• Aucun résultat trouvé

A procedure for deriving thermal transfer functions for walls from hot-box test results

N/A
N/A
Protected

Academic year: 2021

Partager "A procedure for deriving thermal transfer functions for walls from hot-box test results"

Copied!
34
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Institute for Research in

Construction), 1988-05

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=f19ee010-eeae-4266-bdd3-c36c40aaf427 https://publications-cnrc.canada.ca/fra/voir/objet/?id=f19ee010-eeae-4266-bdd3-c36c40aaf427

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20377633

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A procedure for deriving thermal transfer functions for walls from

hot-box test results

(2)

arch Consell national uncll Canada de recherches Canada

lnstitut de recherche en construction

A

Procedure for Deriving Thermal

Transfer Functions for

Walls

from

Hot-Box Test Results

D.G.

Stephenson,

K.

Ouyang

and

W.C.

Brown

internal Report

No.

568

Date

of

issue: May

1988

~ N A L Y Z E D

This is an internal report of the Institute for Research in Construction. Although not intended for general distribution, it may be cited as a reference in other publications.

(3)

A Procedure f o r D e r i v i n g Thermal T r a n s f e r F u n c t i o n s f o r Walls from Hot-Box T e s t R e s u l t s : P a r t I

by

D.G. Stephenson,

K.

Ouyang, W.C. Brown

IRC/NRC 1988 A b s t r a c t

A guarded hot-box

i s

used t o determine t h e U-value of a w a l l

specimen a t two d i f f e r e n t mean temperatures. With t h e h o t s i d e t e m p e r a t u r e h e l d c o n s t a n t , t h e c o l d s i d e t e m p e r a t u r e i s v a r i e d a t a c o n s t a n t r a t e d u r i n g t h e t r a n s i t i o n between t h e two s t e a d y - s t a t e c o n d i t i o n s . The r e s u l t s of t h i s t e s t a r e used t o determine t h r e e time c o n s t a n t s of t h e w a l l , which a r e t h e n used t o c a l c u l a t e t h e c o e f f i c i e n t s of t h e z - t r a n s f e r f u n c t i o n f o r t h a t w a l l .

I n t r o d u c t i o n

The t r a n s f e r f u n c t i o n approach f o r c a l c u l a t i n n h e a t flow t h r o u g h w a l l s and c e i l i n g s h a s been endbrsed by ASHRAE f o r th; p a s t 20 y e a r s , and i s widely used throughout North America. The procedure r e q u i r e s , a s d a t a , t h e c o e f f i c i e n t s of t h e wall's t h e r m a l t r a n s f e r f u n c t i o n s , and h o u r l y v a l u e s of t h e t e m p e r a t u r e f o r t h e o u t e r f a c e of t h e w a l l . T r a n s f e r f u n c t i o n

c o e f f i c i e n t s f o r many w a l l s have been p u b l i s h e d i n t h e ASHRAE Handbook of Fundamentals ( 1).

U n f o r t u n a t e l y , t h e s e d a t a a r e a l l based on t h e assumption t h a t t h e h e a t flow through t h e s e w a l l s i s one dimensional. There

i s

no allowance f o r framing members t h a t a c t a s h e a t b r i d g e s through i n s u l a t i o n , n o r f o r such common b u i l d i n g m a t e r i a l s a s hollow c o n c r e t e blocks. T h e r e f o r e , t h e t r a n s f e r f u n c t i o n d a t a i n t h e ASHRAE Handbook of Fundamentals may n o t a c c u r a t e l y r e p r e s e n t t h e t h e r m a l performance of r e a l w a l l s . Consequently t h e r e

i s

a growing i n t e r e s t i n being a b l e t o d e r i v e t h e s e d a t a from t h e r e s u l t s of t e s t s on f u l l s c a l e w a l l specimens. T h i s paper p r e s e n t s a

procedure f o r doing t h i s . It i n v o l v e s u s i n g a guarded hot-box w a l l t e s t i n g f a c i l i t y ; t h e IRC f a c i l i t y is shown s c h e m a t i c a l l y i n F i g u r e 1. A t e s t c o n s i s t s of t h r e e phases:

I ) An i n i t i a l s t e a d y - s t a t e U-value t e s t w i t h t h e room-side

environmental t e m p e r a t u r e a t Th and t h e c l i m a t e s i d e t e m p e r a t u r e a t Tci.

1 1 ) A t r a n s i t i o n phase d u r i n g which t h e c l i m a t e chamber t e m p e r a t u r e i s changed from Tci t o Tcf. The t e m p e r a t u r e i s changed a t a c o n s t a n t r a t e d u r i n g t h i s t r a n s i t i o n .

111) A f i n a l s t e a d y - s t a t e U-value t e s t w i t h t h e room-side t e m p e r a t u r e a t Th and t h e c l i m a t e s i d e t e m p e r a t u r e a t Tcf.

F i g u r e 2 shows t h e temperature v s time curve o b t a i n e d f o r a t y p i c a l t e s t , and t h e c o r r e s p o n d i n g v a l u e s f o r t h e h e a t f l u x i n t o t h e room-side f a c e of t h e t e s t w a l l . These r e s u l t s can b e used t o determine t h r e e

t i m e - c o n s t a n t s f o r t h e w a l l , p l u s t h e i r a s s o c i a t e d r e s i d u e s . These t i m e - c o n s t a n t s and r e s i d u e s p l u s t h e U-value a r e used a s t h e d a t a t o

c a l c u l a t e t h e c o e f f i c i e n t s f o r a r a t i o n a l z - t r a n s f e r f u n c t i o n t h a t r e l a t e s t h e h e a t f l u x through t h e room-side f a c e of t h e w a l l t o t h e t e m p e r a t u r e a t t h e o u t s i d e s u r f a c e . The procedure f o r t h i s l a t t e r c a l c u l a t i o n

i s

b a s i c a l l y

(4)

t h e same a s i s d e s c r i b e d i n Stephenson and M i t a l a s ( 2 ) . The d i f f e r e n c e i s t h a t t h e time-constants and r e s i d u e s a r e d e r i v e d from t e s t r e s u l t s r a t h e r t h a n from t h e dimensions and t h e r m a l p r o p e r t i e s of t h e m a t e r i a l s t h a t make up t h e w a l l .

Theory

The Laplace t r a n s f o r m s of Th and Tc a r e r e s p e c t i v e l y

el

and

e2,

and t h e t r a n s f o r m s of t h e h e a t f l u x e s Qh and Qc a r e and

4

r e s p e c t i v e l y . These a r e r e l a t e d by

where t h e elements A, B, C and D of t h e t r a n s m i s s i o n m a t r i x a r e f u n c t i o n s of t h e thermal p r o p e r t i e s and dimensions of t h e m a t e r i a l s i n t h e w a l l and t h e h e a t t r a n s f e r r e s i s t a n c e a t t h e s u r f a c e s . T h i s f o r m u l a t i o n , which is t a k e n from Carslaw and J a e g e r ( 3 ) . assumes t h a t t h e thermal p r o p e r t i e s of t h e w a l l a r e c o n s t a n t . Equation 1 can

be

r e c a s t a s

The element C h a s been e l i m i n a t e d by u s i n g t h e f a c t t h a t A-D

-

B*C

-

1. The f u n c t i o n s D/B, 1 / B and A/B a r e r e f e r r e d t o a s t h e Laplace t r a n s f e r f u n c t i o n s of t h e w a l l .

The t r a n s f e r f u n c t i o n l / B ( s ) can be r e p r e s e n t e d a s

where Tn a r e t h e t i m e c o n s t a n t s of t h e w a l l (i.e., t h e p o l e s of 1/B(s) a r e

a t s = - I / T ~ )

(5)

A l l t h e t r a n s f e r f u n c t i o n s of Equation ( 2 ) have t h e i r poles a t

s

=

s i n c e B(s) i s t h e common denominator.

When c a l c u l a t i n g t h e h e a t f l u x through a w a l l o r roof i t

i s

more convenient t o u s e z-transforms of t h e t e m p e r a t u r e s and f l u x e s r a t h e r t h a n t h e Laplace t r a n s f o r m s . (The z-transforms a r e sometimes r e f e r r e d t o a s t h e t i m e - s e r i e s r e p r e s e n t a t i o n s of t h e s e q u a n t i t i e s ) . An e q u a t i o n s i m i l a r t o e q u a t i o n 2 r e l a t e s t h e z-transforms of h e a t f l u x t o t h e z-transforms of t e m p e r a t u r e s : v i z ,

where

and

The z - t r a n s f e r f u n c t i o n s can be approximated by

and

where U = t h o v e r a l l conductance of t h e wall

s%

z = e

,

6 = t h e t i m e i n t e r v a l between s u c c e s s i v e terms i n t h e t i m e s e r i e s f o r t h e t e m p e r a t u r e s and h e a t f l u x e s ,

(6)

s

= t h e parameter i n Laplace t r a n s f o r m s ,

N

-

t h e number of terms i n t h e v a r i o u s sums (N may be d i f f e r e n t f o r each summation)

an,bn,dn = z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s .

Equation 4 is u s u a l l y w r i t t e n i n t h e time domain a s

where T

i s

t h e e n v i r o n m e n t a l t e m p e r a t u r e i n t h e b u i l d i n g

a t

t i m e t , h , t

Tc,t i s t h e environmental temperature o u t s i d e

a t

t i m e t.

The approach used i n t h i s paper i s t o approximate l / B ( s ) by t h e sum of o n l y t h r e e ( o r i n some c a s e s f o u r ) terms, and t h e n t o u s e t h e s e v a l u e s of

a and T t o c a l c u l a t e bn and dn. When v a l u e s of a a r e r e q u i r e d ( i . e . ,

wgen ins?de t e m p e r a t u r e i s changing), t h e y a r e obta?ned from e x p e r i m e n t a l l y determined v a l u e s of t h e w a l l ' s f r e q u e n c y r e s p o n s e and t h e t i m e c o n s t a n t s , a s d e s c r i b e d i n P a r t I1 of t h i s paper.

S t e p #1 Determination of t h e a,,

&

T~ of a

wall

If t h e s t a r t of phase I1 ( s e e F i g u r e

2)

i s

t a k e n a s t = 0 , Qi a s t h e v a l u e of h e a t f l u x d u r i n g t h e s t e a d y - s t a t e a t t h e end of p h a s e I, and Qf a t t h e s t e a d y - s t a t e i n phase 111, t h e n t h e h e a t f l u x , Q t , a t any t i m e t d u r i n g phase I1 can be r e p r e s e n t e d ( 3 ) by:

where t* i s t h e d u r a t i o n of phase 11. T h i s can be i n v e r t e d t o g i v e

where

(7)

and Qt + Qi + Qf

-

tx Qi ( t

-

r )

Qf

-

Qi

This asymptote i s a s t r a i g h t l i n e with a s l o p e of

t,

,

and i t e q u a l s Qi when t =

r.

Thus t h e v a l u e of

r

can be o b t a i n e d from t h e i n t e r s e c t i o n of t h i s asymptote and t h e v a l u e of Q

i *

I n phase 111,

where t ' = t-t*

S i n c e ~ ~ ( O < t < t * ) is e q u a l t o E t t ( t * < t ) , Equation 12 can be combined w i t h

Equation 9 t o g i v e t h e f o l l o w i n g e x p r e s s i o n f o r

r

A v a l u e of 'l can be o b t a i n e d i n t h i s way from e a c h v a l u e of Q t , and t h e c o r r e s p o n d i n g Qt*+t, f o r 0

<

t

<

t*.

Equation 1 2 i n d i c a t e s t h a t a s t ' becomes l a r g e

where T i s t h e l a r g e s t time-constant. 1

(8)

Thus

,

and i t s v a l u e a t This asymptote i s a s t r a i g h t l i n e with a s l o p e of

--

T,

l

a T 1 1

t = O ( i . e . , t

-

t * )

i s

Thus t h e asymptote g i v e s v a l u e s f o r T and 1 al' I f e q u a t i o n 12 i s i n t e g r a t e d from t* t o i t g i v e s Thus DI t*

I

( Q ~

-

Q t ) d t where A 5 t* Qf

-

Qi

One more r e l a t i o n s h i p can be d e r i v e d from t h e f a c t t h a t

When e a u a t i o n s 9 and 11 a r e d i f f e r e n t i a t e d t h e y g i v e

Theref o r e

E q u a t i o n s 10, 16 and 18 a r e used t o de ermine t h e time c o n s t a n t s and

1

r e s i d u e s . However, i f t h e t r a n s f e r f u n c t i o n

n)

i s t o be approximated by a f i n i t e number of terms r a t h e r t h a n a n i n f i n i t e number, t h e sums of t h e

v a r i o u s f i n i t e s e r i e s must be t h e same a s t h e sums of t h e c o r r e s p o n d i n g i n f i n i t e s e r i e s , i . e .

(9)

Values of al and r can be d e r i v e d d i r e c t l y from t h e test r e s u l t s u s i n g e q u a t i o n 15. Thus, f f N=2 t h e r e would be only two undetermined c o n s t a n t s , a and T 2 , s o i t would n o t be p o s s i b l e t o s a t i s f y a l l t h r e e

8

r e l a t i o n s . n t h e o t h e r hand, i f N=3 t h e r e would be f o u r undetermined c o n s t a n t s , and t h e t h r e e r e l a t i o n s a r e n o t s u f f i c i e n t t o determine a l l f o u r c o n s t a n t s . One of t h e c o n s t a n t s must be used a s a n undetermined c o n s t a n t t o be determined by some o t h e r c o n s t r a i n t . It i s convenient t o l e t

3

be t h e undetermined c o n s t a n t .

Let a2

+

a = F = 1-a

3 I

where

r

and A a r e determined from Equation 13 and 17, r e s p e c t i v e l y . These c a n be solved t o g i v e

There is t h e a d d i t i o n a l c o n s t r a i n t t h a t r2 and r3 must be r e a l and p o s i t i v e . T h i s l i m i t s t h e p o s s i b l e range f o r

3

a s f o l l o w s :

a ) i f G~

>

FH

(10)

b) i f G 2 = FH

a3 must be z e r o and T2

-

--&

C) i f G 2

<

FH

g3

must be between z e r o and

F.

The b e s t v a l u e f o r a3 i s determined by t r y i n g s e v e r a l v a l u e s w i t h i n t h e a l l o w a b l e range, and f o r each of t h e s e determining a c o n s i s t e n t set of

v a l u e s f o r a2, T2 and T3. Then u s i n g t h e s e v a r i o u s s e t s of v a l u e s a v a r i a n c e

nt

i s c a l c u l a t e d a s :

and Et

i s

determined from experiment ( c t = Qf

-

Qt f o r t * < t )

The b e s t v a l u e f o r a3 is t h e one t h a t g i v e s t h e s m a l l e s t v a l u e f o r Gnt2.dt. This i s a " l e a s t squares" curve f i t t i n g procedure t h a t s a t i s f i e s t h e c o n s t r a i n t s on Qtand i t s f i r s t d e r i v a t i v e .

Example 1

T h i s procedure

i s

i l l u s t r a t e d i n example 1. I n t h i s example,

however, t h e v a l u e s of Q t have been c a l c u l a t e d from t h e e x a c t s o l u t i o n f o r a homogeneous s l a b r a t h e r t h a n being expe i m e n t a l r e s u l t s .

f

Hence, t h e v a l u e s of

"

a r e due t o t h e approximation of I n a r e a l t e s t t h e r e would a l s o be some e x p e r i m e n t a l e r r o r i n t h e measured v a l u e s t h a t would a l s o c o n t r i b u t e t o

nt.

For a homogeneous s l a b of t h e f o l l o w i n g p r o p e r t i e s

under t h e f o l l o w i n g test c o n d i t i o n s ,

(11)

A

= 179.19 h 2

The r e s u l t i n g h e a t f l u x , Q and Et a r e g i v e n i n Table I.

t '

Table 1

For t h e remainder of phase 11, Qt

i s

given by

96 where a = 2.000 and

rl

=

-

= 9.7268

h

1 112 (These a r e t h e v a l u e s t h a t would be i n d i c a t e d by t h e r e s u l t s of a p e r f e c t ramp t e s t ) . From e q u a t i o n 20

Thus a3 must have t h e o p p o s i t e s i g n of F, i.e. p o s i t i v e .

Table I1 g i v e s t h e v a l u e s of

9 ,

T2 and T3 t h a t a r e c o n s i s t e n t with v a r i o u s v a l u e s of a3. The lower p a r t of t h e t a b l e g i v e s t h e v a l u e s of rlt

f o r t h r e e of t h e cases. These v a l u e s show t h a t t h e approximation g e t s b e t t e r a s a3 i n c r e a s e s , b u t beyond

4

= 3 t h e improvement i s v e r y s l i g h t .

(12)

Table I1

(13)

S t e p

112

Determining t h e z - t r a n s f e r f u n c t i o n c o e f f i c i e n t s

The problem a t t h i s s t e p i s t o determine t h e c o e f f i c i e n t s b- and d-

I, LL

t h a t make

e q u i v a l e n t t o

Values of an and T,, were determined i n s t e p

81.

Equivalence of t h e

two t r a n s f e r f u n c t i o n s r e q u i r e s t h a t t h e p o l e s of t h e two c o r r e s p o n d , and t h a t t h e y have t h e same frequency r e s p o n s e a t f r e q u e n c i e s t h a t a r e of p a r t i c u l a r importance i n t h e i n t e n d e d a p p l i c a t i o n .

The p o l e s of t h e Laplace t r a n s f e r f u n c t i o n a r e a t s = - 1 / ~ - . Hence

n t h e p o l e s of t h e z - t r a n s f e r f u n c t i o n must be a t

z

= e -61 Tn. 3 3 - 6 / ~ ~ T h e r e f o r e

c

dnz-" =

n

(I-e z - l ) n=O n= 1 which g i v e s t h e c o e f f i c i e n t s dn a s :

(14)

where Let where

-

Vf =

C

dn cos (2rmsf) n=O 3

C

dn ' Z -n n-0 3 Wf

-

-

d n s i n (2rm6f) n=O 1 2 6

6

= Vf

+

i Wf z-e

Then matching t h e frequency r e s p o n s e of R/B(z) t o R/B(s) f o r a harmonic d r i v i n g f u n c t i o n w i t h a frequency of f r e q u i r e s and

-

C

bn s i n (2rm6f) = XfWf

+

YfVf n-0 A t s t e a d y - s t a t e (i.e., f 0) 3

(15)

Theref o r e

Equations 31, 32 and 33 can be s o l v e d t o f i n d t h r e e bn c o e f f i c i e n t s . I n m a t r i x form

cos ( 2 n 6 f ) (34)

- s i n ( 4 n 6 f )

I f it is d e s i r e d t o match t h e frequency response a t a second frequency, t h e r e would have t o be f i v e bn c o e f f i c i e n t s . Two more rows and two more columns would be added t o t h e s q u a r e m a t r i x , and two more terms i n t h e column m a t r i x on t h e r i g h t s i d e of t h e e q u a t i o n .

I f t h e s q u a r e m a t r i x i n e q u a t i o n 34 i s M , t h e n bn a r e g i v e n by

Example I1

(16)

With 6

-

1 h , and f = 1 c y c l e / 2 4 hours

Thus

(17)

Table

I11

compares the frequency responses of R/B(s) and R/B(z) with

the correct" values obtained from an analytical solution for this

homogeneou 2sl

b.

These values show that R/B(z) matches the correct values

f:

B

well when

<

4.

But when this number is larger, the difference between

R/B(Z) and the correct frequency response is substantial. Whether this

difference will lead to a significant error in Qt depends on the frequency

content of the driving function Tc.

is a dimensionless parameter

where

L

-

thickness of slab

P =

density

c

=

specific heat

A

-

thermal conductivity

f

-

frequency

(18)
(19)

Example I11

-

R e s u l t s of a Ramp Test on a Heavy Wall w i t h Heat Bridges

A ramp t e s t was c a r r i e d o u t on a w a l l with a 127 ram l a y e r of foam p o l y s t y r e n e sandwiched between two 89 mm wythes of c o n c r e t e . The sample was brought t o a s t e a d y - s t a t e w i t h Th = 21°C and Tci

-

-7.loC. Then t h e

t e m p e r a t u r e on t h e c o l d s i d e was reduced t o Tcf = -30.0°C a t a c o n s t a n t r a t e over a p e r i o d of t* = 60 hours. Table I V g i v e s t h e v a l u e s of t e m p e r a t u r e and t o t a l h e a t flow a t 3-hour i n t e r v a l s o v e r t h e 7-day test p e r i o d .

The U-valueof t h e specimen can be determined from t h e i n i t i a l and f i n a l s t e a d y - s t a t e r e s u l t s . The v a r i a t i o n of U w i t h mean t e m p e r a t u r e can t h e n be c a l c u l a t e d from For t h i s t e s t Qi = 86.6 W, Qf = 156.6 W , and t h e t e s t a r e a A = 5.946 m2. These v a l u e s l e a d t o : Uo = 0.517

w m - k l

and dU

-

= 1.66 x lo-' w ~ - ~ K - ~ dT m A s

-

i s v e r y s m a l l it is v a l i d t o analyze t h e r e s u l t s from t h e t r a n s i e n t dTm

(20)

Table I V

-

Phase I Ramp Started a t 0.0 Phase I1 Ramp Finished a t 60.0

(21)

Phase 111

Table I V (cont'd)

t T~ Qt

€t

'

t

'

=t-t*

(22)

Values of

r

a r e g i v e n i n Table I V f o r each v a l u e of Qt i n Phase X I . These were c a l c u l a t e d u s i n g Equation 13, i.e.

The v a l u e s i n t a b l e I V show t h a t t h e b e s t v a l u e f o r

r

i s 13.5 h o u r s .

Table I V shows t h a t

st,

has n o t decayed t o z e r o when t ' r e a c h e s 60.0 h ( a p e r i o d t h a t e q u a l s t * ) . Thus Et w i l l a l s o n o t be z e r o when t = t* ( i . e . a t t h e end of phase 1 1 ) . T h i s must be t a k e n i n t o account when c a l c u l a t i n g c t , f o r t h e e a r l y p a r t of phase 111. S u b t r a c t i n g E ~ from ~ +Qt ( f o r ~ t

e*)

c o r r e c t s f o r t h e r e s i d u a l e f f e c t of phase 11, t h a t is For example: e t c . E 60.3

=

156.6

-

156.4 = 0.2 E 63.3 = 156.6

-

156.5 = 0.1

The v a l u e s of E ~ , a r e t h e n used t o determine

4

and TI, ( o r a s i n t h i s example ao, To, a and TI). F i g u r e 3 shows v a l u e s of i n et, v s t v . A t

l a r g e v a l u e s of t f t h e p o i n t s l i e a l o n g a c u r v e t h a t i s s l i g h t l y concave upward and t h i s c u r v a t u r e i s due t o t h e h e a t b r i d g e s , which conduct some h e a t through t h e i n s u l a t i o n i n p a r a l l e l w i t h t h e main h e a t flow path. To account f o r t h i s e f f e c t , v a l u e s o f Et, f o r t'X2 hours can be r e p r e s e n t e d by t h e sum of two e x p o n e n t i a l t e r m s : A r e g r e s s i o n f i t of t h e d a t a t o t h i s e q u a t i o n g i v e s : a = 0.056 0 ? 0 = 25.0 h a = 1.670 1 T~ = 8.33 h

(23)

I n t e g r a t i n g E from t ' = 12 t o t ' = OD y i e l d s a v a l u e of 57.3 W-h.

The i n t e g r a l from t f

-

0 t o t ' 12 can be e v a l u a t e d n u m e r i c a l l y . It e q u a l s 114.3 W*h. ( T h i s v a l u e was o b t a i n e d u s i n g h o u r l y v a l u e s r a t h e r t h a n t h e 3-hour v a l u e s i n Table IV.)

Thus, from Equation 17

Also from Equation 20

T h e r e f o r e G'

-

FH = 0.48 h 2

A s 'G FH and F

<

0, a2 must be l e s s t h a n z e r o and

9

must be g r e a t e r t h a n z e r o i n o r d e r f o r r2 and r3 t o be r e a l and p o s i t i v e . Various p a i r s of v a l u e s f o r a2, a3 were t r i e d and

gave r e s u l t s i n good agreement w i t h t h e e x p e r i m e n t a l v a l u e s f o r t h e e a r l y p a r t of t h e t e s t . From Equation 21 t h e corresponding v a l u e s f o r T2 and T3

a r e :

These v a l u e s c a n be used t o d e t e r m i n e t h e c o e f f i c i e n t s of R/B(z) j u s t a s was done i n Example 11.

(24)

Table V

Summary of R e s u l t s

D i s c u s s i o n

F i g u r e 3 shows t h e importance of o b t a i n i n g v a l u e s of €+ o v e r a s l o n g a p e r i o d a s p o s s i b l e . When t h e r e a r e some h e a t b r i d g e s throGgh l a y e r s of i n s u l a t i o n t h e y g i v e r i s e t o a long time-constant w i t h a s m a l l a s s o c i a t e d r e s i d u e . T h i s means t h a t t h e w a l l may appear t o have reached a

s t e a d y - s t a t e , b u t t h e h e a t f l u x w i l l continue t o change v e r y slowly f o r many hours. Thus it i s good p r a c t i c e t o maintain t h e c o n s t a n t t e m p e r a t u r e c o n d i t i o n s f o r a t l e a s t a day a f t e r i t seems t h a t t h e s t e a d y - s t a t e has been reached.

The concept of a t r a n s f e r f u n c t i o n t h a t embodies t h e t h e r m a l

c h a r a c t e r i s t i c s of a w a l l i s v a l i d o n l y i f t h e t h e r m a l p r o p e r t i e s of t h e w a l l a r e independent of t h e t e m p e r a t u r e and t i m e . The i n i t i a l and f i n a l s t e a d y - s t a t e r e s u l t s can be used t o check whether t h i s assumption i s v a l i d . T h i s check should be made b e f o r e making a d e t a i l e d a n a l y s i s of t h e r e s u l t s from t h e t r a n s i e n t p a r t of t h e t e s t .

dU

The o u t p u t from a ramp t e s t should be t h e v a l u e s of Uo, 'rn and =n

.

These v a l u e s w i l l e n a b l e a u s e r t o c a l c u l a t e t h e v a l u e s ofubn and dn f o r any time-step. When v a l u e s of a n a r e r e q u i r e d it

is

n e c e s s a r y t o have v a l u e s of t h e A / B and D / B t r a n s f e r f u n c t i o n f o r t h e f r e q u e n c i e s of

p a r t i c u l a r i n t e r e s t . This procedure i s explained i n P a r t 11. Conclusion

A ramp t e s t s t a r t i n g from a s t e a d y - s t a t e and ending w i t h a n o t h e r s t e a d y - s t a t e y i e l d s enough i n f o r m a t i o n t o determine t h r e e time c o n s t a n t s of t h e w a l l , which a r e t h e n used t o c a l c u l a t e t h e z - t r a n s f e r j u n c t i o n

c o e f f i c i e n t l / B ( z ) f o r t h e w a l l . Acknowledgement

The a u t h o r s wish t o e x p r e s s t h e i r a p p r e c i a t i o n t o M r . J. Richardson and

Mr. G.

K e a t l e y f o r t h e i r a s s i s t a n c e i n p r e p a r i n g t h e w a l l specimen f o r t e s t and i n c a r r y i n g o u t t h e ramp test. The q u a l i t y of t h e r e s u l t s i s due t o t h e i r s k i l l i n o p e r a t i n g t h i s complex f a c i l i t y .

(25)

References

1. ASHRAE Handbook of Fundamentals (1977).

2. Stephenson & Mitalas, Calculation of Heat Conduction Transfer Functions

for Multi-Layer Slabs. ASHRAE Trans. Vol. 77, Part 11, 1971, p.

117-126.

3. Carslaw & Jaeger, Conduction of Heat in Solids, Oxford University

(26)

WEATHER SlDE CHAMBER

ROOM SIDE CHAMBER

CALORIMETER BOX

TEST SPECIMEN

-

(2.44 m X 2.44 m)

CONVECTIVE HEATERS

POLYSTYRENE TEST FRAME

-

INSIDE AIR TEMPERATURE THERMOCOUPLES

ITh)

@ BAFFLE TEMPERATURE THERMOCWPLES q b )

@ OUTSIDE AIR TEMPERATURE THERMOCOUPLES Q)

-

+ INDICATES AIR FLOW

FIGURE 1

(27)
(28)

A Procedure f o r Deriving Thermal T r a n s f e r Functions f o r Walls from Hot-Box T e s t R e s u l t s : P a r t I1

BY

D.G. Stephenson,

K.

Ouyang, W.C. Brown

P a r t I of t h i s paper p r e s e n t s a procedure f o r d e t e r m i n i n g t h e t i m e - c o n s t a n t s (and a s s o c i a t e d r e s i d u e s ) f o r a w a l l from t h e r e s u l t s of a hot-box w a l l test. This second p a r t p r e s e n t s a procedure f o r o b t a i n i n g t h e f r e q u e n c y r e s p o n s e of a w a l l from t h e r e s u l t s of a second s e t of hot-box t e s t s . Both t h e time-constants and t h e f r e q u e n c y response a r e r e q u i r e d when c a l c u l a t i n g t h e c o e f f i c i e n t s of t h e z - t r a n s f e r f u n c t i o n s .

This second p a r t of t h e paper a l s o p r e s e n t s a procedure f o r t h e c a l i b r a t i o n , o r o b t a i n i n g t h e t r a n s f e r f u n c t i o n s , f o r t h e hot-box.

Determining t h e Frequency Response of a Wall

A s e c t i o n of a w a l l i s i n s t a l l e d i n a hot-box w a l l t e s t i n g a p p a r a t u s - . - j u s t

as

i t would be f o r a U-value t e s t . The arrangement is shown

D s c h e m a t i c a l l y i n f i g u r e 1. To d e t e r m i n e t h e f r e q u e n c y response of t h e

r

t r a n s f e r f u n c t i o n t h e t e m p e r a t u r e i n t h e c l i m a t e chamber is kept c o n s t a n t w h i l e t h e power t o t h e m e t e r i n g box i s v a r i e d s i n u s o i d a l l y a t v a r i o u s

f r e q u e n c i e s . The r e s u l t i n g v a r i a t i o n i n t h e t e m p e r a t u r e i n t h e m e r i n g box

i s

measured a t r e g u l a r i n t e r v a l s , and from t h e s e d a t a a v a l u e of spi2rrf

7

$1

can be d e r i v d f o r t h e p a r t i c u l a r f r e q u e n c y , f , used f o r t h e t e s t . The

r

t r a n s f e r f u n c t i o n can a l s o be o b t a i n e d from c y c l i c t e s t r e s u l t s . I n t h i s c a s e t h e c l i m a t e chamber t e m p e r a t u r e i s v a r i e d s i n u s o i d a l l y and r h e power t o t h e m e t e r i n g box i s k e p t c o n s t a n t .

The m e t e r i n g box i s assumed t o be a l i n e a r system with t h r e e

t r a n s f e r f u n c t i o n s E, I and J. The E f u n c t i o n a l l o w s f o r t h e h e a t c a p a c i t y and t r a n s p o r t l a g of t h e h e a t i n g system, and I and J account f o r t h e h e a t c a p a c i t y of t h e a i r and b a f f l e i n t h e m e t e r i n g box and f o r t h e h e a t t h a t f l o w s i n t o ( o r o u t o f ) t h e s h e l l of t h e m e t e r i n g box, t h a t

is

@ = Laplace t r a n s f o r m of t h e power, P, s u p p l i e d t o t h e metering box

A = a r e a of t h e t e s t w a l l

Qw = Laplace t r a n s f o r m of t h e h e a t f l u x i n t o t h e t e s t w a l l from t h e m e t e r i n g

box, r e p r e s e n t e d by:

D 1

ow

=

{,J.ol

-

y'02} ( 2 )

Q1 = Laplace t r a n s f o r m of Th, t h e t e m p e r a t u r e i n t h e metering box Q2 = L a p l a c e t r a n s f o r m of Tc, t h e t e m p e r a t u r e i n t h e c l i m a t e chamber

0 = Laplace t r a n s f o r m of T t h e t e m p e r a t u r e i n t h e guard space s u r r o u n d i n g t h e m e t e r i n g chamber g'

I f T is c o n s t a n t it can be s u b t r a c t e d from Th and Tc, and t h e n J - 0

g

can be dropped from e q u a t i o n 1 (i.e., T i s t h e r e f e r e n c e o r z e r o l e v e l f o r g t h e t e m p e r a t u r e s ) . Thus, from ~ q u a t i o n g 1 and 2

(29)

This is t h e b a s i c r e l a t i o n t h a t can be used t o determine t h e value of

-

1 E s-iw

and when and a r e known f o r s - i w ( u = 2nf where f h t h e

s - i w A

I

D f r e q u e n c y ) . Conversely when a w a l l i s t e s t e d t h a t has known v a l u e s of and

1 E

- t h e r e s u l t s c a n be used t o determine

B

and

2

*

T h i s is t h e way t h e m e t e r i n g box

i s

c a l i b r a t e d .

D e t e r m i n a t i o n of

chamber t e m p e r a t u r e i s kept a t a c o n s t a n t v a l u e , Tc, and t h e power t o t h e metering-box i s v a r i e d s i n u s o i d a l l y a t a n a n g u l a r v e l o c i t y w, t h a t i s T h i s c y c l i c a l v a r i a t i o n of t h e power produces a c o r r e s p o n d i n g c y c l i c a l v a r i a t i o n of Th Th =

Th

+

Th

e i ( w t + Y) Thus w i t h Tc c o n s t a n t

The v a l u e s of t h e r e a l and imaginary p a r t s i n t h i s complex

Example I

Data f o r t h e m e t e r i n g box o b t a i n e d from c a l i b r a t i o n f o r

e x p r e s s i o n depend on t h e v a l u e of w. M e n

i

as-iw

and

f

(

a r e known

s=i

w from a c a l i b r a t i o n of t h e h o t box ( a s e x p l a i n e l a t e r ) , t h e v a l u e of D

-

can be o b t a i n e d from t h e r e s u l t s of a c y c l i c a l t e s t u s i n g s=iw e q u a t i o n 6.

(30)

Test conditions and measured quantities:

Derived quantities :

I

(31)

Theref o r e

D e t e r m i n a t i o n of

For t h i s t e s t t h e c l i m a t e chamber t e m p e r a t u r e , Tc, i s v a r i e d

s i n u s o i d a l l y and t h e power t o t h e m e t e r i n g chamber i s k e p t c o n s t a n t . T h i s c a u s e s a s i n u s o i d a l v a r i a t i o n of Th.

I n t h i s c a s e

and from Equation 3:

Example I1

T e s t c o n d i t i o n s and measured q u a n t i t i e s :

Derived q u a n t i t i e s : From t h e p r e v i o u s t e s t

(32)

0.22 1-211.1

Thus

B

= 7 - 8 7

k)

( )

-I

These v a l u e s f o r t h e r e a l and imaginary p a r t s of

"

Is=iw

can be compared w i t h t h e v a l u e s d e r i v e d from t h e t i m e - c o n s t a n t s an r e s i d u e s . It should be n o t e d , however, t h a t t h e v a l u e s d e r i v e d from t h e r e s u l t s of t h e c y c l i c a l t e s t s may have a r e l a t i v e l y l a r g e u n c e r t a i n t y because t h e a m p l i t u d e

?

can be q u i t e s m a l l . The v a l u e of

-

h

,

on t h e o t h e r hand, w i l l have a

s - i W

I

...

much s m a l l e r probable e r r o r because of a l a r g e r magnitude of T,,.

C a l i b r a t i o n of t h e

meter in^

Box The t r a n s f e r f u n c t i o n s

and f o r t h e m e t e r i n g box can b e determined f o r v a r i o u s f r e q u e n c i e s i n t h e same way a s t h e f r e q u e n c y response of a w a l l i s determined. But f o r t h i s c a l i b r a t i o n t h e t e s t w a l l must be one whose t r a n s f e r f u n c t i o n s a r e known. This i s b e s t obtained with a w a l l t h a t i s made of a homogeneous m a t e r i a l whose thermal p r o p e r t i e s a r e known. I n t h i s c a s e t h e t r a n s f e r f u n c t i o n s

-

and 1

1

can be

*

I

s - i w =i w

d e r i v e d from t h e dimensions and t h e r m a l p r o p e r t y v a l u e s . Thus f o r a c a l i b r a t i o n t e s t

-

and

I

a r e t h e unknowns. A 6 ' i W

*

I

s = i

W I n t h i s c a s e t h e f i r s t t e s t has P h e l d c o n s t a n t w h i l e Tp i s v a r i e d 1 s i n u s o i d a l l y , i.e. t h e same t e s t c o n d i t i o n s a s f o r jj.. E q u a t i o n 7 can be r e a r r a n g e d t o

(33)

D

I

1

Cz

+

z)

=

'z)

(

1u!

) ( 8 )

D 1 Yh

IY

A s

-

B

and a r e known f o r t h e w a l l t h a t

-

is used f o r t h e c a l i b r a t i o n ,

L

e q u a t i o n 8 g i v e s t h e v a l u e f o r

2

For t h i s c a s e a 100 mm expanded p o l y s t y r e n e w a l l was used and t h e

I

E

v a l u e s of

-

A and - w e r e found t o be A

and : = 0 . 1 6 8 m

D

I

Then having determined t h e v a l u e of

5

+

x,

i t can be used i n

E

(34)

WEATHER SlDE CHAMBER

ROOM SlDE CHAMBER

CALORIMETER BOX TEST SPECIMEN

CONVECTIVE HEATERS

INSIDE AIR TEMPERATURE THERMOCOUPLES (T, )

@ BAFFLE TEMPERATURE THERMOCOUPLES (Th)

-

@ OUTSIDE AIR TEMPERATURE THERMOCOUPLES (T,)

INDICATES AIR FLOW

FIGURE 1

Figure

Table  I1 g i v e s   t h e   v a l u e s   of  9 ,   T2  and  T3  t h a t   a r e   c o n s i s t e n t   with  v a r i o u s   v a l u e s   of  a3
Table  I11  compares the frequency responses of R/B(s)  and R/B(z)  with  the correct&#34; values obtained from an analytical solution for this
Table  I V   -  Phase  I  Ramp  Started  a t   0.0  Phase  I1  Ramp  Finished  a t   60.0
Table  I V   shows  t h a t   st,  has  n o t   decayed  t o   z e r o   when  t '   r e a c h e s   60.0  h   ( a   p e r i o d   t h a t   e q u a l s   t * )
+2

Références

Documents relatifs

Kreuzer, ‘Numerical calculation of listener-specific head- related transfer functions and sound localization: Microphone model and mesh discretization’,

The approach is based on a preliminary analysis of surface temperature field evolution with time (for instance acquired by infrared thermography); subsequently, this anal- ysis

The possible reason was that the proper mechanical treatment (screening and combing) prior alkaline treatment has effectively loosed the fiber bundles for better

On peut citer l'exemple de la classification des accidents en perte de contrôle qui ne permet pas une analyse cohérente des phénomènes qui y sont rattachés (correspondant plus

DR extracts a model of the Main Fuel System using real-world engine fault knowl- edge and two types of background knowledge as input: device dependent and device independent

The separation of a binary heteroazeotropic mixture (1-butanol – water) by batch distillation is studied in a new Double-Column System (DCS) by pilot plant

3-5 cGMP synthesis is controlled by two types of guanylyl cyclases (GC) that differ in their cellular location and activation by specific ligands: a particulate GC (pGC) present

The validation of the abscissae computed with our model presented in section 6.2.1 has two goals: evaluating its accuracy in the spécifie case of the Gaia mission and setting the