• Aucun résultat trouvé

Microbial Influenced Corrosion of passive alloys in natural or industrial waters and test methodology.

N/A
N/A
Protected

Academic year: 2021

Partager "Microbial Influenced Corrosion of passive alloys in natural or industrial waters and test methodology."

Copied!
16
0
0

Texte intégral

(1)

HAL Id: cea-02417241

https://hal-cea.archives-ouvertes.fr/cea-02417241

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Microbial Influenced Corrosion of passive alloys in

natural or industrial waters and test methodology.

D. Feron

To cite this version:

D. Feron. Microbial Influenced Corrosion of passive alloys in natural or industrial waters and test methodology.. FRC-CORR2017 - Fukushima Research Conference on corrosion prediction and miti-gation for key components of Fukushima Daiichi NPS, Nov 2017, Sendai, Japan. �cea-02417241�

(2)

www.cea.fr

MICROBIAL INFLUENCED

CORROSION

OF PASSIVE ALLOYS IN NATURAL OR

INDUSTRIAL WATERS

AND TEST METHODOLOGY

.

Fukushima Research Conference on “corrosion prediction and mitigation for key components of Fukushima Daiichi NPS”, FRC-CORR2017 Fukushima Prefecture - November 27-28, 2017

|Damien Féron, CEA-Den, Université Paris-Saclay, Gif-sur-Yvette, France

MICROBIAL INFLUENCED CORROSION - CONTENT

Background

MIC & biofilms

MIC, bacteria & radiation

Passive alloys

Aerobic conditions

Seawater, natural waters, aerated soils

Anaerobic environments

Sulfur Reducing Bacteria (SRBs), de-aerated environments

Mixed conditions

Scenarios / natural & industrial environments

Conclusion

| PAGE 2 CEA – Damien Féron | November 2017

(3)

BACKGROUND

MIC & BIOFILMS

7 DÉCEMBRE 2017 | PAGE 3

CEA | 10 AVRIL 2012

MICROBIAL INFLUENCED CORROSION

MATERIAL MEDIA MICROORGANISM BIOCORROSION pH Oxygen Temperature Organics & inorganic compounds Flow rate Corrosive and inhibitors ions Alloy

Major and minor elements Surface finishing Welding Conditioning Planktonic or sessile bacteria Extracellular proteins Exopolysaccharides Metabolisms Enzymes Biofilm Microbial corrosion

Interactions Material / Media / Microorganisms

Materials -Steels -Passive alloys  Stainless steels  Nickel alloys  Titanium Media - Aerobic/Anaerobic - pH Micro-organisms -Contamination | PAGE 4 CEA – Damien Féron | November 2017

(4)

Biofilm Heterogeneity

Biofilm

• Interface between alloy & media

• Found « everywhere »

• Complex

• Heterogeneous

• Large evolution (4 dimensions)

Domains where biofilms have been found

SPECIFICITY OF THE BIOFILM

| PAGE 5 CEA – Damien Féron | November 2017

Biofilms & corrosion in a mixed environment

HETEROGENEITY OF THE BIOFILM

| PAGE 6 CEA – Damien Féron | November 2017

1- Catalysis of cathodic reaction

(5)

ELECTROACTIVE BIOFILMS

The concept of electroactive biofilms comes from bacterial

fuel cells

7 DÉCEMBRE 2017

| PAGE 7 CEA – Damien Féron | November 2017

ELECTROACTIVE BIOFILMS MECHANISMS

Electron transfert between conductive surface and bacteria

Indirect mediator(s) Direct membrane Direct pili | PAGE 8 CEA – Damien Féron | November 2017

(6)

ELECTROACTIVE BIOFILMS & CORROSION

Electron acceptor : increase of the cathodic reaction kinetic

Electron donor: cathodic protection

The double aspects of SRBs

Effect of aerobic biofilms

| PAGE 9 CEA – Damien Féron | November 2017

BACKGROUND

MIC, BACTERIA & RADIATION

7 DÉCEMBRE 2017 | PAGE 10

(7)

• Biofilms observed in extreme conditions (high radioactive levels, very low nutrient concentrations) • Other reports in USA (Savannah River) and in Spain • Autotrophic population able to oxidize H2as energy

source, using O2as electron acceptor and CO2as carbon source (Ralstonia sp. & Burkholderia sp.)

• High potentials up to +400 mV/SCE observed

MIC & SPENT FUEL PONDS

Areas where biofilm have been found in spent fuel ponds

G. Galès, PhD Thesis, 2004, Université d’Aix-Marseille

G. Galès & Al., FEMS microbiology letters, 240 (2004) 155-162

| PAGE 11 CEA – Damien Féron | November 2017

• SRB activity has been found on Magnox sludge from corroding magnesium clad fuel elements • Microbial biofilm growth

experienced in laboratory long term tests on irradiated stainless steel SNF cladding.

• Various bacteria, including SRBs, can survive with a total absorbed dose of 3,2 103Gy.

MIC & SPENT NUCLEAR FUEL CLADDING

D.F. Bruhn & al., JNM 384 (2009) 140-145 C.R. Gregson & Al., JNM 412 (2011) 145-156

Microbial activity and biofilms on irradiated spend nuclear fuel

cladding

| PAGE 12 CEA – Damien Féron | November 2017

(8)

ENHANCEMENT OF CATHODIC REACTION BY

BACTERIA IN HYDROGEN ENVIRONMENTS

Under irradiation, hydrogen is produced by water radiolysis and may

be used by bacteria to reduce some oxidant

7 DÉCEMBRE 2017

| PAGE 13 CEA – Damien Féron | November 2017

PASSIVE ALLOYS

AEROBIC CONDITIONS

NATURAL AERATED ENVIRONMENTS

(9)

Aerobic Biofilms in natural waters

Free corrosion potential evolution of 254 SMO stainless steel coupons in natural seawaters

[MAST II, Marine biofilms on stainless steels : effects, monitoring and prévention. Final report,. 1996] SEA WATER -2 00 -1 00 0 1 00 2 00 3 00 4 00 0 20 4 0 60 80 T emp s ( j o ur s) B r est Cher bour g Gen ova K r ist in eber g T r on dheim

In aerated natural waters, the free corrosion potential on

stainless steels increases with exposure time. This evolution is

linked to the biofilm formation.

| PAGE 15 CEA – Damien Féron | November 2017

0 100 200 300 400

Platinum titanium 654 SMO Inconel 625

C o rr o s io n P o te n tia l m V /S C E 30°C 20°C

Corrosion potentials observed after 30 days in natural sea water.

In aerated natural waters, the free corrosion potential on

passive alloys increases with exposure time. This evolution is

linked to the biofilm formation.

Aerobic Biofilms in natural waters

| PAGE 16 CEA – Damien Féron | November 2017

(10)

Biofilm formed in seawater on stainless steel at constant potential -0.2 V/SCE

 Current densities up to 1.3 A/m2, with [O

2] = 0.24 mM

MICROBIAL CATALYSIS OF THE CATHODIC REACTION

-800 -600 -400 -200 0 -500 -400 -300 -200 -100 0 100 200 300 Potential (mV/ECS) C u rr e n t (µA )

A.Bergel, D.Féron, A.Mollica

Electrochem. Comm. 7 (2005 ) 900 - 904

| PAGE 17

CEA – Damien Féron | November 2017

Natural seawater: 74% of the specimens are corroded - 1 month of exposure

Biosynthetic seawater (glucose oxydase addition) at 20°C: 91% after only 5 days

good reproduction and acceleration of the MIC

proposal of an ISO standard by TC156

International Round Robin Tests

C EA, Fr ance CT O, Gdansk*, Poland DCN, Cherbourg , France DNV , No rw a y H U T , Fi nl and ICM M , Italy IC PM D ,D ubr ov ni k, Kr oati a * SIN T EF, N o rw ay Sumi tomo, Japan T N O, Ho lla n d PC GM M e x ico 1 month 3 months 6 months 0 1 2 3 Number of init . ( n of 3) Laboratory

Testing time (month) 1 month 3 months 6 months Only one parallel AvestaPolarit, Sw eden CEA, France CEA, France-2 CSM, Italy CTO, Gdansk, Poland DCN, Cherbourg, France DNV, Norw ay FORCE Institute, Denmark ICMM, Italy

ICPMD,Dubrovnik, Kroatia* Sheffield Testing Lab

UK Shell Global Solution, (SRTCA) Sumitomo, Japan TNO, Holland UPS, Toulouse, France ZAG, Ljubljana, Slovenia 20 °C30 °C 0 1 2 3 Number of initiations Laboratories Initiated One specim. tested | PAGE 18 CEA – Damien Féron | November 2017

(11)

Influence of the concentrations of chloride on the pitting behavior of 304 & 316 stainless steels

RIVER OR GROUND WATERS : IMPORTANCE OF

THE CHEMISTRY

Electroactive biofilms (bacteria) may increase the corrosion potential above the pitting potential or above the repassivation potential, leading

respectively to pit initiation or propagationCEA – Damien Féron | November 2017 | PAGE 19

7 DÉCEMBRE 2017

Stainless steel electrodes (0.12 m2) located in aerated seawater

and in the mud

0 10 20 30 0 5 10 15 20 t/d i/mA .m

-2 After 8 days in the sea, the current of

the biofuel cell reaches 23 mA.m2.

=> Biofuel cell

C. Daumas et al.., Electrochimica Acta 53 (2007) 468–473

Potential of the cathode lower than 0.0mV/Ag.AgCl instead of +300mV/Ag.AgCl (free corrosion potential)

=> Cathodic protection

ELECTROACTIVE BIOFILMS:

FROM BIOFUEL CELL TO BIOCATHODIC PROTECTION

| PAGE 20 CEA – Damien Féron | November 2017

(12)

PASSIVE ALLOYS IN AEROBIC ENVIRONMENTS

Summary

Increase of the free corrosion potential of passive alloys is linked

to the formation of a biofilm

Biocatalysis of the cathodic reaction by the biofilm (EA

biofilm)

This may lead to inititation and then propagation of the pits or

crevice corrosion

A methodology based on enzyme mechanisms may help for the

choice of an alloy or for the determination of the localized

corrosion risk for an alloy already in place

7 DÉCEMBRE 2017

| PAGE 21 CEA – Damien Féron | November 2017

PASSIVE ALLOYS

ANAEROBIC CONDITIONS

SRB versus SULPHIDE ?

7 DÉCEMBRE 2017 | PAGE 22 CEA | 10 AVRIL 2012

(13)

METHODOLOGY:

Crevice former utilised for the tests Connection of SS samples to a potentiostat and to a data logger.

7 DÉCEMBRE 2017

Investigations in anaerobic environments (suphate reducing bacteria) based on the breakdown potentials (crevice corrosion / pitting potentials) of passive alloys (stainless steels)

Cumulative distribution of the breakdown potentials

measured on, at least, 10 similar samples

| PAGE 23 CEA – Damien Féron | November 2017

ANAEROBIC BIOFILMS

Cumulative distributions of breakdown potentials for 316L (EN 1.4404) in SRB culture and in aerated sterile seawater

Cumulative distributions of breakdown potentials for 316L (EN 1.4404) in SRB culture and in de-aerated seawater added with Na2S

Evolution of breakdown potentials

with and without SRBs

Sulphides added as Na

2

S simulate the effect of SRBs on

the breakdown potential of stainless steels

| PAGE 24 CEA – Damien Féron | November 2017

(14)

SUMMARY - STAINLESS STEEL BEHAVIOUR

7 DÉCEMBRE 2017 Ecorrin presence of SRBs – Ecoris

fixed by the sulphides

316L stainless steel (EN 1.4404)

Sterile conditions

Aerobic conditions

Anaerobic conditions

| PAGE 25 CEA – Damien Féron | November 2017

Test methodology to simulate of a biofilm with

aerobic and anaerobic areas

Sulphides under biofilms

SYNERGY OF AEROBIC AND ANAEROBIC BIOFILMS

| PAGE 26 CEA – Damien Féron | November 2017

(15)

BIOCORROSION OF STAINLESS STEELS IN NATURAL WATERS

CONCLUSION1- Electroactive biofilms can be formed and developed even under

irradiation.

2- Aerobic biofilms increase the rate of the cathodic reaction on passive alloys (stainless steels, nickel based alloys, titanium,…)

The effect of aerobic bacteria can be simulated by adding glucose oxidase and glucose to sterile seawater.

3- SRBs biofilms lead to decrease breakdown potentials of passive alloys.

The effect of anaerobic bacteria can be simulated by adding Na2S

to sterile de-aerated seawater.

4- The settlement of aerobic bacteria and the presence of active SRB bacteria act in synergistic way as promoters of corrosion onset:

• cathodic reaction(s) accelerated by the aerobic biofilm. • anodic resistance locally decreased (i.e. anodic reaction

accelerated) by the anaerobic biofilm.

CONCLUSIVE COMMENTS (1/2)

| PAGE 27 CEA – Damien Féron | November 2017

BIOCORROSION OF STAINLESS STEELS IN NATURAL WATERS CONCLUSION

1. Biocides

2. Materials: alloy adapted at its environments and the evolutions linked with bacteria

3. Conception: no stagnant waters / surface cleaning 4. Coatings: isolation of the alloy from the media

5. Cathodic protection: sacrificial anodes / imposed courant

CONCLUSIVE COMMENTS (2/2): MIC MITIGATION

anode sacrificielle (Mg)

| PAGE 28 CEA – Damien Féron | November 2017

(16)

7 DÉCEMBRE 2017 | PAGE 29

CEA | 10 AVRIL 2012

Direction de l’Energie Nucléaire Département de Physico-Chimie Service de la Corrosion et du Comportement des Matériaux dans leur Environnement

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Saclay| 91191 Gif-sur-Yvette Cedex

Damien Féron

T. +33 (0)1 69 08 20 65|F. +33 (0)1 69 08 15 86 damien.feron@cea.fr

Références

Documents relatifs

The addition of alloying elements more active than iron increases the corrosion resis- tance in the active region by improving the protec- tive quality of corrosion product film

Right panel: Average scattering phase function (solid red circles), theoretical phase function (blue plus-symbols) calculated for spherical ice particles from the FSSP-300

I was not particularly surprised at this result; 316 Stainless Steel should exhibit good crevice corrosion resistance against a strictly chemical attack, especially in

Alors que des épidémies de maladies vectorielles surviennent partout à la surface du globe (Zika en Amérique du Sud et dans les Antilles, de la fièvre jaune en Angola, et de la

Increase in the size of the ionomer domains with repeated melting (10-min period) and crystallization, for the 50% PP/50% ionomer blend, at a crystallization temperature. of

Structurellement, les torches plasma thermique à électrode creuse (ou cathode creuse) étudier dans le cadre de ces travaux, sont constituées d’une anode et

Upon photoexcitation at 580 nm, the closed forms of all four compounds were converted back to their initial open forms and the electronic absorption spectra, notably the Soret

responses in eight different plant species: Intracellular calcium measurements in Nicotiana tabacum cell culture, Sporamin gene induction in Ipomoea batatas, PDF2.2 gene expression