• Aucun résultat trouvé

Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies

N/A
N/A
Protected

Academic year: 2021

Partager "Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies"

Copied!
3
0
0

Texte intégral

(1)

Full Terms & Conditions of access and use can be found at

https://www.tandfonline.com/action/journalInformation?journalCode=tprs20

International Journal of Production Research

ISSN: 0020-7543 (Print) 1366-588X (Online) Journal homepage: https://www.tandfonline.com/loi/tprs20

Artificial intelligence in manufacturing and

logistics systems: algorithms, applications, and

case studies

Chen-Fu Chien, Stéphane Dauzère-Pérès, Woonghee Tim Huh, Young Jae

Jang & James R. Morrison

To cite this article: Chen-Fu Chien, Stéphane Dauzère-Pérès, Woonghee Tim Huh, Young Jae Jang & James R. Morrison (2020) Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and case studies, International Journal of Production Research, 58:9, 2730-2731, DOI: 10.1080/00207543.2020.1752488

To link to this article: https://doi.org/10.1080/00207543.2020.1752488

Published online: 27 Apr 2020.

Submit your article to this journal

Article views: 3640

View related articles

View Crossmark data

(2)

International Journal of Production Research, 2020

Vol. 58, No. 9, 2730–2731, https://doi.org/10.1080/00207543.2020.1752488

EDITORIAL

Artificial intelligence in manufacturing and logistics systems: algorithms, applications, and

case studies

Modern manufacturing and logistics systems are supported by increasingly ubiquitous and powerful computing networks. Within these networks, oceans of data are continuously being generated by sensors, machines, systems, smart devices, and people. Together with rising computational capabilities, this Big Data is being analysed faster, more broadly, and more deeply than ever before. These advances have redefined the value of Artificial Intelligence (AI) technologies and opened a new age known as Industry 4.0 or the Smart Factory.

Advanced cognitive computing and deep learning methods have begun to find application in manufacturing systems for automated visual inspections, fault detection, and maintenance. There are active efforts to apply reinforcement learning methods to material handling systems and production scheduling. Industries hoping to convert real-time data into actionable decisions seek opportunities to integrate AI methods with traditional Operational Research approaches, the concepts and technologies of the Internet of Things (IoT), and cyber-physical systems.

The aim of this special issue is to provide insight into the latest advances emerging in the production research community that seek to exploit AI methods in this field. The special issue received 61 submissions from which nine papers were selected. The papers are grouped into three categories: AI methods for manufacturing systems, AI developments specifically in semiconductor manufacturing, and AI in additive manufacturing and maintenance. Within these categories the papers are ordered alphabetically by the last name of the first author.

As part of Industry 4.0, the exploitation of data for intelligent decision making is essential for general manufacturing systems. The paper by Deng et al. considers milling systems and endeavours to predict machining parameters that will provide reliable chatter-free milling. They use a neural network to model the limiting axial cutting depth as a component of the second-order fourth-moment method. The next paper by Fang et al. considers the prediction of the time remaining for jobs to be completed in a job shop. Using big data, they develop a deep learning method for the prediction that is superior to previous regression or network-based predictions in their numerical experiments. The third paper in this category by Rao et al. focuses on a bi-objective welding shop scheduling problem. The problem is modelled as a mixed-integer programme and solved via a non-dominated sorting genetic algorithm with a restarting strategy. Numerical experiments show that the proposed algorithm dominates four other algorithms.

There is much excitement regarding the potential for AI in semiconductor manufacturing. In Chien et al., deep reinforce-ment learning is exploited to guide the selection of demand forecast models for semiconductor components and modules. An empirical study and a real-world implementation demonstrated the validity of the approach. The identification and classifi-cation of defects are essential in semiconductor manufacturing and the paper by Kim et al. studies this important problem. They use a generalised uncertain decision tree model to classify defect patterns on multiple wafer maps based on uncertain features and show that their approach is significantly more efficient than existing methods to analyze real DRAM wafers. The problem of dynamic dispatching for unreliable machines in re-entrant production systems, typically semiconductor manufacturing systems, is considered in the paper by Wu et al. They combine a deep neural network model and Markov decision processes (MDP) to rapidly generate near optimal dynamic control policies for problems that are too large to be only solved by MDP, thus showing the potential of machine learning in controlling unreliable manufacturing systems.

Additive manufacturing and data-driven maintenance are of increasing importance to support the emergence of truly Smart Factories. In the paper by Elhoone et al., a framework for a cyber additive manufacturing system is developed. Three artificial neural network algorithms are proposed and embedded in a two-stage model to support the dynamic allocation of digital designs to different additive manufacturing techniques. The paper by Stanisavljevic et al. provides insights from an experimental study on methods to detect interferences, and thus improve product quality, in real time in additive manufactur-ing. Their approach is of practical importance and relies on sensor data and methods such as feature selection and machine learning to reach very high detection rates. With an eye toward optimal maintenance decisions in a risk-based environment with fuzzy parameters, the paper by Wang et al. considers belief propagation in constrained fuzzy Bayesian networks. They

(3)

Editorial 2731 develop an approach, using a max-min programming model, to address the inference problem. Their framework is validated on a gas compressor maintenance problem.

Acknowledgment

We thank the many reviewers that supported this special issue with their insight and feedback. We also thank the Editor-in-Chief, Professor Alexandre Dolgui, and the editorial staff of the International Journal of Production Research (IJPR) for their kind support, assistance, and patience. It is our hope that the papers in this special issue of IJPR will inspire continued exploration in this important direction and provide guidance toward the future use of AI in manufacturing and logistics systems.

Chen-Fu Chien Department of Industrial Engineering and Engineering Management, National Tsing Hua University, Hsinchu, Taiwan Email:cfchien@mx.nthu.edu.tw http://orcid.org/0000-0003-3328-4946 Stéphane Dauzère-Pérès Department of Manufacturing Sciences and Logistics, CMP, Mines Saint-Etienne, University Clermont Auvergne, Gardanne, France; Department of Accounting, Auditing and Business Analytics, BI Norwegian Business School, Oslo, Norway Email:dauzere-peres@emse.fr http://orcid.org/0000-0002-3566-3248 Woonghee Tim Huh Sauder School of Business, University of British Columbia, Vancouver, BC, Canada Email:tim.huh@sauder.ubc.ca Young Jae Jang Department of Industrial and Systems Engineering, KAIST, Daejeon, South Korea Email:yjang@kaist.edu James R. Morrison School of Engineering and Technology, Central Michigan University, Mt. Pleasant, MI, USA Email:morri1j@cmich.edu

Références

Documents relatifs

The studied models are mainly based on the immune network theory, clonal selection principles and negative selection mechanisms.. The rest of this report is organized

The eclectic and powerful representation and calculation capabilities of the DSMs can be combined into a Multi Domain Matrix, MDM, by the DMMs Domain Mapping Matrices in order

The current reality of the Artificial Intelligence and Machine Learning hype penetrating from research into all industry sectors and all phases of sys- tem design and development is

Finally, the requirement management process and tool must maintain control data for the requirement hierarchy and facilitate the use and operation of a distributed

A form of technical intelligence that goes beyond simple information and is embedded into manufacturing systems components and within the products themselves is playing a

This talk explores the use of AI techniques (such as fuzzy logic) for data classification and suggests a method that can determine requirements for classification of organizations’

Artificial Intelligence and engineering design have different definitions and considerations concerning the cooperative and collaborative decision making. Whilst for

Identification of sources of potential fields with the continuous wavelet transform: Basic theory.. Frédérique Moreau, Dominique Gibert, Matthias Holschneider,