• Aucun résultat trouvé

On the rate of convergence in the central limit theorem for martingale difference sequences

N/A
N/A
Protected

Academic year: 2022

Partager "On the rate of convergence in the central limit theorem for martingale difference sequences"

Copied!
9
0
0

Texte intégral

(1)

www.elsevier.com/locate/anihpb

On the rate of convergence in the central limit theorem for martingale difference sequences

Lahcen Ouchti

LMRS, UMR 6085, université de Rouen, site Colbert, 76821 Mont-Saint-Aignan cedex, France Received 7 July 2003; received in revised form 5 February 2004; accepted 17 March 2004

Available online 11 September 2004

Abstract

We established the rate of convergence in the central limit theorem for stopped sums of a class of martingale difference sequences.

2004 Elsevier SAS. All rights reserved.

Résumé

On établit la vitesse de convergence dans le théorème limite central pour les sommes arrêtées issues d’une classe de suites de différences de martingale.

2004 Elsevier SAS. All rights reserved.

MSC: 60G42; 60F05

Keywords: Central limit theorem; Martingale difference sequence; Rate of convergence

1. Introduction

Let(Xi)i∈N be a sequence of random variables defined on a probability space (Ω,F,P). We shall say that (Xk)k∈Nis a martingale difference sequence if, for anyk0

1. E{|Xk|}<+∞.

2. E{Xk+1|Fk} =0, whereFkis theσ-algebra generated byXi,ik.

For each integern1 andxreal number, we denote

E-mail address: lahcen.ouchti@univ-rouen.fr (L. Ouchti).

0246-0203/$ – see front matter 2004 Elsevier SAS. All rights reserved.

doi:10.1016/j.anihpb.2004.03.003

(2)

S0=0, Sn= n

i=1

Xi, φ(x)= 1

√2π x

−∞

exp

t2 2

dt, σn21=E{Xn2|Fn1},

ν(n)=inf

k∈N: k

i=0

σi2n

, Sν(n)2 = +∞

k=1

S2kIν(n)=k, σν(n)2 = +∞

k=1

σk2Iν(n)=k, Fn(x)=P(Sν(n)x

n ), Sν(n) =Sν(n)+

γ (n)Xν(n)+1, Hn(x)=P(Sν(n) xn ), andγ (n)is a random variable such that

ν(n)1 i=0

σi2+γ (n)σν(n)2 =n a.s. (1)

If the random variablesXi are independent and identically distributed withEXi =0 andEX2i =1, we have by the central limit theorem (CLT)

n→+∞lim sup

x∈R

P(Snx

n )φ(x)=0.

By the theorem of Berry ([1], 1941) and Esseen ([5], 1942), if moreover,E|Xi3|<+∞, the rate of convergence in the limit is of ordern−1/2. If(Xi)i∈Nis an ergodic martingale difference sequence withEXi2=1, by the the- orem of Billingsley ([2], 1968) and Ibragimov (([11], 1963), see also ([10], 1980)) we have the CLT. The rate of convergence can, however, be arbitrarily slow even ifXi are bounded andα-mixing (cf. [4]). There are several results showing that with certain assumption on the conditional varianceE(X2i |Fi1), the rate of convergence becomes polynomial (Kato ([12], 1979), Grams ([7], 1972), Nakata ([9], 1976), Bolthausen ([3], 1982), Haeusler ([8], 1988), . . . ).

In 1963, Ibragimov [11] has shown that forXi uniformly bounded, if instead of usual sumsSn, the stopped sumsSν(n) orSν(n) are considered, one gets the rate of convergence of ordern1/4; the only assumption beside boundedness is that +∞i=0σi2diverge to infinity a.s.

In the present paper we give a rate of convergence for a larger class of martingale difference sequences, the Ibragimov’s case will be a particular one.

2. Main result

We consider a sequence(Xi)i∈Nof square integrable martingale differences.

Theorem 1. If the series +∞i=0σi2diverges a.s. and if there exists a nondecreasing sequence(Yi)i∈N adapted to the filtration(Fi, i∈N)such that, for alli∈N

E(Yi4) <+∞, 1Yi and E

|Xi|3|Fi1

Yi1σi21 a.s.

then for all n sufficiently large

sup

x∈R

Fn(x)φ(x) an1/2

π n1/4

11+ 3

4n1/4+ 2

9n1/2+ 1 8n3/4

, (2)

sup

x∈R

Hn(x)φ(x) an1/2 π n1/4

11+ 9

4n1/4+ 2

9n1/2+ 1 8n3/4

, (3)

(3)

wherean=(EYν(n)4 )1/2.

If we putYi=Ma.s. whereM >0 is a constant, one obtains the following corollaries:

Corollary 1. If the series +∞i=0σi2diverges a.s. and there existsM >0 such that, for alli∈N,E(|Xi|3|Fi1) ME(Xi2|Fi1)a.s. then there is a constant 0< cM<+∞

sup

x∈R

Fn(x)φ(x) cM

n1/4, (4)

sup

x∈R

Hn(x)φ(x) cM

n1/4. (5)

Corollary 2. If there exists 0< αM <+∞satisfyingσi21αandE(|Xi|3|Fi1)M a.s. for alli∈N, then there is a constant 0< c(α,M)<+∞such that(4)and(5)hold.

Moreover, if we suppose that(Xi)i∈Nis uniformly bounded, we obtain the result of Ibragimov [11].

Corollary 3. If the series +∞i=0σi2diverges a.s. and|Xi|M <+∞a.s. for alli0, then(4)and(5)hold.

Example. LetA=(Ak)k∈N be a sequence of real valued random variables such that supk∈NE(A4k)1/4=β <

∞and consider an arbitrary sequence of variablesζ =k)k∈N with zero means, unit variances, bounded third moments and which are also independent ofA. We defineX=(Ak1ζk)k∈N andFk theσ-algebra generated by A0, A1, . . . , Ak.

Clearly(Xk,Fk, k∈N)is a martingale difference sequence, and for allk∈N, E(A2k1ζk2|Fk1)=A2k1 a.s.,

E

|Ak1ζk|3|Fk1

|Ak1|sup

i∈NE

|ζi|3

A2k1 a.s.

If(|Ak|)k∈Nis nondecreasing, then using Theorem 1, one obtains sup

x∈R

Fn(x)φ(x)cβsupk∈NE(|ζk|3)1/4

n1/4 ,

wherecis a positive constant.

3. Proof of theorem

According to Esseen’s theorem (see, e.g., ([6], 1954) p. 210 and ([13], 1955) p. 285), for ally >0, sup

x∈R

Fn(x)φ(x) 1 π

y

y

E

exp

itSν(n)

n

−exp

t2 2

dt

|t|+ 24 π

2π y. (6)

Below we shall prove the following inequalities

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1 anet

2 2

|t| 3√

n+ t2

4n+an|t|3 3n3/2 +ant4

4n2

, (7)

(4)

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−E

exp

itSν(n)

n +t2 2

ant2 2n exp

t2 2

, (8)

E

exp

itSν(n)

n

−E

exp

itSν(n)

n

3ant2

2n , (9)

wherean=(EYν(n)4 )1/2. 3.1. Proof of the inequality (7)

We have E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1

= +∞

k=1

E

exp

itSk

n + t2 2n

k1

p=0

σp2

−1

Iν(n)=k

=+∞

k=1

k

j=1

E

exp

itSj1

n + t2 2n

j1

p=0

σp2

e

itXjn −e

t2σ2 j−1 2n

Iν(n)=k

.

For realx, put

eix=1+ix+(ix)2

2 +u(x), ex=1−x+β(x)x2

2. (∗)

It is easily seen that, for allx∈R u(x)|x|3

6 , u(x)x2

2 , and β

|x|1.

Observing that the random variableWjn1=exp(it Sj1

n +2nt2 jp=10σp2)is measurable with respect to theσ-algebra Fj1and using the identities (∗), we obtain

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1

= +∞

k=1

k

j=1

E

Wjn1E itXj

nt2X2j 2n +u

tXj

n

+t2σj21 2n +β

t2σj21 2n

t4σj41 8n2

Iν(n)=k

Fj1

.

(10) Since{ν(n)=k}is measurable with respect to theσ-algebraFk, for allj 2, we have

j1

k=1

E{XjIν(n)=k|Fj1} =

j1

k=1

E

(X2jσj21)Iν(n)=k|Fj1

=0.

On the other hand, for allj1 we have

+∞

k=1

E{XjIν(n)=k|Fj1} =+∞

k=1

E

(X2jσj21)Iν(n)=k|Fj1

=0.

(5)

It follows that, for allj1

kj

E{XjIν(n)=k|Fj1} =

kj

E

(X2jσj21)Iν(n)=k|Fj1

=0.

So, from (10) we derive

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1

=

+∞

k=1

k

j=1

E

Wjn1E

u tXj

n

+β

t2σj21 2n

t4σj41 8n2

Iν(n)=k

Fj1

+∞

k=1

k

j=1

E

exp

t2 2n

j1

p=0

σp2

E

|t|3|Xj|3

6n3/2 +t4σj41 8n2

Iν(n)=k

Fj1

. (11)

For anyj2 and any real functionψsuch thatE(ψ(Xk)) <∞for any positivek, we have

j1

k=1

E

exp

t2 2n

j1

p=0

σp2

E

ψ(Xj)Iν(n)=k|Fj1

=

j1

k=1

E

exp

t2 2n

j1

p=0

σp2

E

ψ(Xj)|Fj1

Iν(n)=k

. (12)

On the other hand, for allj1, we have

+∞

k=1

E

exp

t2 2n

j1

p=0

σp2

E

ψ(Xj)Iν(n)=k|Fj1

=E

exp

t2 2n

j1

p=0

σp2

ψ(Xj)

=+∞

k=1

E

exp

t2 2n

j1

p=0

σp2

E

ψ(Xj)|Fj1

Iν(n)=k

. (13)

It follows from (12) and (13) that

+∞

j=1

kj

E

exp

t2 2n

j1

p=0

σp2

E

ψ(Xj)Iν(n)=k|Fj1

=+∞

j=1

kj

E

exp

t2 2n

j1

p=0

σp2

E

ψ(Xj)|Fj1

Iν(n)=k

. (14)

Applying (11) and (14) forψ(x)= |x|3we deduce that

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1

(6)

+∞

k=1

k

j=1

E

exp

t2 2n

j1

p=0

σp2

E

|t|3|Xj|3 6n3/2

Fj1

Iν(n)=k+E

t4σj41

8n2 Iν(n)=k Fj1

+∞

k=1

k

j=1

E

exp

t2 2n

j−1

p=0

σp2

|t|3Yj1σj21

6n3/2 Iν(n)=k+t4σj41 8n2 Iν(n)=k

. (15)

By the Hölder inequality, for allj ∈N σj21=E(X2j|Fj1)E

|Xj|3|Fj1

2/3

Yj2/31σj4/31 a.s., whence

σj21Yj21 a.s. (16)

From (15), (16) and using the fact thatYkYj11 for alljk, we deduce that

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1

|t|3 6n3/2+ t4

8n2 +∞

k=1

k

j=1

E

Yj21σj21exp

t2 2n

j1

p=0

σp2

Iν(n)=k

|t|3

6n3/2+ t4 8n2

+∞

k=1

E

Yk2 k

j=1

σj21exp

t2 2n

j1

p=0

σp2

Iν(n)=k

. (17)

To bound up the terms appearing in (17), we will use the following elementary lemma.

Lemma 1. Letk1, then on the event{ν(n)=k}we have k

j=1

exp

t2 2n

j1

p=0

σp2

t2

2nσj21exp t2

2

1+Yk2t2 n

.

Proof. On the event{ν(n)=k}, we have exp

t2 2

exp

t2 2n

k1

p=0

σp2

−exp t2

2nσ02

k1

j=1

exp

t2 2n

j1

p=0

σp2

exp t2σj2

2n

−1

.

Using the inequality, exp(x)−1x for allx0, one obtains exp

t2 2

k1

j=1

exp

t2 2n

j1

p=0

σp2

t2 2nσj2. Therefore

k1

j=1

exp

t2 2n

j1

p=0

σp2

t2 2nσj21

(7)

k1

j=1

exp

t2 2n

j1

p=0

σp2

t2

2nj21σj2)+exp t2

2

=

k2

j=1

exp

t2 2n

j

p=0

σp2

−exp

t2 2n

j−1

p=0

σp2

t2

2nσj2t2 2nexp

t2 2n

k2

p=0

σp2

σk21

+ t2 2nexp

t2 2nσ02

σ02+exp t2

2

t2 2nYk2

k2

j=1

exp

t2 2n

j

p=0

σp2

−exp

t2 2n

j1

p=0

σp2

+ t2 2nYk2exp

t2 2nσ02

+exp

t2 2

1+ t2 2nYk2

exp

t2 2

.

We conclude the proof of the lemma by noting thatσk21Yk2and kp=01σp2na.s. 2 Finally, according to Lemma 1 and the (17) we get

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−1

anexp t2

2 |t|

3√ n+ t2

4n+an|t|3 3n3/2 +ant4

4n2

,

wherean=(EYν(n)4 )1/2. 3.2. Proof of the inequality (8)

Using (1) and the inequality|1−exp(−x)|x, for allx0 we see that

E

exp

itSν(n)

n + t2 2n

ν(n)1 p=0

σp2

−E

exp

itSν(n)

n +t2 2

= E

exp

itSν(n)

n +t2 2

exp

t2

2nγ (n)σν(n)2

−1

E

1−exp

t2

2nγ (n)σν(n)2

exp t2

2

E

t2

2nγ (n)σν(n)2

exp t2

2

(EYν(n)4 )1/2t2 2nexp

t2 2

. Therefore (8) holds true.

From (7) and (8) we conclude that E

exp

itSν(n)

n

−exp

t2 2

an

|t| 3√

n+3t2 4n + |t|3

3n3/2an+ t4 4n2an

.

Using Esseen’s theorem, we derive sup

x∈R

Fn(x)φ(x)an π

y

y

1 3√

n+3|t| 4n + t2

3n3/2an+|t|3 4n2an

dt+ 24 π

2π y.

(8)

Hence sup

x∈R

Fn(x)φ(x)an π

2y 3√

n+3y2 4n + 2y3

9n3/2an+ y4 8n2an

+ 24 π

2πy. Choosingyin such a way thaty/

n=1/(yan), i.e.y=(n/a2n)1/4, we infer that sup

x∈R

Fn(x)φ(x) an1/2 π n1/4

11+ 3

4n1/4+ 2

9n1/2+ 1 8n3/4

.

The proof of the inequality (2) in theorem is complete.

3.3. Proof of the inequality (9)

Observing that the random events{γ (n)x}∩{ν(n)=k}and consequently the random variables√

γ (n)Iν(n)=k are measurable with respect toFk, we find that

E

exp

itSν(n)

n

−E

exp

itSν(n)

n

=

+∞

k=0

E

exp itSk

n

−exp itSk

n +itγ (n)

n Xν(n)+1

Iν(n)=k

+∞

k=0

E

exp itSk

n

1−exp it

γ (n)

n Xν(n)+1

Iν(n)=k

=+∞

k=0

E

exp itSk

n

itγ (n)

n Xk+1+ t2

2nγ (n)X2k+1u t

γ (n)

n Xk+1

Iν(n)=k

=+∞

k=0

E

exp itSk

n

E

itγ (n)

n Xk+1+ t2

2nγ (n)X2k+1u t

γ (n)Xk+1

n Fk

Iν(n)=k

=+∞

k=0

E

exp itSk

n t2

2nγ (n)X2k+1u t

n

γ (n)Xk+1

Iν(n)=k

+∞

k=0

E

Iν(n)=k3t2

2nγ (n)X2k+1

3t2 2n

+∞

k=0

E

Iν(n)=kE{X2k+1|Fk}

3t2

2nE(Yν(n)4 )1/2.

The proof of the inequality (9) is complete.

3.4. Proof of the inequality (3)

According to Esseen’s theorem wherey=(n/a2n)1/4and the inequality (9), one obtains

(9)

sup

x∈R

Hn(x)φ(x) 1 π

y

y

E

exp

itSν(n)

n

−exp

t2 2

dt

|t|+ 24 π

2π y an1/2

π n1/4

11+ 3

4n1/4+ 2

9n1/2+ 1 8n3/4

+ 1

π y

y

3|t|

2nE(Yν(n)4 )1/2dt an1/2

π n1/4

11+ 3

4n1/4+ 2

9n1/2+ 1 8n3/4

+ 3

2π√ n an1/2

π n1/4

11+ 9

4n1/4+ 2

9n1/2+ 1 8n3/4

. The proof of theorem is complete. 2

Proofs of Corollaries 1, 2 and 3 are easy so, it is left to the reader.

Acknowledgement

The author thanks the referee for careful reading of the manuscript and for valuable suggestions which improved the presentation of this paper.

References

[1] A.C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc. 49 (1941) 122–136.

[2] P. Billingsley, Convergence of Probability Measures, Wiley, 1968.

[3] E. Bolthausen, Exact convergence rates in some martingale central limit theorems, Ann. Probab. 10 (3) (1982) 672–688.

[4] M. El Machkouri, D. Volný, On the central and local limit theorems for martingale difference sequences, Stochastics and Dynamics, submitted for publication.

[5] C.G. Esseen, On the Liapounoff limit of error in the theory of probability, Ark. Math. Astr. och Fysik A 28 (1942) 1–19.

[6] B.V. Gnedenko, A.N. Kolomogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Reading, MA, 1954, translated by K.L. Chung.

[7] W.F. Grams, Rate of convergence in the central limit theorem for dependent variables, Dissertation, Florida State Univ., 1972.

[8] E. Haeusler, On the rate of convergence in the central limit theorem for martingales with discrete and continuous time, Ann. Probab. 16 (1) (1988) 275–299.

[9] T. Nakata, On the rate of convergence in mean central limit theorem for martingale differences, Rep. Statist. Appl. Res. Un. Japan. Sci.

Engrs. 23 (1976) 10–15.

[10] P. Hall, C.C. Heyde, Martingale Limit Theory and Its Application, Academic Press, New York, 1980.

[11] I.A. Ibragimov, A central limit theorem for a class of dependent random variables, Theory Probab. Appl. 8 (1963) 83–89.

[12] Y. Kato, Rates of convergence in central limit theorem for martingale differences, Bull. Math. Statist. 18 (1979) 1–8.

[13] M. Loève, Probability Theory, D. Van Nostrand, Princeton, NJ, 1955.

Références

Documents relatifs

Proposition 5.1 of Section 5 (which is the main ingredient for proving Theorem 2.1), com- bined with a suitable martingale approximation, can also be used to derive upper bounds for

Debbasch, Malik and Rivet introduced in [DMR] a relativistic diffusion in Minkowski space, they called Relativistic Ornstein-Uhlenbeck Process (ROUP), to describe the motion of a

More specifically, studying the renewal in R (see [Car83] and the beginning of sec- tion 2), we see that the rate of convergence depends on a diophantine condition on the measure and

We show (cf. Theorem 1) that one can define a sta- tionary, bounded martingale difference sequence with non-degenerate lattice distribution which does not satisfy the local

Finally, note that El Machkouri and Voln´y [7] have shown that the rate of convergence in the central limit theorem can be arbitrary slow for stationary sequences of bounded

Abstract: We established the rate of convergence in the central limit theorem for stopped sums of a class of martingale difference sequences.. Sur la vitesse de convergence dans le

In study of the central limit theorem for dependent random variables, the case of martingale difference sequences has played an important role, cf.. Hall and

On the Almost Sure Central Limit Theorem for Vector Martingales: Convergence of Moments and Statistical Applications... Centre de recherche INRIA Paris