• Aucun résultat trouvé

A class of starlike mappings of the unit disk

N/A
N/A
Protected

Academic year: 2022

Partager "A class of starlike mappings of the unit disk"

Copied!
5
0
0

Texte intégral

(1)

C OMPOSITIO M ATHEMATICA

P. J. E ENIGENBURG

A class of starlike mappings of the unit disk

Compositio Mathematica, tome 24, n

o

2 (1972), p. 235-238

<http://www.numdam.org/item?id=CM_1972__24_2_235_0>

© Foundation Compositio Mathematica, 1972, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:

//http://www.compositio.nl/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

235

A CLASS OF STARLIKE MAPPINGS OF THE UNIT DISK by

P. J.

Eenigenburg

Wolters-Noordhoff Publishing Printed in the Netherlands

DEFINITION.

Letf(z)

=

z+03A3~n=2 anzft be

univalent in the open unit disk

D. We

say f~ Sa(0

ce

~ 1)

if

Note that

if f~S03B1

then

Re(zf’(z)/f (z))

&#x3E; 0 on

D; hence f is

a starlike

function.

Singh [4]

and

Wright [5]

have derived certain

properties

of the

class

Srz.

In this paper we extend their results as follows.

First,

the bound-

ary behavior

of f~S03B1

is discussed. We then

give

the radius

of convexity

for the class

S03B1;

for a = 1 the radius has been

given by Wright [5].

Finally,

we

give

an invariance

property

for the class

Srz.

THEOREM 1.

Let f(z) = z+03A3~n=2 anzn~ Srz. Then f

maps D onto a domain whose

boundary

is a

rectifiable

Jordan curve.

Furthermore,

an =

o(Iln),

and this order is best

possible.

PROOF. It follows

immediately

from

(1) that f’

is bounded in

D;

hence

âf [D is

a rectifiable closed curve

[3 ], and an

=

o(1/n). Univalency of f

on

D

is

easily

verified

by

a contradiction

argument. Finally,

let

{k(n)}

be

any sequence of

positive

numbers which converges to 0 as n - oo. Then there exists a

subsequence {k(nj)}, n1 ~ 2,

such that

03A3~j=1 k(nj) ~

a.

Define

Then,

By

a theorem

of Merkes, Scott,

and Robertson

[1 ],f(z)

~

z+03A3~n=2 anzn E

Sa-

Since nan =

k(n)

for

infinitely

many n, the

proof is complete.

(3)

236

THEOREM 2.

If f E Sa then f maps |z| r (03B1)

onto a convex

domain,

where

and

PROOF.

Since f~S03B1

there exists

~, |~| ~

a in

D,

such that

zf’(z)/f(z) =

1

+zo(z).

Differentiation

yields

It is known

[2] that

From

(4)

and

(5)

it follows that

Re(1 +zf"(z)/f’(z)) ~

0

provided

We

write

= a,

|~(z)| = x, t

= ax and define

G(t)

---

t2(1-a2 + 1/03B1) - 3t(1-a2)+1-a2-a203B1.

Since

(6)

holds if and

only

if

G(t) ~ 0,

we must

determine the

largest

value of a for which

G(t) ~

0 on

[0, a03B1]. Then f

will map

Izl

a onto a convex domain. Note that

G(t)

has its minimum where t = t* =

!(1-a2)(1-a2

+

1/03B1)-1.

CASE A

(a03B1 ~ t*). G(a03B1) = (1-a2)(a203B12-3a03B1+1) ~

0

provided a ~ (3-~5)/203B1.

Since

G(t)

is

decreasing on [0, a03B1], f maps Izi (3 - /5)/2a

onto a convex domain

provided

aa =

(3-~5)/2 ~

t*. This restraint

requires

that a E

[ao, 1 ] where

oc 0 is

given by (3).

The

function f03B1(z) =

ze03B1z,

(lo ~ a ~

1, shows

that the number r

(oc) = (3-~5)/203B1

is

sharp.

CASE B

(t* ~ ax).

We assume 0 oc ao . The minimum value of

G(t)

on

[0, aot]

is

G(t*);

and

G(t*) ~

0 if

(4)

Since

(7)

holds for

0 ~ a ~ r(03B1),

where

r(03B1)

is

given by (2),

it follows

that f maps |z| r(a)

onto a convex domain

if t* ~ 03B1r(03B1).

A tedious

calculation shows this restraint to be satisfied for 0 a ao. We now

construct a function to show that

r(03B1)

is best

possible.

Fix oc in

(0, ao)

and let a

= r(03B1). Set 03B2 ~ [2-303B1-03B103B12(3-203B1)][203B1(03B1-1)2]-1.

Define

f by f(z) -

z exp

[03B1z0 (03B2-t)/(1-03B2t)dt]. By

a theorem of

Wright [5]

f~S03B1 provided -1 ~ 03B2 ~

1. For the

present

suppose this has been done.

Now, f

will not be convex in

1 z | r,

r &#x3E; a, if 1

+zf"(z)/f’(z)

= 0 at

z = a, or,

equivalently, if fi

is a root of

P(s),

where

P(s)

=

s2[a2(03B1-1)2]+s[a(303B1-2)-03B1a3(3-203B1)]+1-403B103B12+03B1203B14.

Since a =

r(03B1)

is a root of the left-hand side of

(7),

the definition

of fl implies

that

P(/3)

= 0. In fact

P(s)

has a double root at s =

fl. It

follows

that

03B22 ~

1

provided

Now, a

=

r(03B1)

is the

only

root of the left-hand side of

(7)

which lies

in

[0, 1]. Thus, (8)

holds since substitution of its

right-hand

side for

a2

in the left-hand side of

(7)

preserves the

inequality

in

(7). Hence, - 1 ~ 03B2 ~ 1,

and the

proof is complete.

THEOREM 3.

If f (z)

=

z+03A3~n=2 anzn~S03B1 then for

each

A,

0 À

1,

h03BB(z) ~ z+03A3~n=2 03BBanzn~S03B1.

PROOF Since

h03BB(z) = 03BBf(z)+(1-03BB)z,

we have

By

a theorem of

Wright [5],

there exists

0, |~| ~

1 in

D,

such that

f(z)

= z

exp[03B1z0 l/J(t)dt].

Thus

Re(f(z)lz)

&#x3E; 0 and so

Il +z(1-03BB)(03BBf(z))-1 | &#x3E;

1 for z e D. It follows from

(9) that ht

e

Sa.

REFERENCES

E. P. MERKES, M. S. ROBERTSON AND W. T. SCOTT

[1] On products of starlike functions, Proc. Amer. Math. Soc. 13 (1962), 960-964.

K. S. PADMANABHAN

[2] On the radius of univalence and starlikeness for certain analytic functions, J.

Indian Math Soc., 29 (1965), 71-80.

W. SEIDEL

[3]

Über

die Ränderzuordnung bei konformen Abbildungen, Math. Ann., 104 (1931), 182-213.

(5)

238

R. SINGH

[4] On a class of starlike functions, Compositio Mathematica, 19 (1968), 78-82.

D. J. WRIGHT

[5] On a class of starlike functions, Compositio Mathematica, 21 (1969), 122-124.

(Oblatum 14-V-1971) Department of Mathematics Western Michigan University Kalamazoo, Michigan 49001 U.S.A.

Références

Documents relatifs

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention