin.International OceanDiscoveryProgram,CollegeStation,TX.

Sutra,E.,Manatschal,G.,Mohn,G.,Unternehr,P.,2013.Quantificationand restora-tionofextensional deformationalongthe WesternIberiaand Newfoundland riftedmargins.Geochem.Geophys.Geosyst.https://doi.org/10.1002/ggge.20135.

Taylor,B.,Hayes,D.E.,1983.Originandhistoryofthe SouthChinaSeabasin.In: Hayes,D.E.(Ed.),TheTectonic andGeologicEvolutionofthe SoutheastAsian SeasandIslands:Part 2.In:Geophys.Monogr.,vol. 27.AGU,Washington,DC, pp. 23–56.

Trude,J.,Cartwright,J.,Davies,R.J.,Smallwood,J.,2003.Newtechniquefordating igneoussills.Geology 31,813–816.

Tugend,J.,Gillard,M.,Manatschal,G.,Nirrengarten,M.,Harkin,C.,Epin,M.E.,Sauter, D.,Autin,J.,Kusznir,N.,McDermott,K.,2018.Reappraisalofthemagma-rich versunmagma-poorrifted marginarchetypes.In:McClay,K.R.,Hammerstein, J.A.(Eds.),PassiveMargins:Tectonic,SedimentationandMagmatism.In:Special Publications,vol. 476.GeologicalSociety,London.

Wang,J.B.,Pang,X.,Liu,B.,Zhen,J.,Wang,H.,2018.TheBaiyunandLiwanSags: twosupradetachmentbasinsonthepassivecontinentalmarginofthenorthern SouthChinaSea.Mar.Pet.Geol. 95,206–218.

Welford,J.K.,Smith,J.A.,Hall,J.,Deemer,S.,Srivastava,S.P.,Sibuet,J.C.,2010. Struc-tureandriftingevolutionofthenorthernNewfoundlandBasinfromErable mul-tichannelseismicreflectionprofilesacrossthesoutheasternmarginofFlemish Cap. Geophys.J. Int. 180,976–998. https://doi.org/10.1111/j.1365-246X.2009. 04477.x.

White,R.S.,McKenzie,D.,O’nions,R.K.,1992.Oceaniccrustalthicknessfrom seis-mic measurements and rareearth element inversions. J. Geophys. Res. 97, 19682–19715.https://doi.org/10.1029/92JB01749.

Whitmarsh,R.B.,Manatschal,G.,Minshull,T.,2001.Evolutionofmagma-poor conti-nentalmarginsfromriftingtoseafloorspreading.Nature 413,150–154. Yan,P.,Zhou,D.,Liu,Z.,2001.Acrustalstructureprofileacrossthenorthern

conti-nentalmarginoftheSouthChinaSea.Tectonophysics 338(1),1–21.

Zhao,F.,Alves,T.M.,Wu,S.,Li,W.,Huuse,M.,Mi,L.,Sun,Q.,Ma,B.,2016.Prolonged post-riftmagmatismonhighlyextendedcrustofdivergentcontinentalmargins (BaiyunSag,SouthChinaSea).EarthPlanet.Sci.Lett. 445,79–91.

Zhao,Y.,Ren,J.,Pang,X.,Yang,L.,Zheng,J.,2018.Structuralstyle,formationoflow anglenormalfaultand itscontrolsontheevolutionofBaiyunRift,northern marginoftheSouthChinaSea.Mar.Pet.Geol. 89(3),687–700.https://doi.org/ 10.1016/j.marpetgeo.2017.11.001.

Zou,H.P.,Li,P.L.,Rao,C.T.,1995.GeochemistryofCenozoicvolcanicrocksin Zhu-jiangkoubasinanditsgeodynamicsignificance.Geochimica 24(S1),33–45.

Références

Documents relatifs

Soustraction Avec Les Chiffres Romains (A) Réponses.. Répondez à chaque question en

The NPZ of the Ariège region (Figure 3a) consists of a Paleozoic crystalline basement (Arize and Trois-Seigneurs Massifs) that lies in tectonic or stratigraphic contact with Early

Seismic imaging of a mid-crustal low-velocity layer beneath the northern coast of the South China Sea and its tectonic implications... Hetényi, et al., Seismic imaging of a mid-

Thick upper Miocene sequence is discovered at Site U1431 in the northern East Subbasin, but Site U1433 to the south of the fossil ridge in the Southwest Subbasin revealed much

The VMP algorithm, as summarized in the introduction, is an imple- mentation of variational inference that uses a factor graph and message passing to iteratively

Lastly, we analyze the connection between the size of storage, demand properties and generation fluctuation in two scenarios: when demand is inelastic, we can explicitly

Solute concentrations as a function of the extraction ratio obtained from the centrifugal extraction of pore water after 7 days of immersion in LiBr solution (run-C), one hour

(b) highly thinned continental or oceanic crust overlying ser- pentinized mantle; and (c) exhumed lower crust or a mixture of lower crustal and upper mantle material.. The