• Aucun résultat trouvé

THE HALL EFFECT DUE TO HOPPING CONDUCTION IN THE LOCALIZED STATES OF AMORPHOUS SEMICONDUCTORS

N/A
N/A
Protected

Academic year: 2021

Partager "THE HALL EFFECT DUE TO HOPPING CONDUCTION IN THE LOCALIZED STATES OF AMORPHOUS SEMICONDUCTORS"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00220760

https://hal.archives-ouvertes.fr/jpa-00220760

Submitted on 1 Jan 1981

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE HALL EFFECT DUE TO HOPPING

CONDUCTION IN THE LOCALIZED STATES OF AMORPHOUS SEMICONDUCTORS

L. Friedman, M. Pollak

To cite this version:

L. Friedman, M. Pollak. THE HALL EFFECT DUE TO HOPPING CONDUCTION IN THE LO-

CALIZED STATES OF AMORPHOUS SEMICONDUCTORS. Journal de Physique Colloques, 1981,

42 (C4), pp.C4-87-C4-90. �10.1051/jphyscol:1981414�. �jpa-00220760�

(2)

THE HALL EFFECT DUE TO HOPPING CONDUCTION I N THE LOCALIZED STATES OF AMORPHOUS SEMICONDUCTORS

L. Friedman

+

and M . ~ o l l a k *

Gl'K L a b o r a t o r i e s , WaZtham, MA 02254, U.S.A.

*

U n i v e r s i t y o f C a l i f o r n i a a t R i v e r s i d e , R i v e r s i d e , CA 92502, U. S.A.

A b s t r a c t . The H a l l m o b i l i t y

u H

d u e t o h o p p i n g t r a n s p o r t i s c a l c u l a t e d f o r s y s t e m s w i t h b o t h p o s i t i o n a l and s i t e - e n e r g y d i s o r d e r . A p e r c o l a t i o n - t h e o r - e t i c a p p r o a c h i s a d o p t e d and t h e Miller-Abrahams jump r a t e s a r e used. I n t h e low t e m p e r a t u r e , v a r i a b l e - r a n g e - h o p p i n g l i m i t , a n u p p e r l i m i t t o

u H

i s found (Iu I < l ~ - ~ c m ~ ~ - ~ ~ - ~ f o r a - S i a t T=300K) and i t s t e m p e r a t u r e dependence i s est!?bfblished.

I n t r o d u c t i o n . - I n f i t t i n g t r a n s p o r t and H a l l e f f e c t d a t a i n amorphous s e m i c o n d u c t o r s , a n o u t s t a n d i n g problem h a s b e e n t h e magnitude and t e m p e r a t u r e dependence o f t h e H a l l m o b i l i t y

u

due t o h o p p i n g c o n d u c t i o n s among l o c a l i z e d s t a t e s below t h e m o b i l i t y e d g e . I n

h i s

p a p e r , p H i s c a l c u l a t e d i n t h e l o w - t e m p e r a t u r e , v a r i a b l e - r a n g e l i m i t o f t h e Miller-Abrahams I m p u r i t y c o n d u c t i o n r e g i m e , i n c o r p o r a t i n g randomness i n b o t h t h e s i t e p o s i t i o n s and e n e r g i e s .

An o u t l i n e o f t h e p r o c e d u r e u s e d i s a s f o l l o w s : A p e r c o l a t i o n - t h e o r e t i c a p p r o a c h i s employed, i n which t h e c u r r e n t i s c a r r i e d by t h e backbone p a r t o f t h e p e r c o l a t i o n c l u s t e r (no dead e n d s ) which c o n s i s t s o f b r a n c h e s c n n n e c t e d a t j u n c t i o n s , m a i n l y t h r e e b r a n c h e s t o a j u n c t i o n . Only a t t h e s e j u n c t i o n s a r e t h e e x t r i n s i c H a l l c u r r e n t s g e n e r a t e d , s i n c e t h e e x i s t e n c e o f a H a l l e f f e c t i n h o p p i n g c o n d u c t

a r i s e s from h i g h e r o r d e r jump p r o c e s s e s i n v o l v i n g a minimum o f t h r e e s i t e s .

tar

However, t h e s e c u r r e n t s need n o t c o n t r i b u t e f u l l y t o t h e measured m a c r o s c o p i c H a l l c u r r e n t , s i n c e p a r t o f t h e e x t r i n s i c c u r r e n t may b e s p e n t on i n t e r n a l f l o w i n o r n e a r t h e j u n c t i o n . T h i s i s t a k e n i n t o a c c o u n t by u s i n g a s i m p l i f i e d r e s i s t a n c e c i r c u i t t o c a l c u l a t e t h e H a l l v o l t a g e V c o n t r i b u t e d by t h e j u n c t i o n u n d e r t r a n s - v e r s e open c i r c u i t c o n d i t i o n s . The l a t e e r i n t u r n depends on t h e s i t e e n e r g i e s and s e p a r a t i o n s o f t h e j u n c t i o n .

The c o n f i g u r a t i o n a l a v e r a g e < V > i s t h e n t a k e n , and i t i s a t t h i s s t a g e t h a t d i f f e r e n c e s among v a r i o u s i n v e s t i g a t ! ? o n s o c c u r . I n o u r c a s e , we t a k e t h e o c c u r r e n c e p r o b a b i l i t i e s o f t h e p o s i t i o n s and e n e r g i e s t o b e i n d e p e n d e n t l y d i s t r i b u t e d , t h e d i s t r i b u t i o n o f t h e s i t e p o s i t i o n s b e i n g t h e u s u a l P o i s s o n d i s t r i b u t i o n f o r a s p a t i a l l y random s y s t e m . The d i s t r i b u t i o n i n e n e r g y c o r r e s p o n d s t o a c o n s t a n t d e n s i t y o f s t a t e s and e x p l i c i t l y t a k e s a c c o u n t o f t h e f a c t t h a t s i t e s o f h i g h e n e r g y

( E 5 em) o c c u r w i t h a much s m a l l e r p r o b a b i l i t y t h a n s i t e s w i t h a l a r g e s p a t i a l s e p a r a t i o n , f o r a g i v e n v a l u e of t h e i n t e r - s i t e impedance. We f i n d t h a t we must d i s t i n g u i s h t h e t h r e e s i t e s a t a j u n c t i o n a c c o r d i n g t o w h e t h e r o r n o t t h e i r e n e r g i e s a r e on t h e same s i d e o f t h e Fermi l e v e l ; t h e f o r m e r make t h e dominant c o n t r i b u t i o n t o V

H '

To o b t a i n t h e m a c r o s c o p i c H a l l f i e l d , i t is a l s o n e c e s s a r y t o know t h e d e n s i t y o f j u n c t i o n s . T h i s is o b t a i n e d from t h e d e t e r m i n a t i o n o f t h e p a r t i c u l a r p e r c o l a t i o n ' p a r t s of t h i s work w e r e done a t U n i v e r s i t y o f S t . Andrews, S c o t l a n d , U n i v e r s i t y o f

C a l i f o r n i a a t R i v e r s i d e , s u p p o r t e d i n p a r t b y NSF g r a n t DMR78-21959-01, and Brown U n i v e r s i t y , P r o v i d e n c e , R I , USA, t h e l a t t e r s u p p o r t e d by t h e M a t e r i a l s R e s e a r c h L a b o r a t o r y , funded b y t h e N a t i o n a l S c i e n c e F o u n d a t i o n .

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1981414

(3)

JOURNAL DE PHYSIQUE

c l u s t e r which c a r r i e s t h e dominant c u r r e n t . C r i t i c a l e x p o n e n t s a r e u s e d h e r e . ( 2 ) From t h e mean ( c o r r e l a t i o n ) d i s t a n c e between j u n c t i o n s L i n t h e t r a n s v e r s e d i r e c t i o n , we o b t a i n t h e open c i r c u i t H a l l f i e l d E = <V > / L . T h i s i n t u r n g i v e s t h e s h o r t c i r c u i t H a l l c u r r e n t j = oEH and f i n a l a y t h e % a l l a n g l e O = jH/jC and H a l l m o b i l i t y pH, where jC

ys

t h e c o n d u c t i o n c u r r e n t d e n s i t y , a y s o depending on t h e d e n s i t y o f c o n d u c t i n g p a t h s .

Having o u t l i n e d o u r p r o c e d u r e i n some d e t a i l , we now proceed t o g i v e some o f t h e k e y e q u a t i o n s and r e s u l t s . The s t a r t i n g p o i n t i s t h e r a t e e q u a t i o n f o r t h e s i t e o c c u p a t i o n p r o b a b i l i t i e s f .

T h i s i s l i n e a r i z e d by w r i t i n g

t h e sum of e q u i l i b r i u m terms p l u s p a r t s l i n e a r i n t h e e l e c t r i c f i e l d (E), t h e mag- n e t i c f i e l d (H), and t h e i r p r o d u c t (EH). The z e r o o r d e r p a r t g i v e s t h e u s u a l d e t a i l e d b a l a n c e i n e q u i l i b r i u m , t h e e q u a t i o n l i n e a r i n E g i v e s t h e c o n d u c t i v i t y e q u a t i o n s f o r ohmic c o n d u c t i o n , t h a t l i n e a r i n H t h e d i a g m a g n e t i c c u r r e n t s , w h i l e t o o r d e r (EH) we have

The m a g n e t i c - f i e l d - p r o p o r t i o n a l p a r t of t h e jump r a t e i n v o l v e s t h e i n t e r m e d i - a r y o f a t h i r d s i t e and i s w r i t t e n a s a n e l e c t r o n p a r t and h o l e p a r t , p r o p o r t i o n a l t o t h e t h i r d s i t e b e i n g empty o r o c c u p i e d , r e s p e c t i v e l y

Here v:;: i s t h e t h r e e s i t e t r a n s i t i o n r a t e f o r e l e c t r o n s , and vijk (h) i s o b t a i n e d from vijk by t h e p r e s c r i p t i o n (e) (E.+S 3 .+-.I.., H+-H). A f t e r c o n s i d e r a b l e m a n i p u l a t i o n ,

I i' i j 1~

t h e l a s t t h r e e ( d r i v i n g ) t e r m s of ( 3 ) , which g i v e t h e e x t r i n s i c c u r r e n t i n t o a g i v e n s i t e (k) become

where @ = l / k ~ ,

J ( 6 )

and t h e t o t a l s i t e p o t e n t i a l i s

w i t h $ . = e g r . t h e e l e c t r o s t a t i c p o t e n t i a l and eVi t h e p e r t u r b a t i o n t o t h e l o c a l c h e m i c i l p o t e n $ i a l d u e t o

E.

For t h e M i l l e r Abrahams c a s e , (3)

(4)

where J i j i s t h e t r a n s f e r i n t e g r a l ,

hji

t h e v e c t o r a r e a of t h e t r i a n g l e ( i j k ) , and

S u b s t i t u t i n g (8) and ( 9 ) i n t o ( 5 ) , we o b t a i n ( e l

wH.

= vijk(Ei = 5 = ck = O ) f ( r i . s j . c k ) .

i j k j

with

1 ) + e x p - B ( ~ . . + ~ c . ) + e x p - B ( e

k

] [

j ik-I 1'

] [

jk''ji-"j'd} i l l )

where

and

A s explained e a r l i e r , t h e e x t r i n s i c c u r r e n t (5) do n o t c o n s t i t u t e t h e Hall c u r r e n t . To o b t a i n t h i s , t h e H a l l v o l t a g e developed a c r o s s any two of t h e t h r e e s i t e s of t h e t r i a n g l e i s c a l c u l a t e d , given t h e e x t r i n s i c c u r r e n t s a t each s i t e ( i . e . eqn ( 5 ) and c y c l i c permutation). T h i s g i v e s ( l a b e l l i n g t h e s i t e s 1 , 2 , 3 )

where j i s t h e (ohmic) c u r r e n t i n t o t h e j u n c t i o n and

w i t h

The "short-ing" e f f e c t due t o t h e impedances e x t e r n a l t o t h e t r i a n g l e h a s been shown t o produce a small e r r o r i n a p e r c o l a t i o n approach.(4)

The f i n a l t a s k i s t o average (13) o v e r a l l p o s s i b l e c o n f i g u r a t i o n s of s i t e p o s i t i o n s and e n e r g i e s of t h e j u n c t i o n . The p r o b a b i l i t i e s a r e assumed t o be independently d i s t r i b u t e d

P ( R 1 2 ~ R 2 3 , R 3 1 ; ~ 1 , ~ 2 ~ & 3 ) = W ( R l 2 , R 2 3 ~ R 3 1 ) ~ c ( c l ~ ~ 2 , c 3 ) , (15) where W i s taken t o b e t h a t f o r a s p a t i a l l y random system(5) with s i t e c o n c e n t r a t i o n N,

R ) = 8 n 2 ~ R R R

W(R12'R239 31 12 23 31 (16)

and

(5)

JOURNAL DE PHYSIQUE

for a constant density of states, v(E)=v. The quantity P~(E~)=P (E.IZ ) is the conditional probability that the second smallest impedance emanagin; fyom site i with energy E. is Z or less, and constrains site i to be on the percolation cluster.

hi;

resuTfts in sites of large ener y (E.<E ) being very unlikely,(6) and is responsible for the small magnitude of 111 H

f

obtirnzd.

In taking the configurational average of (13), the procedure is to integrate over the R. .Is up to Rij (m)=(~/~o)~~T~ij ) for fixed values of the ci.'s. The maxi- mum contri6ation occurs at Ri .=R

i j In performing the subsequent Anergy inte- grations, we use the fact thaz

BE^>>^

to approximate the integrals by their (exponentially large) maximum multiplied by an appropriate half-width. The final result is of the form

where a-I is the radius of the localized wavefunction, A is the distance between largest impedances Zm, BE~=(T~/T)'I~, f are incomplete Gamma functions and n=13/4.

For parameters appropriate to a-Si (a-f=101, v=1019 (e~)-lcrn-~, T=300K), we estimate

This is an upper limit, for reasons which we cannot give for lack of space. We note that P has a power law dependepce on (T IT)%, rather than the exponential dependence pound for o exp[-(T

IT)<].

suchOan exponential dependence (with a smaller T ) has been obtained byOother workers. (7) Their procedure agrees with ours up tg eqn (13), but they apparently average R and E separately with the

constraint ij ij

in contrast with our procedure described just before eqn (18).

A detailed account of this work will appear in a future issue of the Philosophical Magazine (B).

References.

(1) FRIEDMAN, L., HOLSTEIN, T., Ann. Phys.

2

(1963) 494.

(2) SKAL, A.S., SHKLOVSKII, B.I., Soviet Phys. Semicond.

3

(1975) 1029.

(3) MILLER, A., ABRAHAMS, E., Phys. Rev.

120

(1960) 795.

(4) FRIEDMAN, L., POLLAK, M., Phil. Mag. 38 (1978) 173.

(5) HOLSTEIN, T., Phys. Rev.

2

(1961) 1 3 9 .

(6) POLLAK, M., in 'The Metal Non-Metal Transition in Disordered Systems', edited by L. Friedman and D. Tunstall, Proc. of 19th Scottish Universities Summer School in Physics (1978) 239.

(7) GRUNEWALD, U., MUELLER, H., THOMAS, P., WUERTZ, D., Solid State Comm. (to be published).

Références

Documents relatifs

When a number is to be multiplied by itself repeatedly,  the result is a power    of this number.

The continuous line represents the chirality given by (9). The Hall conduc- tivity is represented by the dashed lines for different values of the parameter J 0. That change is

3. The inclusion of the second neighbours did not alter the situation very much.This reveals that the LVIvi mode can be accounted in an interstitial configuration with a

Conclusion.- The optical DLTS method was applied to the high resisti- vity chalcogenide materials, and investigated the concentration and energy levels of gap states.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In the CTRW formalism, one maps the true random walk onto a regular lattice and assumes that all the disorder can be included in a single site waiting time distribution

i) We need two image charges, one for each one of the real charges producing the constant external electric field.. The first term is just the potential due to the external field

In order to illustrate the non-linear impact of the injec- tion magnitude on the spatial distribution of the stratospheric aerosol, we plotted the sulfate aerosol mass mixing