• Aucun résultat trouvé

On the rate of convergence in the central limit theorem for martingale difference sequences.

N/A
N/A
Protected

Academic year: 2021

Partager "On the rate of convergence in the central limit theorem for martingale difference sequences."

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-00001350

https://hal.archives-ouvertes.fr/hal-00001350v3

Preprint submitted on 16 May 2004

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires

On the rate of convergence in the central limit theorem for martingale difference sequences.

Lahcen Ouchti

To cite this version:

Lahcen Ouchti. On the rate of convergence in the central limit theorem for martingale difference sequences.. 2004. �hal-00001350v3�

(2)

ccsd-00001350, version 3 - 16 May 2004

On the rate of convergence in the central limit theorem for martingale difference

sequences

Lahcen OUCHTI

24 Mars 2004

Abstract: We established the rate of convergence in the central limit theorem for stopped sums of a class of martingale difference sequences.

Sur la vitesse de convergence dans le th´eor`eme limite central pour les diff´erences de martingale

R´esum´e: On ´etablit la vitesse de convergence dans le th´eor`eme limite central pour les sommes arrˆet´ees issues d’une classe de suites de diff´erences de martingale.

AMS Subject Classifications (2000): 60G42, 60F05

Keywords: central limit theorem, martingale difference sequence, rate of convergence.

1 Introduction

Let (Xi)iN be a sequence of random variables defined on a probability space (Ω, F, P).

We shall say that (Xk)kN is a martingale difference sequence if, for any k≥0 1. E{|Xk|}<+∞.

2. E{Xk+1|Fk}= 0, where Fk is the σ-algebra generated byXi, i≤k.

For each integer n ≥1 andx real number, we denote S0 = 0, Sn=

n

X

i=1

Xi, φ(x) = 1

√2π Z x

−∞

exp(−t2

2)dt, σ2n1 =E{Xn2|Fn1}, ν(n) = inf{k ∈N/

k

X

i=0

σi2 ≥n}, Sν(n)2 =

+

X

k=1

Sk2Iν(n)=k, σν(n)2 =

+

X

k=1

σ2kIν(n)=k,

LMRS, UMR 6085, Universit´e de Rouen, site Colbert 76821 Mont-Saint-Aignan cedex, France.

E-mail: lahcen.ouchti@univ-rouen.fr

(3)

Fn(x) =P(Sν(n)≤x√

n), Sν(n) =Sν(n)+p

γ(n)Xν(n)+1, Hn(x) =P(Sν(n) ≤x√ n), and γ(n) is a random variable such that

ν(n)1

X

i=0

σi2+γ(n)σν(n)2 =n p.s. (1) If the random variables Xi are independent and identically distributed with EXi = 0 and EXi2 = 1, we have by the central limit theorem (CLT)

nlim+sup

xR|P(Sn ≤x√

n)−φ(x)|= 0.

By the theorem of Berry ([1], 1941) and Esseen ([3], 1942), if moreover, E|Xi3| < +∞, the rate of convergence in the limit is of order n12. If (Xi)iN is an ergodic martingale difference sequence withEXi2 = 1, by the theorem of Billingsley ([9], 1968) and Ibragimov (([6], 1963), see also ([10], 1980)) we have the CLT. The rate of convergence can, however, be arbitrarily slow even ifXi are bounded and α-mixing (cf [7]). There are several results showing that with certain assumption on the conditional variance E(Xi2|Fi1), the rate of convergence becomes polynomial (Kato ([13], 1979), Grams ([12], 1972), Nakata ([11], 1976), Bolthausen ([4], 1982), Haeusler ([5], 1988), . . . ).

In 1963, Ibragimov [6] has shown that for Xi uniformly bounded, if instead of usual sums Sn, the stopped sumsSν(n) or Sν(n) are considered, one gets the rate of convergence of order n14; the only assumption beside boundednes is that P+

i=0 σ2i diverge to infinity a.s.

In the present paper we give a rate of convergence for a larger class of martingale difference sequences, the Ibragimov’s case will be a particular one.

2 Main result

We consider a sequence (Xi)iN of square integrable martingale differences.

Theorem 1. If the series P+

i=0 σi2 diverges a.s. and if there exists a nondecreasing se- quence (Yi)iN adapted to the filtration (Fi, i∈N) such that, for all i∈N

E(Yi4)<+∞, 1≤Yi and E(|Xi|3|Fi1)≤Yi1σ2i1 a.s.

then for all n sufficiently large sup

xR

Fn(x)−φ(x)

≤ an12 πn14

11 + 3

4n14 + 2

9n12 + 1 8n34

, (2)

sup

xR

Hn(x)−φ(x) ≤ an

1 2

πn14

11 + 9

4n14 + 2

9n12 + 1 8n34

(3) where an= (EYν(n)4 )12.

(4)

If we putYi =M a.s. whereM >0 is a constant, one obtains the following corollaries:

Corollary 1. If the series P+

i=0 σi2 diverges a.s. and there exists M >0 such that, for all i∈N, E(|Xi|3|Fi1)≤ME(Xi2|Fi1) a.s. then there is a constant0< cM <+∞

sup

xR

Fn(x)−φ(x) ≤ cM

n14, (4)

sup

xR

Hn(x)−φ(x) ≤ cM

n14 . (5)

Corollary 2. If there exists 0< α≤M < +∞satisfyingσi21 ≥αandE(|Xi|3|Fi1)≤M a.s. for all i∈N, then there is a constant 0< c(α, M)<+∞ such that (4)and (5) hold.

Moreover, if we suppose that (Xi)iN is uniformly bounded, we obtain the result of Ibragimov [6].

Corollary 3. If the series P+

i=0 σi2 diverges a.s. and |Xi| ≤ M <+∞ a.s. for all i≥0, then (4) and (5)hold.

Example. Let A = (Ak)kN be a sequence of real valued random variables such that supkNE(A4k)1/4 = β < ∞ and consider an arbitrary sequence of variables ζ = (ζk)kN

with zero means, unit variances, bounded third moments and which are also independent of A. We definie X = (Ak1ζk)kN and Fk the σ-algebra generated by A0, A1, . . . , Ak.

Clearly (Xk, Fk, k∈N) is a martingale difference sequence, and for all k∈N, E(A2k1ζk2|Fk1) =A2k1 a.s.,

E(|Ak1ζk|3Fk1)≤ |Ak1|sup

iN

E(|ζi|3)A2k1 a.s..

If (|Ak|)kN is nondecreasing, then using Theorem 1, one obtains sup

xR

Fn(x)−φ(x)

≤cβsupkNE(|ζk|3)14 n14

where cis a positive constant.

3 Proof of Theorem

According to Esseen’s theorem ( see, e.g., ([2], 1954) p. 210 and ([8], 1955) p. 285), for all y >0,

sup

xR

Fn(x)−φ(x) ≤ 1

π Z y

y

E

exp(itSν(n)

√n )

−exp(−t2 2)

dt

|t| + 24 π√

2πy. (6)

(5)

Below we shall prove the following inequalities

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σp2

−1

≤anet

2 2

|t| 3√

n + t2

4n + an|t|3

3n32 + ant4 4n2

, (7)

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σ2p

−E

exp

itSν(n)

√n + t2 2

≤ ant2

2n exp(t2

2), (8)

E

exp

itSν(n)

√n

−E

exp

itSν(n)

√n

≤ 3ant2

2n (9)

where an= (EYν(n)4 )12.

3.1 Proof of the Inequality (7)

We have E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σ2p

−1

=

+

X

k=1

E

exp itSk

√n + t2 2n

k1

X

p=0

σp2

−1

Iν(n)=k

=

+

X

k=1 k

X

j=1

E

exp

itSj1

√n + t2 2n

j1

X

p=0

σp2

eitXjn −e

t2 σ2

j1 2n

Iν(n)=k

.

For real x, put

eix = 1 +ix+(ix)2

2 +u(x), ex = 1−x+β(x)x2

2 (∗)

It is easily seen that, for allx∈R

|u(x)| ≤ |x|3

6 , |u(x)| ≤ x2

2 , and |β(|x|)| ≤1.

Observing that the random variable Wjn1 = exp

itSj1

n + 2nt2

j1

P

p=0

σp2

is measurable with respect to the σ-algebra Fj1 and using the identities (∗), we obtain

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σ2p

−1

=

+

X

k=1 k

X

j=1

E

Wjn1E

itXj

√n − t2Xj2

2n +u(tXj

√n) + t2σj21

2n +β(t2σj21

2n )t4σ4j1 8n2

Iν(n)=k|Fj1

(10)

(6)

Since {ν(n) =k} is measurable with respect to the σ-algebraFk, for all j ≥2, we have

j1

X

k=1

E{XjIν(n)=k|Fj1}=

j1

X

k=1

E{(Xj2−σj21)Iν(n)=k|Fj1}= 0.

On the other hand, for allj ≥1 we have

+

X

k=1

E{XjIν(n)=k|Fj1}=

+

X

k=1

E{(Xj2−σj21)Iν(n)=k|Fj1}= 0.

It follows that, for all j ≥1 X

kj

E{XjIν(n)=k|Fj1}=X

kj

E{(Xj2−σj21)Iν(n)=k|Fj1}= 0.

So, from (10) we derive

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σp2

−1

=

+

X

k=1 k

X

j=1

E

Wjn1E

u(tXj

√n) +β(t2σj21

2n )t4σ4j1 8n2

Iν(n)=k|Fj1

+

X

k=1 k

X

j=1

E

exp t2

2n

j1

X

p=0

σ2p

E

|t|3|Xj|3

6n32 +t4σj41 8n2

Iν(n)=k|Fj1

. (11) For any j ≥2 and any real functionψ such thatE(ψ(Xk))<∞for any positive k, we have

j1

X

k=1

E

exp t2

2n

j1

X

p=0

σp2

E

ψ(Xj)Iν(n)=k|Fj−1

=

j1

X

k=1

E

exp t2

2n

j1

X

p=0

σ2p

E

ψ(Xj)|Fj1

Iν(n)=k

. (12)

On the other hand, for allj ≥1, we have

+

X

k=1

E

exp t2

2n

j1

X

p=0

σp2

E

ψ(Xj)Iν(n)=k|Fj1

=E

exp t2

2n

j1

X

p=0

σp2

ψ(Xj)

=

+

X

k=1

E

exp t2

2n

j1

X

p=0

σp2

E

ψ(Xj)|Fj1

Iν(n)=k

. (13)

(7)

It follows from (12) and (13) that

+

X

j=1

X

kj

E

exp t2

2n

j1

X

p=0

σ2p

E

ψ(Xj)Iν(n)=k|Fj1

=

+

X

j=1

X

kj

E

exp t2

2n

j1

X

p=0

σp2

E

ψ(Xj)|Fj1

Iν(n)=k

. (14)

Applying (11) and (14) for ψ(x) =|x|3 we deduce that

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σp2

−1

+

X

k=1 k

X

j=1

E

exp t2

2n

j1

X

p=0

σp2

E

|t|3|Xj|3 6n32 |Fj1

Iν(n)=k+E

t4σ4j−1

8n2 Iν(n)=k|Fj1

+

X

k=1 k

X

j=1

E

exp t2

2n

j1

X

p=0

σp2

|t|3Yj1σ2j1

6n32 Iν(n)=k+ t4σj41

8n2 Iν(n)=k

(15) By the H¨older inequality, for all j ∈N

σj21 =E(Xj2|Fj1)≤E(|Xj|3|Fj1)23 ≤Y

2 3

j1σ

4 3

j1 a.s., whence

σj21 ≤Yj21 a.s. (16)

From (15), (16) and using the fact that Yk ≥Yj1 ≥1 for all j ≤k, we deduce that

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σp2

−1

≤ |t|3

6n32 + t4 8n2

+

X

k=1 k

X

j=1

E

Yj−12 σj−12 exp t2

2n

j1

X

p=0

σ2p

Iν(n)=k

≤ |t|3

6n32 + t4 8n2

+

X

k=1

E

Yk2

k

X

j=1

σj21exp t2

2n

j−1

X

p=0

σ2p

Iν(n)=k

. (17)

To bound up the terms appearing in (17), we will use the following elementary lemma.

Lemma 1. Let k ≥1, then on the event {ν(n) =k} we have

k

X

j=1

exp t2

2n

j1

X

p=0

σp2 t2

2nσj21 ≤exp(t2 2)

1 + Yk2t2 n

.

(8)

Proof of Lemma. On the event {ν(n) =k}, we have exp(t2

2)≥exp t2

2n

k1

X

p=0

σp2

−exp t2

2nσ02

k1

X

j=1

exp t2

2n

j1

X

p=0

σp2

exp(t2σj2 2n )−1

Using the inequality, exp(x)−1≥xfor all x≥0, one obtains exp(t2

2)≥

k1

X

j=1

exp t2

2n

j1

X

p=0

σp2 t2

2nσj2. Therefore

k1

X

j=1

exp t2

2n

j1

X

p=0

σp2 t2

2nσj21

k1

X

j=1

exp t2

2n

j1

X

p=0

σp2 t2

2n(σ2j1−σj2) + exp(t2 2)

=

k2

X

j=1

exp

t2 2n

j

X

p=0

σp2

−exp t2

2n

j1

X

p=0

σp2 t2

2nσj2− t2 2nexp

t2 2n

k2

X

p=0

σ2p

σ2k1 + t2

2nexp(t2

2nσ0202+ exp(t2 2)

≤ t2 2nYk2

k2

X

j=1

exp

t2 2n

j

X

p=0

σp2

−exp t2

2n

j1

X

p=0

σp2

+ t2

2nYk2exp(t2

2nσ02) + exp(t2 2)

1 + t2 2nYk2

exp(t2 2).

We conclude the proof of the lemma by noting thatσk21 ≤Yk2 and

k1

P

p=0

σp2 ≤n a.s..

Finally, according to Lemma 1 and the (17) we get

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σp2

−1

≤anexp(t2 2)

|t| 3√

n + t2

4n + an|t|3

3n32 + ant4 4n2

,

where an= (EYν(n)4 )12.

(9)

3.2 Proof of the Inequality (8)

Using (1) and the inequality |1−exp(−x)| ≤x, for all x≥0 we see that

E

exp

itSν(n)

√n + t2 2n

ν(n)1

X

p=0

σp2

−E

exp

itSν(n)

√n +t2 2

= E

exp

itSν(n)

√n + t2 2

exp

−t2

2nγ(n)σν(n)2

−1

≤E

1−exp

−t2

2nγ(n)σν(n)2

exp(t2 2)

≤E t2

2n|γ(n)|σν(n)2

exp(t2 2)

≤(EYν(n)4 )12 t2

2nexp(t2 2).

Therefore (8) holds true.

From (7) and (8) we conclude that

E

exp(itSν(n)

√n )

−exp(−t2 2)

≤an

|t| 3√

n +3t2

4n + |t|3

3n32an+ t4 4n2an

.

Using Esseen’s theorem, we derive sup

xR

Fn(x)−φ(x) ≤ an

π Z y

y

1 3√

n + 3|t| 4n + t2

3n32an+ |t|3 4n2an

dt+ 24 π√

2πy. Hence

sup

xR

Fn(x)−φ(x) ≤ an

π 2y

3√

n +3y2

4n + 2y3

9n32an+ y4 8n2an

+ 24

π√ 2πy. Choosing y in such a way thaty/√

n = 1/(yan), i.e. y= (n/a2n)14, we infer that sup

xR

Fn(x)−φ(x) ≤ an

1 2

πn14

11 + 3

4n14 + 2

9n12 + 1 8n34

.

The proof of the inequality (2) in theorem is complete.

3.3 Proof of the Inequality (9)

Observing that the random events{γ(n)≤x} ∩ {ν(n) =k} and consequently the random variables p

γ(n)Iν(n)=k are measurable with respect toFk, we find that

E

exp

itSν(n)

√n

−E

exp

itSν(n)

√n

=

+

X

k=0

E

exp itSk

√n

−exp itSk

√n + itp

√γ(n)

n xν(n)+1

Iν(n)=k

(10)

+

X

k=0

E

exp

itSk

√n

1−exp itp

√γ(n)

n Xν(n)+1

Iν(n)=k

=

+

X

k=0

E

exp

itSk

√n

−itp

√γ(n)

n Xk+1+ t2

2nγ(n)Xk+12 −u(tp

√γ(n)

n Xk+1)

Iν(n)=k

=

+

X

k=0

E

exp

itSk

√n

E

− itp

√γ(n)n Xk+1+ t2

2nγ(n)Xk+12 −u(tp

γ(n)Xk+1

√n )|Fk

Iν(n)=k

=

+∞

X

k=0

E

exp

itSk

√n t2

2nγ(n)Xk+12 −u( t

√n

pγ(n)Xk+1)

Iν(n)=k

+

X

k=0

E

Iν(n)=k

3t2

2nγ(n)Xk+12

≤ 3t2 2n

+

X

k=0

E

Iν(n)=k E{Xk+12 |Fk}

≤ 3t2

2n E(Yν(n)4 )12.

The proof of the inequality (9) is complete.

3.4 Proof of the inequality (3).

According to Esseen’s theorem where y= (n/a2n)14 and the inequality (9), one obtains sup

xR

Hn(x)−φ(x) ≤ 1

π Z y

y

E

exp(itSν(n)

√n )

−exp(−t2 2)

dt

|t| + 24 π√

2πy

≤ an

1 2

πn14

11 + 3

4n14 + 2

9n12 + 1 8n34

+ 1

π Z y

y

3|t|

2nE(Yν(n)4 )12 dt

≤ an12 πn14

11 + 3

4n14 + 2

9n12 + 1 8n34

+ 3

2π√ n

≤ an

1 2

πn14

11 + 9

4n14 + 2

9n12 + 1 8n34

.

The proof of theorem is complete.

Proofs of corollaries 1, 2 and 3 are easy so, it is left to the reader.

Acknowledgements: The author thanks the referee for careful reading of the manuscript and for valuable suggestions which improved the presentation of this paper.

(11)

References

[1] A.C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Trans. Amer. Math. Soc. 49 (1941), 122-136.

[2] B. V. Gnedenko and A. N. Kolomogorov, Limit Distributions for Sums of Indepen- dent Random Variables, translated by K. L. Chung, Addison-Wesley, Reading, Mass, (1954).

[3] C. G. Esseen, On the Liapounoff limit of error in the theory of probability,Ark. Math.

Astr. och Fysik 28A (1942), 1-19.

[4] E. Bolthausen, Exact convergence rates in some martingale central limit theorems, The Annals of Probabilily, vol. 10, No 3 (1982), 672-688.

[5] E. Haeusler, On the rate of convergence in the central limit theorem for martingales with discrete and continuous time,Annals of Probability, vol16,No1 (1988), 275-299, [6] I. A. Ibragimov, A central limit theorem for a class of dependent random variables,

Theory Probab. Appl. 8 (1963), 83-89.

[7] M. El Machkouri and D. Voln´y, On the central and local limit theorems for martingale difference sequences, To appear in Stochastics and Dynamics.

[8] M. Lo`eve, Probability Theory, D. Van Nostrand. Princeton, N. J., (1955).

[9] P. Billingsley, Convergence of probability measures, wiley. (1968).

[10] P. Hall and C.C. Heyde, Martingale Limit Theory and Its Application. Academic, New York. (1980).

[11] T. Nakata, On the rate of convergence in mean central limit theorem for martingale differences . Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs. 23 (1976), 10-15.

[12] W. F. Grams, Rate of convergence in the central limit theorem for dependent variables.

Dissertation, Florida State Univ. (1972).

[13] Y. Kato, Rates of convergence in central limit theorem for martingale differences,Bull.

Math. Statist. 18 (1979), 1-8.

Références

Documents relatifs

In this paper, we study in the Markovian case the rate of convergence in the Wasserstein distance of an approximation of the solution to a BSDE given by a BSDE which is driven by

Proposition 5.1 of Section 5 (which is the main ingredient for proving Theorem 2.1), com- bined with a suitable martingale approximation, can also be used to derive upper bounds for

Debbasch, Malik and Rivet introduced in [DMR] a relativistic diffusion in Minkowski space, they called Relativistic Ornstein-Uhlenbeck Process (ROUP), to describe the motion of a

Since every separable Banach space is isometric to a linear subspace of a space C(S), our central limit theorem gives as a corollary a general central limit theorem for separable

We show (cf. Theorem 1) that one can define a sta- tionary, bounded martingale difference sequence with non-degenerate lattice distribution which does not satisfy the local

Finally, note that El Machkouri and Voln´y [7] have shown that the rate of convergence in the central limit theorem can be arbitrary slow for stationary sequences of bounded

In study of the central limit theorem for dependent random variables, the case of martingale difference sequences has played an important role, cf.. Hall and

On the Almost Sure Central Limit Theorem for Vector Martingales: Convergence of Moments and Statistical Applications... Centre de recherche INRIA Paris