• Aucun résultat trouvé

High order time-stepping methods for cardiac electrophysiology models

N/A
N/A
Protected

Academic year: 2021

Partager "High order time-stepping methods for cardiac electrophysiology models"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01406536

https://hal.inria.fr/hal-01406536

Submitted on 1 Dec 2016

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

High order time-stepping methods for cardiac electrophysiology models

Charlie Douanla Lontsi, Yves Coudière, Charles Pierre

To cite this version:

Charlie Douanla Lontsi, Yves Coudière, Charles Pierre. High order time-stepping methods for cardiac

electrophysiology models. IHU Liryc-Workshop 2016, Sep 2016, Bordeaux, France. �hal-01406536�

(2)

High order time-stepping methods for cardiac electrophysiology models

C. Douanla Lontsi 1, 2, 3, 4 , Yves Coudière 1, 2, 3, 4 , C. Pierre 5

1 Carmen Research Team, Inria, 2 IHU Liryc, 3 Univ. Bordeaux, IMB, 4 CNRS, IMB,

5 CNRS, LMA Pau

Problematic of the time numerical integration in cardiac electrophysiology

Ionic models :

Stiff differential equations

Large system

Highly nonlinear

Numerical contraints :

Stability + accuracy require fine grid

Numerical consequences :

High CPU cost

Lack of precision aaa

Conditioning problems

Questions:

How can we cope this situation?

Can high order solver (s) be a solution?

The problem

EXAMPLE IONIC MODEL (TNNP)

T RANSMEMBRANE POTENTIAL V.

-100 -80 -60 -40 -20 20 40 0

0 200 400 600 800 1000

V oltage (mV)

Time (ms)

F AST INWARD SODIUM CURRENT .

-200 -180 -160 -140 -120 -100 -80 -60 -40 -20 0

0 200 400 600 800 1000 Curr ent ( A/F /cm 2 )

Time (ms)

I N a

Behavior of the physiological parameters :

• Different time and space scales.

• Fast and slow variables.

• Stiff wave fronts.

Numerical consequences :

• Numerical instabilities.

• High computational cost.

• Significant loss of accuracy

State of the art

S TABILIZATION PRINCIPLE AND SOME STABILIZED SOLVERS

Equation on gating variables : dW

dt = W (V ) − W τ (V ) .

Forward Backward scheme : W n+1W n

∆t = W (V n ) − W n+1 τ (V n ) .

This scheme allows large ∆t , linear part = τ −1 (V ) . Linear part known at time t nStabilization.

O RDER ONE SOLVERS :

• Forward backward Euler

• RL1: Rush Larsen ( 1978 ).

O RDER TWO SOLVER :

• RL2: Perego and Veneziani ( 2009 ).

H IGH ORDER METHODS :

• Exponential integrator of Adams type: Norsett ( 1969 ).

• Exponential Runge kutta and exponential multi-step (the last ten years).

An innovative method

H IGH - ORDER R USH L ARSEN METHODS

Consider the problem,

y 0 = a(t, y )y + b(t, y ), y (0) = y 0 ,

transformed in each time discretization interval (t n , t n+1 ] into,

y 0 = α n y + c n (t, y ),

with c n (t, y ) = (a(t, y ) − α n )y + b(t, y ) and α n a sta- bilizer. For t ∈ (t n , t n+1 ] , the exact solution of this problem satisfies the variation of constant formula

y (t) = e A(t) (y n +

Z

t t

n e −A(τ ) c n (τ, y)dτ ),

with A(t) = α n (t − t n ) . If we set t = t n+1 and approx- imate c n by a constant β n , we obtain the following definition of RL k

y n+1 = y n + 1n h)(α n y n + β n ).

ϕ 1 (z ) = e z z −1 , α n and β n are set so that the conver- gence order k is ensured.

R USH L ARSEN ORDER 3 α n = 1

12 (23a n − 16a n−1 + 5a n−2 ), β n = 1

12 (23b n − 16b n−1 + 5b n−2 ) + h

12 (a n b n−1a n−1 b n ).

Scheme properties

A DVANTAGES AND CONVERGENCE

• Explicit k -multi-step method:

y n , y n−1 , . . . , y n−k+1y n+1 .

• Stability: The same critical time-step as the implicit schemes.

• Easy to implement.

• Cost: one evaluation of the model at every time step (minimal).

T HEOREM . The RL k scheme is stable under per- turbation and converges with an error of order k , under the assumptions that a(t, y ) and b(t, y ) in the previous problem are C k functions and its solution y (t) is defined in [0, T ) .

N UMERICAL ILLUSTRATION (Relative error for the BR model in Log/Log scale)

1e-11 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01 0.1 1

0.001 0.01 0.1 1

e ( h )

Time step h (ms) RL1 RL2

RL3 RL4 slope 1 slope 2 slope 3 slope 4

CPU cost

C OMPARISONS

CPU time plotted in Log/Log scale against the er- ror for RL k , RK 4 and CN

0.01

0.0001 0.01 1

Cost in CPU time ( s )

e(h) RL 1

RL 2 RL 3 RL 4 RK CN 4

Discussion and conclusion

D ISCUSSION AND CONCLUSION

D ISCUSSION :

• Ionic models are very stiff ⇒ classical explicit numerical solver must use small time-steps for stability ⇒ Large CPU time.

High order RL k remain stable for large

time-steps. Their critical time-steps don’t

depend on the stiffness but on the stabilizer’s choice.

C ONCLUSION :

• We found that high order RL k is a good alternative to improve the accuracy with

neglibible additional cost w/r to RL1 scheme.

• High order RL k allow the use of large time steps unlike classical explicit schemes. They are

suitable for solving stiff ODE.

• High order schemes in cardiac electrophysiology may allow more reliable simulations of long

lasting events.

References

[1] Coudiere, Y. and Douanla Lontsi, C. and Pierre, C.

High order Rush Larsen solver for stiff ODEs HAL Preprint (2015).

[2] Rush and Larsen.

A practical algorithm for solving dynamic membrane equations.

IEEE Trans Biomed Eng 1978.

[3] Hochbruck. and Ostermann.

Exponential multistep methods of Adams-type BIT Numer Math (2011).

[4] Beeler, G.W. and Reuter, H.

Reconstruction of the Action Potential of Ventricular Myocardial Fibers J. Physiol. (1977).

[5] Douanla Lontsi, C. and Coudière, Y. and Pierre, C.

Efficient High Order Schemes for Stiff ODEs in Cardiac Electrophysiology

CARI (2016).

Références

Documents relatifs

When the estimate of the Poisson parameter for identical risks is required to lie close to the true value (e.g. within 10%) with high probability (e.g. 95%), the number of

Par ailleurs, la CTC a suscité la création d’une société de transport, la CCM (Compagnie Corse-Méditerranée), qui ne peut plus prétendre à une situation de monopole

ىلع ريبعتلا نكمي قبس اممو ةلكشم ثحبلا يف لاؤسلا يسيئرلا ( لؤاستلا ماعلا ) يلاتلا : علل ةيبيردتلا تاجايتحلال لمعلا ءانثأ ةيبيردتلا جماربلا ةباجتسإ ةجرد ام

Cette étude montre l’amélioration de l’AV (critère le plus significatif) d’une part au cours des années, d’une autre part chez nos patients après

Delete Clause d and substitute: "d fixtures that have a hydraulic load of not more than one and one-half fixture units may be connected to a vertical section of a circuit vent,

The fast technique is validated by comparing the esti- mated signal acceptance values with those obtained from the full simulation for three benchmark models predicting

«Sanctus Desiderius» appartenait au décanat d'Avenches. Sur le plan temporel, Domdidier était rattaché à la Maison féodale des Neuchâtel. En 1158, il est fait mention d'un

إ ءاده باعصمإ ةجهإوم لىع رإصرالاو لم لبا بيرد يئضي يلذإ رونمإ لظي سو نكا نم لى إ لمعمإ نىعم نيملع يلذإ لى إ بي أ نونلحإ .نياسم ابه قطه ةمكل لجم أ لى إ نياطع