• Aucun résultat trouvé

THE Tγ TEMPERATURE DEPENDENCE OF THE MEAN-SQUARE DISPLACEMENT OF ATOMS IN SOLIDS

N/A
N/A
Protected

Academic year: 2021

Partager "THE Tγ TEMPERATURE DEPENDENCE OF THE MEAN-SQUARE DISPLACEMENT OF ATOMS IN SOLIDS"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00218618

https://hal.archives-ouvertes.fr/jpa-00218618

Submitted on 1 Jan 1979

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE Tγ TEMPERATURE DEPENDENCE OF THE MEAN-SQUARE DISPLACEMENT OF ATOMS IN

SOLIDS

B. Kolk

To cite this version:

B. Kolk. THE Tγ TEMPERATURE DEPENDENCE OF THE MEAN-SQUARE DISPLACE- MENT OF ATOMS IN SOLIDS. Journal de Physique Colloques, 1979, 40 (C2), pp.C2-680-C2-682.

�10.1051/jphyscol:19792236�. �jpa-00218618�

(2)

JOURNAL DE PHYSIQUE

Colloque C2, supplkment au n o 3, Tome 40, mars 1979, page - C2-680

B. Kolk

Department of Physics, Boston University, 111 C d n g t o n S t r e e t , Boston, Massachusetts, 02215,U.S.A.

R6sumb.- Le d6placement quadratique moyen <x2$ des atomes dans les solides est Qtudib en fonction de la tempbrature, et compare

1

la loi empirique en

[r3h

rbcemment mise en bvidence. Un ajustement aux moindres carrbs des donn6es expbrimentales pour diffgrents mstaux 1 une loi du type <x2$

= a +

bTY conduit

1

des valeurs de y allant de 1,2

1

1,9. On donne les formules exprimant le moment p(-2) et la constante d1anharmonicit6 en fonction des paramstres

a,

b et y .

Abstract.- The recently empirically observed T3A temperature dependence for the mean-square displa- cement, e2$, of atoms in solids is investigated. Least-squares fits of <x23data ofvariousmetals to

<x2$

= a +

bTY, yield values of y ranging from 1.2 to 1.9. Formulas are given to derive the fre- quency moment

u ( - 2 )

and the anharmonic constant

E(-2)

from the parameters

a ,

b and y.

1.

Introduction.- The electric field gradient (EFG) at a nuclear site in various non-cubic metals appears

to decrease with temperature as

[r3'2.

This interesting empirical fact has led to a number of theoretical studies /I-3/ which show that the temperature de- pendence of the EFG can be understood by assuming that the mean-square displacement of the host atoms,

< x 2 $ ,

follows the same T 3 ' 2 law. Empirical studies /3,4/ of <x21) data seem to support such an assump- tion. It is of interest to investigate whether the exponent y of the temperature in

<x2$

= a +

b~~

(1)

is a fundamental constant equal to exactly 3/2, or whether the value 1.5 is only an approximation. Also it is of interest to find relations between the pa- rameters a,b and y and the lattice dynamical proper- ties of the solid (see sec.

3).

It is well known that in the harmonic appro- ximation <x2$ is a linear function of T at high temperatures. Hence, the observed T34 behavior is very likely a result of anharmonic effects. In the following section the anharmonic effects on <x2 are discussed.

d

2. Anhannonic effects on &s.- In the harmonic approximation the motions of N individual atoms in a crystal are described by the superposition of 3N independent normal modes. In this approximation pho- nons have an infinetely long mean life. When the anharmonic terms in the vibrational Hamiltonian are taken into consideration, the energy of each

a

harmonic mode, described by the wave vector k and the polarization index

j ,

is shifted by an amount

+Supported by NSF Grant No. DMR 77-19017

f i A ~ . Moreover, the harmonic modes are no longer independent of each other, so that the phonons do not live infinitely long, but have a mean life

I/r,&..(Hence, for a harmonic crystal kj -

0.).

To

keep the following formulas simple a monoatomic iso- tropic crystal is considered. In that case the mean- square displacement can be expressed as /5/

It is important to notice that this result is exact;

no approximation has been made; i.e. anhannonic effects up to all orders are included. However, to evaluate equation

(2)

in closed form seems impossible

In crystals which are not extremely anharmonic the phonons have still a long mean life, so that rzi/qei

<< 1.

In these cases we may take the limit

OF the-right side of equation (2) for

r 2

./a2 k j * o , which yields /5/

coth(hl-. ./2kgT)

I f

2

e2$

=

*

N k j

(3)

ul%

This expression is similar to that obtained for

<x2$ in the harmonic approximation, however with the difference that the harmonic mode frequencies

wG

in the harmonic expression of a21, are repla- ced by

The frequency shift Azi can be written as /5/

A A

kj/% = EG

T +

6&

lu' T2

+

....

(5)

Henceforth, Axi is considered only in first order of T.The mean-square displacement can be expressed

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19792236

(3)

i n t e r m s o f f r e q u e n c y moments, v e r y h a r d t o e v a l u a t e . The s t a n d a r d d e v i a t i o n s i n t h e v a l u e s o f a , b and y f o r i r o n i m p u r i t i e s i n m e t a l s ( 6 )

a r e i n c l u d e d , s i n c e t h e e r r o r s i n t h i s G s s b a u e r e f - f e c t d a t a a r e s m a l l and w e l l e s t a b l i s h e d .

and anharmonic c o n s t a n t s o f o r d e r n ,

From t h e v a l u e s o f a and y, d i s p l a y e d i n t a b l e I , ( n =

c Z j w i j n

/

4

WA k j

" .

( 7 ) t h e f o l l w i n g c o n c l u s i o n s c a n b e d r w n :

k j k j

( i ) The e x p o n e n t y d o e s n o t h a v e a u n i v e r s a l v a l u e of I n t h e low t e m p e r a t u r e l i m i t , T + 0 , e q u a t i o n ( 3 ) 312, b u t v a r i e s from 1.2 t o 1.9.

becomes ( i i ) The v a l u e s o f a a p p e a r t o b e s m a l l e r t h a n t h e

<xZT> = $ ~ ( - 1 ) / 2 M (8) measured v a l u e s o f t h e n e a r s q u a r e d i s p l a c e m e n t s a t w h e r e a s a t moderate and h i g h t e m p e r a t u r e s *

TL

-0, <XzO>, because e q u a t i o n (1) d o e s n o t f i t t h e

(OD i s t h e Debye t e m p e r a t u r e ) e q u a t i o n ( 3 ) can be <x2T> d a t a v e r y w e l l a t t e m p e r a t u r e s T + 0.

expanded i n t h e f o l l o w i n g s e r i e s 151; T h e r e i s l i t t l e d i f f e r e n c e b e m e e n t h e c u r v e s

= { k B T / ~ } F ( - 2 ) { I + ~ E ( - 2 ) ~ } + I / 12

( X

/kBT)'+ ab t a i n e d b y f i t t i n g t h e <xzT> d a t a t o e q s . ( I) and ( 9 ) a t h i g h e r t e m p e r a t u r e s . T h i s f a c t e n c o u r a g e d u s t o

-

11720 ($/kg4I4 ~ ( 2 ) { ~ 2 € ( 2 ) T } +

..z

( 9 )

u s e t h e f o l l o ~ i n g p r o c e d u r e i n d e t e r m i n i n g t h e r e l a - r h e r e

M

i s t h e mass o f t h e atom u n d e r c o n s i d e r a t i o n .

The terms i n e q u a t i o n ( 9 ) ~ h i c h c o n t a i n f r e q u e n c y mo- ments o f o r d e r n = 2 o r l a r g e r may i n g e n e r a l b e ne- g l e c t e d a t t h e t e m p e r a t u r e s where e q u a t i o n (9) i s v a l i d . I n most c a s e s <zZT> d a t a c a n b e f i t t e d v e r y w e l l w i t h e q u a t i o n (9) when t h e low t e m p e r a t u r e

(T < OD/2n) p o i n t s a r e l e f t o u t . R e s u l t s of s u c h l e a s t - s q u a r e s f i t s a r e p r e s e n t e d i n t a b l e I , w h e r e i n s t e a d o f p(-2) t h e r e l a t e d q u a n t i t y / 5 /

t i o n s b e t w e e n a , b and y , and t h e l a t t i c e d y n a m i c a l q u a n t i t i e s P(-2) and E ( - 2 ) . Eqs. ( I) and (9) a r e ex- panded i n a p m e r s e r i e s of T

-

T1

-

T, w h e r e T1 i s

t h e t e m p e r a t u r e a t w h i c h t h e r e s u l t s of e q s . ( 1) and ( 9 ) c o i n c i d e . B e c a u s e e q s . ( I) and (9) g i v e r i s e t o n e a r l y i d e n t i c a l r e s u l t s , t h e zero- o r d e r , f i r s k o r d e r and s e c o n d - o r d e r t e r m s i n T o f b o t h e x p r e s s i o n s s h o u l d b e e q u a l t o e a c h o t h e r . From t h e s e "matching"

r e l a t i o n s , and u s i n g a

2 e2

>, t h e f o l l w i n g e x p r e r 8(-2) a

(HAB)

J 3/p(-2)

i s g i v e n .

(10) s i o n f o r t h e e x p o n e n t y i s d e r i v e d ;

y

Ik-

312 f 112 /I-8<xZ0> / {<x2 < x Z 0 > ) (11) 3. The T~ dependence o f <x2,>.- From l e a s t - s q u a r e s where / 6 /

f i t s o f t h e e Z T > d a t a t o e q u a t i o n ( I ) t h e v a l u e s a,

2

9 < z 2 >

b and y, p r e s e n t e d i n t a b l e I , a r e o b t a i n e d . i s t h e mean-square d i s p l a c e m e n t a t t e m p e r a t u r e T l a s The s t a n d a r d d e v i a t i o n s i n t h e v a l u e s of a , b and g i v e n by e q . ( l ) . Hence, y = 312 f o r < x 2 , > = 9 < ~ ~ ~ > - f o r t h e P u r e m e t a l s a r e o m i t t e d , because the errors The mean-square d i s p l a c e m e n t a t t h e m e l t i n g ~ o i n t , i n t h e < x Z T > d a t a ( m o s t l y from experiments) are which i s r o u g h l y 15 t i m e s t h a t a t T - 0 , g i v e s a n ap-

p r o x i m a t e u p p e r l i m i t o f < x Z 1 > . T a b l e I

R e f e r e n c e s f o r t h e p u r e m e t a l < x Z T > d a t a can b e found i n S i n g h and Sharma, Phys. Rev. (1971) 1141. The

<x2 > d a t a of i r o n i m p u r i t i e s i n v a r i o u s h o s t s g a s c b t a i n e d from Nussbaum e t a l . , Phys. Rev.

173

( 1968) 653.

I n The l e a s t - s q u a r e s f i t t i n g of t h e i r o n i m p u r i t y d a t a t h e <x2 > v a l u e s a t t h e l w e s t t e m p e r a t u r e s w e r e o m i t t e d , s i n c e t h a t r e s u l t e d i n a b e t t e r f i t a t h i g h e r t e m p e r a f u r e s .

1 System

A 2 Cr Cu Ag A u Pb

F e i n Cu F e i n Pd F e i n P t

$

a ( 10- 'A') 0.84 0 . 3 1 9.23

, 1.64

0.47 2. 18

0. 12 t 0 . 0 1 0 . 14

+

0.006 0 . 15 2 0 . 0 0 7

b ( I O - ~ A ~ K ~ / ~ ) 4.4

1.6 2.1 11.0 10.0 0 . 8 8

5. 17 2 0.97 2.79

+

0.26 6.78 f 0 . 7 8

( K ) 0(-2) ( K ) o m e q . ( I From eq. ( 9 )

443 460 f 2 8

376 372 f 3

330 336

+

5

222 201 f 5

187 187

+

8

165 134

+

7

36 1 374 f 1.3

323 326 2 1.5

367 372

*

3.0

y 1.50 1.47 1. 19 1.28 1. 30 1.94

1 . 2 0 f 0 . 0 3 1.32 ?: 0 . 0 1 1 . 2 0 f 0 . 0 2

E(-2) ( I O - ~ K ~ ) E(-2) ( lo-* ')K From e q . ( I) From e q . ( 9 ) 4 . 0 8 5 . 1

+

1.6 0 . 8 2 1.07 c 0 . 15

1.3 1 1.7 +_ 0 . 6

0 . 5 3 0.4

+

0 . 3

1.68 1.6

+

0.7

33.8 29.0

+

3.2

2 . 0 0 2 . 3 8

+

0.10 0 . 8 7 0.92

+

0 . 10

0.82 1.07

+

0. 15

(4)

C2-682

JOURNAL DE PHYSIQUE For 9

5

<x2 > 15 t h e v a l u e s o f y range from 1.2 t o

1.8 i n f a i r agreement w i t h t h e range of y shown i n t a b l e I.

From t h e "matching" r e l a t i o n s i t can r e a d i l y be d e r i v e d t h a t

E (-2) =

Y-l I ,

( 13)

2-Y 4T1 and t h a t 1.1(-2) =

---

M

k ~ T l

(14) where

The v a l u e s of E ( - 2 ) and 0(-2) ( s e e e q . 1 0 ) . d e r i v e d from t h e p a r a m e t e r s a, b and y w i t h t h e a i d o f t h e f o r m u l a s above, a r e c o l l e c t e d i n t a b l e I. Comparison w i t h r e s u l t s o b t a i n e d from a l e a s t - s q u a r e s f i t o f the same d a t a t o e q u a t i o n ( 9 ) , shows a f a i r agreement w i t h i n t h e e r r o r l i m i t s .

The a u t h o r would l i k e t o thank M r . E . Gawlinski

R e f e r e n c e s

/ I / J e n a , P . , Phys. Rev. L e t t .

2

(1976) 418.

/ 2 / Kolk, B . , J . Physique C o l l o q .

2

(1976) C6-355.

/3/ Nishiyama, K. and R i e g e l

,

D., Hyperf

.

I n t

. 5

(1978) 490.

/ 4 / Bastow, T . J . , Mair, S.L. and W i l k i n s , S.W., J . Appl. Phys.

48

(1977) 494.

/ 5 / A d e t a i l e d d i s c u s s i o n a b o u t anharmonic e f f e c t s on < x ~ ~ > , and t h e r e l e v a n t r e f e r e n c e s , a r e g i v e n by B. Kolk i n "Dynamical P r o p e r t i e s o f S o l i d s "

Vol. I V , Eds. G.K. Horton and A.A. Maradudin, (North Holland/ American E l s e v i e r P u b l i s h i n g Company)(to b e p u b l i s h e d ) .

1 6 1 To f u l f i l l E q u a t i o n 12 t h e p o s i t i v e s i g n i n Equa- t i o n 1 1 h a s t o be chosen when 6a/bT1) > 1 and t h e n e g a t i v e siHn, when 6a/(bT1 Y2) < 1 . F o r v e r y anharmonic s o l i d s m a 2 > i s l a r g e and Tl r e l a t i - v e s m a l l , s o t h a t 6a/(bTl 3/2) > 1 and t h u s y > 312 whereas f o r l e s s anharmonic s o l i d s y < 312 i s e x p e c t e d .

and M r . K. Auerbach f o r t h e i r h e l p i n t h e c o m p i l a t i o n of t a b l e I.

Références

Documents relatifs

contrast of individual dislocations in silicon; by analysing their results they concluded that the con- trast model proposed by Donolato [3, 4] was unable.. to

emission of quanta of the external field are correlated in stimulated transitions, the gradient force is a regular quantity.. Spontaneous emission destroys the

(ii) The cluster was subject to periodic boundary conditions. - Schematic one-dimensional analogy of the potentials and boundary conditions used in the calculations a)

Abstract.'- The EBIC contrast from extended defects in semi- conductors can, in principle, be related to the defect capture cross-section for minority carriers and hence to the

In summary, we conclude that the Co atoms dif- fused in Si and implanted in Si and subsequently annealed form segregated intermetallic phases with Si, similarly to Fe implanted

A rough estimate of the corresponding diffusion length L and the average distance of the traps A$ (figure 5) can be made from Xb- 2L= 2 x 2(Dltb)'/' where D l is the dif-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The results of recent investigations of the effect of high pressures on grain boundary diffusion and grain boundary migration in Aluminium are compared. The activation