• Aucun résultat trouvé

QUANTUM PHYSICS OF RETARDED TRANSPORT

N/A
N/A
Protected

Academic year: 2021

Partager "QUANTUM PHYSICS OF RETARDED TRANSPORT"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00221666

https://hal.archives-ouvertes.fr/jpa-00221666

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

QUANTUM PHYSICS OF RETARDED TRANSPORT

J. Barker

To cite this version:

J. Barker. QUANTUM PHYSICS OF RETARDED TRANSPORT. Journal de Physique Colloques,

1981, 42 (C7), pp.C7-245-C7-252. �10.1051/jphyscol:1981729�. �jpa-00221666�

(2)

QUANTUM PHYSICS OF RETARDED TRANSPORT

J.R. Barker

Warwick University, Coventry CV4 7AL, United Kingdom

Abstract: - Many problems in hot electron physics, in particular the transport pro- perties of sub micron devices, involve space and time scales such that the semi- classical Boltzmann transport theory is invalid. Here we examine the temporal and spatial retardation effects associated with the evolution of the microscopic Wigner distributions for carriers using many-body Green function techniques applicable to inhomogeneous high field quasi-particle transport.

1. Introduction: - Boltzmann transport theory is widely deployed in hot electron physics, yet there are a number of circumstances where its validity is questionable

[1,2,3] and we have to make recourse to a deeper theory. In the present paper we attempt to focus on a particular problem: the spatio-temporal response of the carrier and phonon distribution functions. It is already well appreciated that the macro- scopic integrals of motion e.g. average velocity, temperature, calculated within the Boltzmann theory, show retardation effects in space and time when the conditions for a steady state are violated, or when the driving fields have high frequency components [1,4]. Thus overshoot and other transient relaxation effects occur on time scales for which the considered transit time is less than or comparable to the classical momentum and energy relaxation times within the system. In these

circumstances the time evolution of the average response is not Markovian: some memory of the initial transients and state preparation persists. An extreme case is the idealised situation of true ballistic transport where it is supposed that no collisions occur so that the carrier dynamics are strictly time-reversible [4,5].

On the other hand, overshoot, ballistic transport etc cannot be rigoriously handled by Boltzmann transport theory because the time/space scales on which these effects occur, are generally too short for the Boltzmann equation itself to be valid, although the required modification may only be perturbative [6-8]. In previous JOURNAL DE PHYSIQUE

Colloque C7, supplément au n°10, Tome 42, octobre 1981 Pa9e C7-245

Résumé: - Beaucoup de problèmes dans la physique des électrons chauds, en particulier les propriétés de transport dans les dispositifs sub-microniques, font intervenir des échelles de temps et d'espace de telle sorte que la théorie de transport semi-classi- que de Boltzmann n'est plus valable. Nous examinons ici les effets de retard spaciaux et temporels associés à l'évolution de la distribution microscopique de Wigner pour les porteurs en utilisant des techniques de fonction de Green pour des systèmes à plusieurs corps, applicable au transport de quasi-particules dans de forts champs in- homogènes.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981729

(3)

JOURNAL DE PHYSIQUE

s t u d i e s [l-81, t h e emphasis h a s been on t h e r e t a r d e d quantum t r a n s p o r t p h y s i c s o f b a r e e l e c t r o n s and phonons w i t h i n a homogeneous r e g i o n of semiconductor m a t e r i a l . But i n sub-micron c o n f i g u r e d h i g h f i e l d d e v i c e s , where t r a n s i e n t e f f e c t s a r e t h e norm, it i s n o t s u f f i c i e n t t o c o n s i d e r t h e i n t r a - d e v i c e volume a l o n e . For example, c a r r i e r s w i t h i n t h e d e v i c e volume a r e g e n e r a l l y swept i n t o t h e channel from s t a t e s w i t h i n t h e c o n t a c t r e g i o n s where t h e l a n d s t r u c t u r e , s c a t t e r i n g environment and e l e c t r i c f i e l d s a r e v e r y d i f f e r e n t from t h e channel i t s e l f . This i s a l s o t r u e f o r h o t e l e c t r o n i n j e c t i o n from semiconductors a t i n s u l a t o r s and vice-versa. Now w i t h i n any homogeneous r e g i o n it i s u s u a l t o d e s c r i b e t h e c a r r i e r j p h o n o n s t a t e s a s r e - n o r m a l ~ s e d s t a t e s , p a r t i c u l a r l y i n p o l a r media where t h e d r e s s i n g e f f e c t s of t h e s c r e e n i n g , and electron-phonon i n t e r a c t i o n s may be s u b s t a n t i a l i n s o f a r a s t h e y e f f e c t t h e q u a s i - p a r t i c l e masses and l i f e t i m e s , and indeed t h e e f f e c t i v e s t r e n g t h of t h e q u a s i - p a r t i c l e s c a t t e r i n g i n t e r a c t i o n s . The q u e s t i o n which we wish t o a d d r e s s concerns how t h e "memory" o f t h e dynamical s t a t e s o f c a r r i e r s / p h o n o n s w i t h i n a source r e g i o n (e.g. a c o n t a c t ) i s l o s t o r p r e s e r v e d when t h e c a r r i e r s / p h o n o n s a r e swept i n t o a d i f f e r e n t channel r e g i o n . T h i s and r e l a t e d q u e s t i o n s cannot be posed w i t h i n Boltzmann t r a n s p o r t t h e o r y , n o r indeed w i t h i n t h e p r e v i o u s l y deployed quantum k i n e t i c e q u a t i o n s C21 based on s i n g l e time Green f u n c t i o n s (Wigner f u n c t i o n s ) . I n s t e a d we s h a l l use t h e language o f non-equilibrium double-time thermodynamic Green f u n c t i o n s f i r s t s t u d i e d f o r l i n e a r t r a n s p o r t problems by Kadanoff and Baym C91.

The s t r u c t u r e o f t h e g e n e r a l non-linear t h e o r y i s o u t l i n e d i n an accompanying paper

[lo].

Here we f o c u s on t h e n a t u r e and o r i g i n of t h e r e t a r d a t i o n o f response t o inhomogeneous systems of coupled e l e c t r o n s and phonons.

2. The e x a c t quantum t r a n s p o r t e q u a t i o n s

Following our p r e v i o u s s t u d i e s [21, we work e n t i r e l y w i t h t h e s i n g l e c a r r i e r Wigner d i s t r i b u t i o n f ( p , R , t ) , which i s r e l a t e d t o t h e more fundamental double-time r e t a r d e d Green f u n c t i o n G (1,l') R whexe ( 1 , l ' ) E ( r l , t l ; r 2 , t 2 ) o r i n terms of Wigner c o o r d i n a t e s : R = ( r

+

r ) / 2 , r = rl - r 2 , T = ( t l

+

t ) / 2 , t = tl - t2

-

R 1 2 2

G ( r , t ; R , t ) . 1

where $ J ~ , $ a r e e l e c t r o n f i e l d o p e r a t o r s d e f i n e d w i t h i n t h e Heisenberg r e p r e s e n t a - t i o n such t h a t t h e ensemble average < > i n v o l v e s a many body t r a c e o v e r t h e i n i t i a l system d e n s i t y m a t r i x a t time T = 0. I t i s supposed h e r e f o r s i m i p l i c i t y t h a t t h e e x t e r n a l f i e l d s a r e i n i t i a t e d a t T > 0 , s o t h a t $, $ t evolve under a Hamiltonian which c o n t a i n s t h e coupling t o an e x t e r n a l a p p l i e d p o t e n t i a l ba(R,T). Note t h a t G R (pwRT) i s t h e space-time F o u r i e r t r a n s f o m o v e r t h e r e l a t i v e c o o r d i n a t e s n , t of

(4)

R R A

G ( r , t ; R T ) . We a l s o observe t h a t G and t h e advanced Green f u n c t i o n G a r e r e l a t e d t o t h e f u l l Green f u n c t i o n G d e f i n e d by

R A

where T i s t h e fermion time-ordering o p e r a t o r , G, G

,

G maybe most c o n v e n i e n t l y a n a l y s e d by c o n s t r u c t i n g e q u a t i o n o f motion f o r an analogous imaginary time Green f u n c t i o n G ( l , l ' , S ) d e f i n e d by:-

G ( I . , ~ ' , s ) = -i <Ts+(L)$ t (1') >/<$s;

where to-it3

S = expC-i d 2 $ a ( 2 ) n ( 2 ) 1

n ( 2 ) i s t h e number d e n s i t y o p e r a t o r , f3 = 1 /kT ( i n i t i a l t e m p e r a t u r e ) , and t h e t i m e s a r e d e f i n e d i n t h e imaginary time domain: 0 < i(t-to) < B (to r e a l ) . G ( l , l ' , s ) i n v o l v e s a system evolving from an inhomogeneous e q u i l i b r i u m d e n s i t y m a t r i x

1t maybe shown [9,11,121, t h a t G ( 1 , l ' ) i s j u s t t h e a n a l y t i c c o n t i n u a t i o n of G ( l , l ' , S ) t o t h e r e a l time domain provided t -t

--.

The e q u a t i o n of motion fox G ( l , l r , S ) may be f o r m a l l y d e r i v e d by f u n c t i o n a l d e r i v a t i v e t e c h n i q u e s t o have an "apparently" c l o s e d form by i n t r o d u c i n g t h e s e l f - energy C f o r t h e c a r r i e r s : -

where 9 i s t h e e f f e c t i v e t o t a l d r i v i n g p o t e n t i a l comprising t h e induced f i e l d p o t e n t i a l s p l u s t h e a p p l i e d p o t e n t i a l . I f we perform t h e a n a l y t i c c o n t i n u a t i o n , t h e e x a c t e q u a t i o n of motion f o r G (pw;RT) B i s o b t a i n e d from:-

2 -m

dl" zR(l",l') ( G ~ - G ~ ) C i , 1 " 1

(5)

JOURNAL DE PHYSIQUE

3. The Boltzmann l i m i t

The Boltzmann t r a n s p o r t theory may be recovered from ( 7 ) by: ( a ) assuming slowly varying disturbances; (b) taking t h e asymptotic l i m i t T +

-

r21. Let us

f i r s i l examine t h e appearance of t h e l o c a l d r i v i n g f o r c e , i.e. of t h e normal form

[aT

+ v.aR + eE.3 I ~ ( ~ , R ; T )

P ( 8 )

We note f i r s t t h a t the LHS of ( 7 ) has t h e Wigner coordinate form:-

In thermal equilibrium, t h e undressed version of G R i s diagonal, and has a s p a t i a l range of t h e order of a thermal wavelength X

*

(3%6/2m)lL, and a temporal decay time of t h e order

46.

The l o c a l homogeneity approximation (LHA C l ] ) , t h i s supposes t h a t i f C$ v a r i e s slowly on t h e s e s c a l e s , we may expand $ i n a Taylor s e r i e s t o lowest order:

The d r i v i n g term f o r f(p,R,T) i s then e a s i l y obtained a s expression ( 8 ) . More generally, one should use t h e exact form:-

where H I p 2 /2m

+ +

(R,T) ; A

-

3p.a R

- a

R E .a

+ aTaw - awaT.

i s t h e generalised Poisson b r a c e l e t o p e r a t o r C101. Expression (10) i s

exact

f o r constant, uniform f i e l d s .

I f we use the LHA on t h e d r i v i n g terms, and n e g l e c t a l l q u a n t i t i e s of order t , r compared t o R, T t h e RHS of

( a ) ,

we find:-

Now G~ i s r e l a t e d t o ($ v i a t h e s p e c i a l function A(pwRT) A = GR

-

GA

R A

From t h e equation of motion f o r G G we t h u s o b t a i n , within t h e same approximation:-

l a

+

vaR

- a

$a

+ a + a

] A = o

T R p T w (14)

I t may a l s o be shown ( e x a c t l y ) t h a t

The l i n e a r t r a n s p o r t study by Kadanoff and B a p C61 takes:

a s t h e s o l u t i o n t o (14). By taking t h e Born approximation t o t h e s e l f energy it i s

(6)

t h e n v e r y e a s y t o show t h a t e q u a t i o n (12) reduces e x a c t l y t o t h e B o l t Z m a ~ equation w i t h t h e a i d of ( 1 3 ) , (151, ( 1 6 ) . This r e s u l t i s a weak coupling r e s u l t and n e g l e c t a l l q u a s i - p a r t i c l e e f f e c t s . Moreover, t h e d e l i b e r a t e

local

approximation made t o

-

t h e time and space dependence of t h e " c o l l i s i o n i n t e g r a l s " o r t h e RHS o f (171, p l u s t h e l o c a l s o l u t i o n ( 1 6 ) , a r e p r i m a r i l y r e s p o n s i b l e f o r t h e r e s u l t i n g Markovian ( i . e . non-retarded) form of t h e Boltzmann equation. No i n t r a - c o l l i s i o n a l f i e l d e f f e c t s a r e v i s i b l e d e s p i t e t h e appearance of t h e f i e l d i n (16).

4. Retarded t r a n s p o r t

We have a l r e a d y s e e n from e x p r e s s i o n (9) t h a t t h e d r i v i n g f o r c e s a x e g e n e r a l l y non-local i n space and time. Let u s now observe t h a t t h e " c o l l i s i o n " terms a r e r a t i o r e t a r d e d . The appearance of r e t a r d a t i o n i s i n t i m a t e l y r e l a t e d t o t h e degree of d i s s i p a t i v i t y w i t h i n t h e s y s t a . Bolt-nn t r a n s p o r t i s a d i s s i p a t i v e theory:

c o l l i s i o n s occur a s p o i n t e v e n t s which a r e completed i r r e v e r s i b l y .

To s e e how t h e c o l l i s i o n i n t e g r a l c o n t a i n s r e t a r d a t i o n , l e t u s go back t o e q u a t i o n ( 7 ) , and look a t t h e l i m i t t = tl-tl, + 0, which we need t o o b t a i n t h e Wigner d i s t r i b u t i o n f . Let u s keep t h e same approximation f o r t h e s p a t i a l

dependence of X , G b u t t r e a t t h e time-dependence e x a c t l y . The e q u i v a l e n t of t h e RHS of e q u a t i o n (12) i s t h e n found t o be

T

dr{expLZi(w'-w") (T-r) I

+

c.c} x

-03

The asymptotic l i m i t i s now e a s i l y seen: i f we l e t T +

-,

t h e e x p o n e n t i a l f a c t o r s c o l l a p s e t o a r e p r e s e n t a t i o n of a & - f u n c t i o n , d e s c r i b i n g t h e c o n s e r v a t i o n of energy:-

Neglect of t h e t i m e v a r i a t i o n i n t h e e a r l i e r approximation i s t h u s e q u i v a l e n t t o a time-coarse q r a i n i n g o f t h e system.

We n e x t observe t h a t t h e asymptotic l i m i t cannot be t a k e n without examining t h e asymptotic behaviour of Z and G. Indeed s i n c e b o t h C and G can be expressed e n t i r e l y i n terms of t h e s p e c t r a l f u n c t i o n A(pwRT) t h e Wigner f u n c t i o n f(poRT)

(and t h e phonon d i s t r i b u t i o n i n g e n e r a l c a s e s ) , t o g e t an e x p l i c i t form f o r t h e c o l l i s i o n i n t e g r a l we s h a v e an approximation f o r A. I f we go back t o e q u a t i o n

(14) f o r example, it i s obvious t h a t Kadanoff and Baym's s o l u t i o n i s

not

c o r r e c t e x c e p t f o r t h e r m a l e q u i l i b r i u m . To s e e t h i s we t r a n s f o r m e q u a t i o n (14) t o p a t h v a r i a b l e form C2 1 :

(7)

C7-250 JOURNAL DE PHYSIQUE

where d ~ / d r = 1; d ~ / d r = p ( T ) /m; d p / d ~ = -aR$ ( R ( T ) , T ( T ) ; d w / d ~ = aT$ (R,T)

.

The

g e n e r a l s o l u t i o n t o (19) i s i n f a c t

ACT]

= c o n s t a n t . Thus i f A h a s t h e boundary c o n d i t i o n ( i n i t i a l ) v a l u e A = 2a6 ( w - ~ [ p l )

,

ELPI= p /2m we f i n d : - 2

A(p,w,R,T) = 2s6[w

- ~ ( g ) ]

(20)

where t h e t i l d a s r e f e r t o r e t a r d e d q u a n t i t i e s : -

I f eqn (20) i s i n s e r t e d i n t o t h e Born approximation f o r C, and t h e n i n t o e q u a t i o n (17) we r e c o v e r e x a c t l y t h e g e n e r a l i s e d k i n e t i c e q u a t i o n o f Barker and F e r r y C31, showing t h e temporal r e t a r d a t i o n o f t h e p o s i t i o n , momentum and time dependence of t h e d i f f e r e n t i a l s c a t t e r i n g r a t e s plus t h e i n t r a - c o l l i s i o n a l f i e l d e f f e c t [I]. For electron-phonon s c a t t e r i n g bhe e q u a t i o n f o r f r e a d s (homogeneous c a s e ) : -

r

T

[aT

+ e ~ a ~f = JOd' $,is ($,$*,T) ~ ( $ - . T - T )

I n t h i s c a s e , t a k i n g t h e asymptotic l i m i t T + m, does not r e c o v e r t h e s h a r p energy c o n s e r v a t i o n o f Boltzmann t r a n s p o r t t h e o r y even f o r c o n s t a n t uniform f i e l d s , because t h e s c a t t e r i n g i s d e s c r i b e d between a c c e l e r a t i n g s t a t e s ; t h e s t a t e s p , p' a r e t h u s s h i f t e d and smeared o u t by l e v e l s h i f t and broadening e f f e c t s due t o t h e t r a n s i t i o n induced by t h e f i e l d w i t h i n t h e c o l l i s i o n d u r a t i o n E l l .

5. Q u a s i - p a r t i c l e e f f e c t s

Let u s now r e l a x t h e s p a t i a l approximations t o C and G made i n s e c t i o n s 3,4.

We f i r s t e v a l u a t e t h e s e q u a n t i t i e s a t t h e same l e v e l of approximation a s t h e d r i v i n g terms i . e . use t h e LHA. Thus terms such a s G ( r p , R-(r-r')/2) which appear i n (7) a r e approximated by

The second term i n (25) c o n t r i b u t e s two a d d i t i o n a l terms t o equation ( 1 7 ) . One h a s an asymptotic l i m i t i n t h e form o f a Poisson b r a c k e t : -

-{ReC (pwRT)

,

G R (BURT)

1

where

(8)

Consequently, t h e terms i n

a

G,

a

G,

a

G can be r e t u r n e d t o t h e RHS of e q u a t i o n (17)

T R p

s o a s t o renormalise t h e d r i v i n g terms. Only one of t h e s e terms w i l l be d i s c u s s e d h e r e : t h e term i n

a

ReC aRG R

.

This term e s s e n t i a l l y r e n o r m a l i s e s t h e base v e l o c i t y

P

v = pRm t o t h e q u a s i - p a r t i c l e v e l o c i t y v + p/m

+ a

ReC. A s i m i l a r m o d i f i c a t i o n P

f o l l o w s through i n t h e e q u a t i o n of motion f o r t h e s p e c t r a l f u n c t i o n . I f t h e asymp- t o t i c l i m i t i s n o t taken we f i n d t h a t t h e q u a s i - p a r t i c l e v e l o c i t y h a s aretarded form with t h e s t r u c t u r e

where M i s a memory f u n c t i o n a l . I f t h e d r i v i n g f i e l d s a r e s t r o n g o r v a r y r a p i d l y i n time v i s found t o reduce t o p/m. Only when t h e f i e l d s a r e slowly p e r t u r b a t i v e

( a d i a b a t i c ) does t h e e q u i l i b r i u m q u a s i - p a r t i c l e behaviour appear.

I n a d d i t i o n , a f u r t h e r term i s c o n t r i b u t e d by (25) which i n i t s asymptotic form adds t o (25) a term:-

This asymptotic form d e s c r i b e s t h e decay of i n i t i a l c o r r e l a t i o n s i n t h e i n i t i a l s t a t e a t T = 0. It does n o t appear t o be s i g n i f i c a n t f o r l o w frequency t r a n s p o r t , b u t i s dominant f o r f r e q u e n c i e s i n e x c e s s o f t h e c o l l i s i o n a l r e l a x a t i o n f r e q u e n c i e s

(WT >> 1 ) o r f o r high magnetic f i e l d s ( W T >> 1 ) . A d i s c u s s i o n o f t h i s c o n t r i b u t i o n h a s been given from a d i f f e r e n t p o i n t of view i n r e f . : l l .

A r i g o r o u s t r e a t m e n t of t h e e x a c t e q u a t i o n ( 7 ) h a s been made r e c e n t l y 1121. I t r e q u i r e s t h a t t h e b a s i c modelling i n v o l v e a dynamical approximation t o t h e s e l f - energy X. The s p e c t r a l f u n c t i o n s and i n i t i a l s t a t e a r e t h e n e v a l u a t e d s e l f c o n s i s t e n t l y with t h i s approximation s o a s t o v a l i f y t h e microscopic c o n s e r v a t i o n laws (Ward i d e n t i t i e s [ I ] ) . I n a d d i t i o n t h e l e v e l of time-space c o a r s e g r a i n i n g

(e.g. t h e LHA) i s decided by examining w i t h i n t h e model which time-space s c a l e v a r i a t i o n s i n t h e f i e l d o r t h e h e t e r o j u n c t i o n s t r u c t u r e a r e comparable w i t h t h e i n t r i n s i c time-space s c a l e s f o r q u a s i - p a r t i c l e d r e s s i n g . A s an example we q u o t e t h e r e s u l t s f o r t h e c a s e where t h e f i e l d s a r e s u f f i c i e n t l y t o modify energy c o n s e r v a t i o n w i t h i n c o l l i s i o n s , b u t do n o t d e s t r o y t h e q u a s i - p a r t i c l e s t r u c t u r e : t h i s c a s e assumes a homogeneous medium, b u t n o t n e c e s s a r i l y homogeneous t r a n s p o r t . We f i n d t h a t t h e dominant r e t a r d a t i o n p r o c e s s i s f u l l y d e s c r i b e d by t h e Barker-Ferry eqns.

C31, b u t t h e momentum s t a t e s appearing on t h e d r i v i n g terms (group v e l o c i t y ) and c o l l i s i o n i n t e g r a l s a r e modified t o t h e field-dependent q u a s i - p a r t i c l e v e l o c i t i e s . I n a d d i t i o n t h e r e t a r d e d c o l l i s i o n i n t e g r a i s a r e modified by a q u a s i p a r t i c l e e x p o t e n t i a l decoy term. The l a t t e r i s e a s i l y e v a l u a t e d by s o l v i n g f o r t h e s p e c t r a l f u n c t i o n from t h e r i g o r o u s equation o f motion

(9)

JOURNAL DE PHYSIQUE

R .

where

r

= CA

-

C 1s t h e imaginary p a r t o f t h e s e l f energy.

The r e s u l t i n g e q u a t i o n s show f o r example, t h a t t h e p o l a r o n i c c a r r i e r s i n weak coupling media, a r e p r o g r e s s i v e l y s t u f f e d t o t h e b a r e l a n d mass s t a t e s ( a c c e l e r a t i n g s t a t e s ) a s h i g h f i e l d s a c c e l e r a t e c a r r i e r s beyond t h e o f t e n phonon t h r e s h o l d .

On t h e q u e s t i o n of s e l f - c o n s i s t a n c y , we f i n d t h a t t h e Born approximation t o Z i s never v a l i d ( s e e a l s o E l l ) , b u t one can use t h e g e n e r a l i s e d Born approximations.

The l a t t e r u s e s a s e l f c o n s i s t a n t form f o r t h e s p e c t r a l f u n c t i o n i n t h e e x p r e s s i o n f o r t h e s e l f energy, u n l i k e t h e Born approximation which use t h e f r e e c a r r i e r form.

The e f f e c t i s t o g i v e c o l l i s i o n a l l e v e l s h i f t s i n t h e energy c o n s e r v a t i o n and t o broaden t h e s h a r p energy c o n s e r v a t i o n due t o q u a s i - p a r t i c l e l i f e t i m e e f f e c t s .

6. Refeaences

1. Barker, J.R., i n Handbook of Semiconductors, Vol. 1, W. P a u l , Ed. (North Holland 19811, Ch. 13.

2. Barker, J . R . , i n P h y s i c s o f non-linear t r a n s p o r t i n Semiconductors, e d by Ferry,D.

Barker, J . , and Jacoboni, C. (Plenum, New York, 1980) p.126.

3. Barker, J.R., and F e r r y , D . K . , Phys. Rev. L e t t e r s ,

42

(1979) 1776.

4. Grubin, H.L., F e r r y , D.K., L a f r a t e , G . J . , and Barker, J.R. i n b ~ c r o s t r u c t u r e s Science and ~ e c h n o l o g y / V L ~ ~ , Vol. 3 , Ed. by Einspruch, N. (Academic, New York, i n p r e s s )

.

5. Barker, J.R., F e r r y , D.K., and Grubin, H.L., IEEE E l . Dev. L e t t e r s EDL-1 (1980) 209.

6. Barker, J.R., and F e r r y , D.K., S o l i d S t a t e E l e c t r o n i c s , 23 (1980) 519.

7. Barker, J.R., and F e r r y , D.K., S o l i d S t a t e E l e c t r o n i c s , 23 (1980) 531.

8. F e r r y , D.K., and Barker, J.R., J. Phys. Chem. S o l i d s , 41 (1980) 1083.

9. Kadanoff, L.P. and Baym, G . , Quantum S t a t i s t i c a l Mechanics (Benjamin, 1962).

10. Imre, K . , Dzizmir, E . , Rosenbaum, M., Zweifel, P. F., J. Math. Phys. 8 (1967), 1097.

11. Barker, J.R., and Lowe, D . , t h e s e proceedings.

12. Barker, J.R., and Lowe, D . , t o be published.

Références

Documents relatifs

U1 + C1 and the steady detonation states computed on the basis of this criterion are referred to as Chapman-Jouguet (C-J) detonations. Three problem areas arise in

Several techniques have been used to investigate the electron drift velocity in Ga, Al A s , namely measurements of i-V characteristics of H-shaped samples, Monte Carlo

Furthermore, continuous voltage measurements have demonstrated the effect of DWCNT in a nanocomposite hydrogel, different conduction phenomena can be observed at all

Dans la littérature, le retard ou l‘arrêt d’éruption des dents permanentes a été attribué à divers facteurs, notamment, la présence de plusieurs dents surnuméraires,

Taking advantage of the striking optical properties of gold nanoparticles (AuNPs) owing to the Localized Surface Plasmon Resonance (LSPR) phenomenon and the incomparable affinity and

Constraints on spin observables coming from discrete symmetries such as P, C, T and identical particles may be divided in two types: 1) classical ones, which insure the invariance

Ça suppose qu’il faut définir des échelles de cotation du risque en terme de fréquence et de gravité ainsi qu’une grille de criticité permettant la combinaison de

(b) The application of mathematical methods and techniques of investigation to find new physical laws and the prediction of new, as yet not experimentally observed