• Aucun résultat trouvé

0°C to 70°C . . . 3 V to 16 V – 40 ° C to 85 ° C . . . 4 V to 16 V – 55 ° C to 125 ° C . . . 5 V to 16 V

N/A
N/A
Protected

Academic year: 2023

Partager "0°C to 70°C . . . 3 V to 16 V – 40 ° C to 85 ° C . . . 4 V to 16 V – 55 ° C to 125 ° C . . . 5 V to 16 V"

Copied!
70
0
0

Texte intégral

(1)

D Wide Range of Supply Voltages Over Specified Temperature Range:

0°C to 70°C . . . 3 V to 16 V – 40 ° C to 85 ° C . . . 4 V to 16 V – 55 ° C to 125 ° C . . . 5 V to 16 V

D Single-Supply Operation

D Common-Mode Input Voltage Range Extends Below the Negative Rail (C-Suffix and I-Suffix Types)

D Low Noise . . . 25 nV/√Hz Typically at f = 1 kHz (High-Bias Mode)

D Output Voltage Range includes Negative Rail

D High Input Impedance . . . 10

12

Typ

D ESD-Protection Circuitry

D Small-Outline Package Option Also Available in Tape and Reel

D Designed-In Latch-Up Immunity

description

The TLC271 operational amplifier combines a wide range of input offset voltage grades with low offset voltage drift and high input impedance. In addition, the TLC271 offers a bias-select mode

that allows the user to select the best combination of power dissipation and ac performance for a particular application. These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

AVAILABLE OPTIONS

T V

PACKAGE

TA VIOmax

AT 25°C

SMALL OUTLINE

(D)

CHIP CARRIER

(FK)

CERAMIC DIP (JG)

PLASTIC DIP

(P)

0°C 2 mV TLC271BCD TLC271BCP

0 C to

2 mV 5 mV

TLC271BCD

TLC271ACD — —

TLC271BCP TLC271ACP

70°C 10 mV TLC271CD TLC271CP

– 4040 C°C 2 mV TLC271BID TLC271BIP

to

2 mV 5 mV

TLC271BID

TLC271AID — —

TLC271BIP TLC271AIP

85°C 10 mV TLC271ID TLC271IP

– 55°C to

125°C 10 mV TLC271MD TLC271MFK TLC271MJG TLC271MP The D package is available taped and reeled. Add R suffix to the device type (e.g., TLC271BCDR).

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

1 2 3 4

8 7 6 5 OFFSET N1

IN – IN + GND

BIAS SELECT VDD

OUT OFFSET N2

3 2 1 20 19

9 10 11 12 13 4

5 6 7 8

18 17 16 15 14

NC VDD NC OUT NC NC

IN – NC IN + NC

FK PACKAGE (TOP VIEW)

NC OFFSET N1 NC NCNC

NC GND NC

NC – No internal connection

OFFSET N2BIAS SELECT

LinCMOS is a trademark of Texas Instruments Incorporated.

(2)

DEVICE FEATURES PARAMETER†

BIAS-SELECT MODE PARAMETER† UNIT

HIGH MEDIUM LOW UNIT

PD 3375 525 50 µW

SR 3.6 0.4 0.03 V/µs

Vn 25 32 68 nV/√Hz

B1 1.7 0.5 0.09 MHz

AVD 23 170 480 V/mV

† Typical at VDD = 5 V, TA = 25°C

description (continued)

Using the bias-select option, these cost-effective devices can be programmed to span a wide range of applications that previously required BiFET, NFET or bipolar technology. Three offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC271 (10 mV) to the TLC271B (2 mV) low-offset version. The extremely high input impedance and low bias currents, in conjunction with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available in LinCMOS  operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are all easily designed with the TLC271. The devices also exhibit low-voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and output are designed to withstand – 100-mA surge currents without sustaining latch-up.

The TLC271 incorporates internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0 ° C to 70 ° C. The I-suffix devices are characterized for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C.

bias-select feature

The TLC271 offers a bias-select feature that allows the user to select any one of three bias levels depending

on the level of performance desired. The tradeoffs between bias levels involve ac performance and power

dissipation (see Table 1).

(3)

Table 1. Effect of Bias Selection on Performance

TYPICAL PARAMETER VALUES MODE

TYPICAL PARAMETER VALUES UNIT

TA = 25°C, VDD = 5 V HIGH BIAS MEDIUM BIAS LOW BIAS UNIT

TA = 25 C, VDD = 5 V HIGH BIAS

RL = 10 kΩ

MEDIUM BIAS RL = 100 kΩ

LOW BIAS RL = 1 MΩ

PD Power dissipation 3.4 0.5 0.05 mW

SR Slew rate 3.6 0.4 0.03 V/µs

Vn Equivalent input noise voltage at f = 1 kHz 25 32 68 nV/√Hz

B1 Unity-gain bandwidth 1.7 0.5 0.09 MHz

φm Phase margin 46° 40° 34°

AVD Large-signal differential voltage amplification 23 170 480 V/mV

bias selection

Bias selection is achieved by connecting the bias select pin to one of three voltage levels (see Figure 1). For medium-bias applications, it is recommended that the bias select pin be connected to the midpoint between the supply rails. This procedure is simple in split-supply applications, since this point is ground. In single-supply applications, the medium-bias mode necessitates using a voltage divider as indicated in Figure 1. The use of large-value resistors in the voltage divider reduces the current drain of the divider from the supply line. However, large-value resistors used in conjunction with a large-value capacitor require significant time to charge up to the supply midpoint after the supply is switched on. A voltage other than the midpoint can be used if it is within the voltages specified in Figure 1.

bias selection (continued)

VDD

1 M

1 M

0.01 µF Low

Medium High To the Bias

Select Pin

BIAS MODE BIAS-SELECT VOLTAGE (single supply) Low

Medium High

VDD 1 V to VDD – 1 V

GND

Figure 1. Bias Selection for Single-Supply Applications

high-bias mode

In the high-bias mode, the TLC271 series features low offset voltage drift, high input impedance, and low noise.

Speed in this mode approaches that of BiFET devices but at only a fraction of the power dissipation. Unity-gain bandwidth is typically greater than 1 MHz.

medium-bias mode

The TLC271 in the medium-bias mode features low offset voltage drift, high input impedance, and low noise.

Speed in this mode is similar to general-purpose bipolar devices but power dissipation is only a fraction of that

consumed by bipolar devices.

(4)

low-bias mode

In the low-bias mode, the TLC271 features low offset voltage drift, high input impedance, extremely low power consumption, and high differential voltage gain.

ORDER OF CONTENTS

TOPIC BIAS MODE

schematic all

absolute maximum ratings all

recommended operating conditions all electrical characteristics

operating characteristics typical characteristics

high (Figures 2 – 33) electrical characteristics

operating characteristics typical characteristics

medium (Figures 34 – 65) electrical characteristics

operating characteristics typical characteristics

low (Figures 66 – 97) parameter measurement information all

application information all

equivalent schematic

P3

P1 R1 IN –

IN +

P2 R2 P4

R6

N5

R5 C1

N3

N2 N1

R3 D1

R4

D2

N4

OFFSET

N1 N2

OFFSET OUT GND

R7 N6

BIAS SELECT

N10 N7

N9

N13 N12 N11

P12

P11

P10 P7A P8

P9A P9B

P6B P7B P6A P5

VDD

(5)

Supply voltage, V

DD

(see Note 1) . . . 18 V Differential input voltage, V

ID

(see Note 2) . . . ±V

DD

Input voltage range, V

I

(any input) . . . – 0.3 V to V

DD

Input current, I

I

. . . ± 5 mA Output current, I

O

. . . ± 30 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . Unlimited Continuous total dissipation . . . See Dissipation Rating Table Operating free-air temperature, T

A

: C suffix . . . 0 ° C to 70 ° C I suffix . . . – 40 ° C to 85 ° C M suffix . . . – 55 ° C to 125 ° C Storage temperature range . . . – 65 ° C to 150 ° C Case temperature for 60 seconds: FK package . . . 260 ° C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . 260 ° C Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . 300 ° C

† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to network ground.

2. Differential voltages are at IN+ with respect to IN –.

3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded (see application section).

DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C

POWER RATING

DERATING FACTOR ABOVE TA = 25°C

TA = 70°C POWER RATING

TA = 85°C POWER RATING

TA = 125°C POWER RATING

D 725 mW 5.8 mW/°C 464 mW 377 mW 145 mW

FK 1375 mW 11.0 mW/°C 880 mW 715 mW 275 mW

JG 1050 mW 8.4 mW/°C 672 mW 546 mW 210 mW

P 1000 mW 8.0 mW/°C 640 mW 520 mW 200 mW

recommended operating conditions

C SUFFIX I SUFFIX M SUFFIX

UNIT

MIN MAX MIN MAX MIN MAX UNIT

Supply voltage, VDD 3 16 4 16 5 16 V

Common-mode input voltage VIC VDD = 5 V – 0.2 3.5 – 0.2 3.5 0 3.5

Common-mode input voltage, VIC V

VDD = 10 V – 0.2 8.5 – 0.2 8.5 0 8.5 V

Operating free-air temperature, TA 0 70 – 40 85 – 55 125 °C

(6)

HIGH-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST

TLC271C, TLC271AC, TLC271BC

UNIT

PARAMETER TEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNIT

CONDITIONS A

MIN TYP MAX MIN TYP MAX

V I ff l

TLC271C

V 1 4 V

25°C 1.1 10 1.1 10

V

V I ff l

TLC271C

VO = 1 4 V Full range 12 12

VIO Input offset voltage TLC271AC V

VO = 1.4 V,

VIC = 0 V, 25°C 0.9 5 0.9 5

VIO Input offset voltage TLC271AC VIC 0 V, mV RS = 50 Ω,

R 10 kΩ Full range 6.5 6.5 mV

TLC271BC

RL = 10 kΩ 25°C 0.34 2 0.39 2

TLC271BC

Full range 3 3

αVIO Average temperature coefficient of input offset voltage

25°C to

70°C 1.8 2 µV/°C

IIO Input offset current (see Note 4) VO = VDD /2, 25°C 0.1 0.1

IIO Input offset current (see Note 4) VO VDD /2, pA

VIC = VDD /2 70°C 7 300 7 300 pA

IIB Input bias current (see Note 4) VO = VDD /2, 25°C 0.6 0.7

IIB Input bias current (see Note 4) VO VDD /2, pA

VIC = VDD /2 70°C 40 600 50 600 pA

Common-mode input voltage

25°C

– 0.2 to 4

– 0.3 to 4.2

– 0.2 to 9

– 0.3 to 9.2

V VICR Common-mode input voltage

range (see Note 5)

Full range – 0.2

to 3.5

– 0.2 to 8.5

V

V Hi h l l l V 100 mV

25°C 3.2 3.8 8 8.5

VOH High-level output voltage VID = 100 mV, V

RL = 10 kΩ 0°C 3 3.8 7.8 8.5 V

OH g p g

RL = 10 kΩ

70°C 3 3.8 7.8 8.4

V L l l l V 100 mV

25°C 0 50 0 50

VOL Low-level output voltage VID = –100 mV, V

IOL = 0 0°C 0 50 0 50 mV

OL p g

IOL = 0

70°C 0 50 0 50

A Large signal differential R 10 kΩ 25°C 5 23 10 36

AVD Large-signal differential V/ V voltage amplification

RL = 10 kΩ,

See Note 6 0°C 4 27 7.5 42 V/mV

VD voltage amplification See Note 6

70°C 4 20 7.5 32

CMRR C d j i i V V i

25°C 65 80 65 85

dB

CMRR Common-mode rejection ratioj VIC = VICRminIC ICR 0°C 60 84 60 88 dB

70°C 60 85 60 88

k Supply voltage rejection ratio V 5 V to 10 V

25°C 65 95 65 95

kSVR Supply-voltage rejection ratio dB

(∆VDD /∆VIO) VDD = 5 V to 10 V

VO = 1.4 V 0°C 60 94 60 94 dB

SVR (∆VDD /∆VIO) VO = 1.4 V

70°C 60 96 60 96

II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C – 1.4 – 1.9 µA

I S l

VO = VDD /2, 25°C 675 1600 950 2000

IDD Supply current A

VO = VDD /2, VIC = VDD /2, N l d

0°C 775 1800 1125 2200 µA

DD pp y

No load 70°C 575 1300 750 1700

µ

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

(7)

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST

TLC271I, TLC271AI, TLC271BI

UNIT

PARAMETER TEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNIT

CONDITIONS A

MIN TYP MAX MIN TYP MAX

V I ff l

TLC271I

V 1 4 V

25°C 1.1 10 1.1 10

V

V I ff l

TLC271I

VO = 1 4 V Full range 13 13

VIO Input offset voltage TLC271AI V

VO = 1.4 V,

VIC = 0 V, 25°C 0.9 5 0.9 5

VIO Input offset voltage TLC271AI VIC 0 V, mV RS = 50 Ω,

R 10 kΩ Full range 7 7 mV

TLC271BI

RL = 10 kΩ 25°C 0.34 2 0.39 2

TLC271BI

Full range 3.5 3.5

αVIO Average temperature coefficient of input offset voltage

25°C to

85°C 1.8 2 µV/°C

IIO Input offset current (see Note 4) VO = VDD /2, 25°C 0.1 0.1

IIO Input offset current (see Note 4) VO VDD /2, pA

VIC = VDD /2 85°C 24 1000 26 1000 pA

IIB Input bias current (see Note 4) VO = VDD /2, 25°C 0.6 0.7

IIB Input bias current (see Note 4) VO VDD /2, pA

VIC = VDD /2 85°C 200 2000 220 2000 pA

VICR Common-mode input

25°C

– 0.2 to 4

– 0.3 to 4.2

– 0.2 to 9

– 0.3 to 9.2

V VICR Common mode input

voltage range (see Note 5)

Full range – 0.2

to 3.5

– 0.2 to 8.5

V

V Hi h l l l V 100 mV

25°C 3.2 3.8 8 8.5

VOH High-level output voltage VID = 100 mV, V

RL = 10 kΩ – 40°C 3 3.8 7.8 8.5 V

OH g p g

RL = 10 kΩ

85°C 3 3.8 7.8 8.5

V L l l l V 100 mV

25°C 0 50 0 50

VOL Low-level output voltage VID = –100 mV, V

IOL = 0 – 40°C 0 50 0 50 mV

OL p g

IOL = 0

85°C 0 50 0 50

A Large signal differential R 10 kΩ 25°C 5 23 10 36

AVD Large-signal differential V/ V voltage amplification

RL = 10 kΩ,

See Note 6 – 40°C 3.5 32 7 46 V/mV

VD voltage amplification See Note 6

85°C 3.5 19 7 31

CMRR C d j i i V V i

25°C 65 80 65 85

dB

CMRR Common-mode rejection ratioj VIC = VICRminIC ICR – 40°C 60 81 60 87 dB

85°C 60 86 60 88

k Supply voltage rejection ratio V 5 V to 10 V

25°C 65 95 65 95

kSVR Supply-voltage rejection ratio dB

(∆VDD /∆VIO) VDD = 5 V to 10 V

VO = 1.4 V – 40°C 60 92 60 92 dB

SVR (∆VDD /∆VIO) VO = 1.4 V

85°C 60 96 60 96

II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C – 1.4 – 1.9 µA

I S l

VO = VDD /2, 25°C 675 1600 950 2000

IDD Supply current A

VO = VDD /2, VIC = VDD /2, N l d

– 40°C 950 2200 1375 2500 µA

DD pp y

No load 85°C 525 1200 725 1600

µ

† Full range is – 40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

(8)

HIGH-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST

TLC271M

UNIT

PARAMETER TEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNIT

CONDITIONS A

MIN TYP MAX MIN TYP MAX

V I ff l

VO = 1.4 V, 25°C 1 1 10 1 1 10

VIO Input offset voltage V

VO = 1.4 V,

VIC = 0 V, 25°C 1.1 10 1.1 10

VIO Input offset voltage VIC 0 V, mV RS = 50 Ω,

Full range 12 12

mV

S ,

RL = 10 kΩ Full range 12 12

αVIO Average temperature coefficient of input offset voltage

25°C to

125°C 2.1 2.2 µV/°C

IIO Input offset current (see Note 4) VO = VDD /2, 25°C 0.1 0.1 pA

IIO Input offset current (see Note 4) VO VDD /2,

VIC = VDD /2 125°C 1.4 15 1.8 15 nA

IIB Input bias current (see Note 4) VO = VDD /2, 25°C 0.6 0.7 pA

IIB Input bias current (see Note 4) VO VDD /2,

VIC = VDD /2 125°C 9 35 10 35 nA

VICR Common-mode input voltage

25°C 0

to 4

– 0.3 to 4.2

0 to 9

– 0.3 to 9.2

V VICR Common mode input voltage

range (see Note 5)

Full range 0 to 3.5

0 to 8.5

V

V Hi h l l l V 100 mV

25°C 3.2 3.8 8 8.5

VOH High-level output voltage VID = 100 mV, V

RL = 10 kΩ – 55°C 3 3.8 7.8 8.5 V

OH g p g

RL = 10 kΩ

125°C 3 3.8 7.8 8.4

V L l l l V 100 mV

25°C 0 50 0 50

VOL Low-level output voltage VID = –100 mV, V

IOL = 0 – 55°C 0 50 0 50 mV

OL p g

IOL = 0

125°C 0 50 0 50

A Large signal differential R 10 kΩ 25°C 5 23 10 36

AVD Large-signal differential V/ V voltage amplification

RL = 10 kΩ,

See Note 6 – 55°C 3.5 35 7 50 V/mV

VD voltage amplification See Note 6

125°C 3.5 16 7 27

CMRR C d j i i V V i

25°C 65 80 65 85

dB

CMRR Common-mode rejection ratioj VIC = VICRminIC ICR – 55°C 60 81 60 87 dB

125°C 60 84 60 86

k Supply voltage rejection ratio V 5 V to 10 V 25°C 65 95 65 95

kSVR Supply-voltage rejection ratio dB

(∆VDD /∆VIO) VDD = 5 V to 10 V

VO = 1.4 V – 55°C 60 90 60 90 dB

SVR (∆VDD /∆VIO) VO = 1.4 V

125°C 60 97 60 97

II(SEL) Input current (BIAS SELECT) VI(SEL) = 0 25°C – 1.4 – 1.9 µA

I S l

VO = VDD /2, 25°C 675 1600 950 2000

IDD Supply current A

VO = VDD /2, VIC = VDD /2, N l d

– 55°C 1000 2500 1475 3000 µA

DD pp y

No load 125°C 475 1100 625 1400

µ

† Full range is – 55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

(9)

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,

TLC271BC UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 10 kΩ

V 1 V

25°C 3.6

V/

SR Sl i i

R 10 kΩ VI(PP) = 1 V 0°C 4

V/

SR Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF

I(PP)

70°C 3

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 2 5 V

25°C 2.9 V/µs

See Figure 98

VI(PP) = 2.5 VI(PP) 0°C 3.1

70°C 2.5

Vn Equivalent input noise voltage f = 1 kHz, RS = 20 Ω, 25°C 25 nV/√Hz

Vn Equivalent input noise voltage f 1 kHz,

See Figure 99 RS 20 Ω, 25°C 25 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 320

BOM Maximum output-swing bandwidth VO = VOH , kH

RL = 10 kΩ, CL = 20 pF,

See Figure 98 0°C 340 kHz

OM p g

RL = 10 kΩ, See Figure 98

70°C 260

B U i i b d id h V 10 mV C 20 pF

25°C 1.7

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, 0°C 2 MHz

1 y g

See Figure 100

70°C 1.3

Ph i VI = 10 mV f = B1 25°C 46°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 0°C 47°

φm g

CL = 20 pF, See Figure 100

70°C 44°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,

TLC271BC UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 10 kΩ

V 1 V

25°C 5.3

V/

SR Sl i i

R 10 kΩ VI(PP) = 1 V 0°C 5.9

V/

SR Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF

I(PP)

70°C 4.3

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 5 5 V

25°C 4.6 V/µs

See Figure 98

VI(PP) = 5.5 VI(PP) 0°C 5.1

70°C 3.8

Vn Equivalent input noise voltage f = 1 kHz, RS = 20 Ω, 25°C 25 nV/√Hz

Vn Equivalent input noise voltage f 1 kHz, See Figure 99

RS 20 Ω, 25°C 25 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 200

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 10 kΩ, CL = 20 pF,

See Figure 98 0°C 220 kHz

OM p g

RL = 10 kΩ, See Figure 98

70°C 140

B U i i b d id h V 10 mV C 20 pF

25°C 2.2

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, 0°C 2.5 MHz

1 y g

See Figure 100

70°C 1.8

Ph i f = B1 VI = 10 mV 25°C 49°

φm Phase margin f = B1,

CL = 20 pF,

VI = 10 mV,

See Figure 100 0°C 50°

φm g

CL = 20 pF, See Figure 100

70°C 46°

(10)

HIGH-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,

TLC271BI UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 10 kΩ V 1 V

25°C 3.6

V/

SR Sl i i

R 10 kΩ VI(PP) = 1 V – 40°C 4.5

V/

SR Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF

I(PP)

85°C 2.8

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 2 5 V

25°C 2.9 V/µs

See Figure 98

VI(PP) = 2.5 VI(PP) – 40°C 3.5

85°C 2.3

Vn Equivalent input noise voltage f = 1 kHz, RS = 20 Ω, 25°C 25 nV/√Hz

Vn Equivalent input noise voltage f 1 kHz, See Figure 99

RS 20 Ω, 25°C 25 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 320

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 10 kΩ CL = 20 pF,

See Figure 98 – 40°C 380 kHz

OM p g

RL = 10 kΩ, See Figure 98

85°C 250

B U i i b d id h V 10 mV C 20 pF

25°C 1.7

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, – 40°C 2.6 MHz

1 y g

See Figure 100

85°C 1.2

Ph i VI = 10 mV f = B1 25°C 46°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 – 40°C 49°

φm g

CL = 20 pF, See Figure 100

85°C 43°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,

TLC271BI UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 10 kΩ V 1 V

25°C 5.3

V/

SR Sl i i

R 10 kΩ VI(PP) = 1 V – 40°C 6.8

V/

SR Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF

I(PP)

85°C 4

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 5 5 V

25°C 4.6 V/µs

See Figure 98

VI(PP) = 5.5 VI(PP) – 40°C 5.8

85°C 3.5

Vn Equivalent input noise voltage f = 1 kHz, RS = 20 Ω, 25°C 25 nV/√Hz

Vn Equivalent input noise voltage f 1 kHz, See Figure 99

RS 20 Ω,

25°C 25 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 200

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 10 kΩ CL = 20 pF,

See Figure 98 – 40°C 260 kHz

OM p g

RL = 10 kΩ, See Figure 98

85°C 130

B U i i b d id h V 10 mV C 20 pF

25°C 2.2

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, – 40°C 3.1 MHz

1 y g

See Figure 100

85°C 1.7

Ph i VI = 10 mV f= B1

25°C 49°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f= B1,

See Figure 100 – 40°C 52°

φm g

CL = 20 pF, See Figure 100

85°C 46°

(11)

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA TLC271M

UNIT

PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

SR Sl i i

R 10 kΩ

V 1 V

25°C 3.6

V/

SR Sl i i

R 10 kΩ VI(PP) = 1 V – 55°C 4.7

V/

SR Slew rate at unity gain

RL = 10 kΩ, CL = 20 pF

I(PP)

125°C 2.3

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 2 5 V

25°C 2.9 V/µs

See Figure 98

VI(PP) = 2.5 VI(PP) – 55°C 3.7

125°C 2

Vn Equivalent input noise voltage f = 1 kHz, RS = 20 Ω, 25°C 25 nV/√Hz

Vn Equivalent input noise voltage f 1 kHz, See Figure 99

RS 20 Ω, 25°C 25 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 320

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 10 kΩ, CL = 20 pF,

See Figure 98 – 55°C 400 kHz

OM p g

RL = 10 kΩ, See Figure 98

125°C 230

B U i i b d id h V 10 mV C 20 pF

25°C 1.7

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, – 55°C 2.9 MHz

1 y g

See Figure 100

125°C 1.1

Ph i VI = 10 mV f = B1 25°C 46°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 – 55°C 49°

φm g

CL = 20 pF, See Figure 100

125°C 41°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA TLC271M

UNIT

PARAMETER TEST CONDITIONS TA MIN TYP MAX UNIT

SR Sl i i

R 10 kΩ

V 1 V

25°C 5.3

V/

SR Sl i i

R 10 kΩ VI(PP) = 1 V – 55°C 7.1

V/

SR Slew rate at unity gain RL = 10 kΩ,

CL = 20 pF

I(PP)

125°C 3.1

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 5 5 V

25°C 4.6 V/µs

See Figure 98

VI(PP) = 5.5 VI(PP) – 55°C 6.1

125°C 2.7

Vn Equivalent input noise voltage f = 1 kHz, RS = 20 Ω,

25°C 25 nV/√Hz

Vn Equivalent input noise voltage f 1 kHz, See Figure 99

RS 20 Ω,

25°C 25 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 200

BOM Maximum output-swing bandwidth VO = VOH, kH RL = 10 kΩ,

CL = 20 pF,

See Figure 98 – 55°C 280 kHz

OM p g

RL = 10 kΩ, See Figure 98

125°C 110

B U i i b d id h V 10 mV C 20 pF

25°C 2.2

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, – 55°C 3.4 MHz

1 y g

See Figure 100

125°C 1.6

Ph i f = B1 VI = 10 mV

25°C 49°

φm Phase margin f = B1,

CL = 20 pF,

VI = 10 mV,

See Figure 100 – 55°C 52°

φm g

CL = 20 pF, See Figure 100

125°C 44°

(12)

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE) Table of Graphs

FIGURE

VIO Input offset voltage Distribution 2, 3

αVIO Temperature coefficient Distribution 4, 5

V Hi h l l l

vs High-level output current 6, 7 VOH High-level output voltage

vs High level output current vs Supply voltage

6, 7

OH g p g pp y g 8

vs Free-air temperature 9

V L l l l

vs Common-mode input voltage 10, 11 VOL Low-level output voltage

vs Common-mode input voltage vs Differential input voltage

10, 11 VOL Low-level output voltage vs Differential input voltage 12

vs Free-air temperature

12 13 p

vs Low-level output current 14, 15

A L i l diff i l l lifi i

vs Supply voltage 16

AVD Large-signal differential voltage amplification

vs Supply voltage vs Free-air temperature

16

VD g g g p p 17

vs Frequency 28, 29

IIB Input bias current vs Free-air temperature 18

IIO Input offset current vs Free-air temperature 18

VIC Common-mode input voltage vs Supply voltage 19

IDD Supply current vs Supply voltage 20

IDD Supply current vs Supply voltage

vs Free-air temperature

20 21

SR Slew rate vs Supply voltage 22

SR Slew rate vs Supply voltage

vs Free-air temperature

22 23

Bias-select current vs Supply voltage 24

VO(PP) Maximum peak-to-peak output voltage vs Frequency 25

B1 Unity-gain bandwidth vs Free-air temperature 26

B1 Unity-gain bandwidth vs Free air temperature

vs Supply voltage

26 27 AVD Large-signal differential voltage amplification vs Frequency 28, 29

Ph i

vs Supply voltage 30

φm Phase margin

vs Supply voltage vs Free-air temperature

30

φm g p 31

vs Load capacitance 32

Vn Equivalent input noise voltage vs Frequency 33

Phase shift vs Frequency 28, 29

(13)

Figure 2

– 5 0

Percentage of Units – %

VIO – Input Offset Voltage – mV

5 60

– 4 – 3 – 2 – 1 0 1 2 3 4 10

20 30 40 50

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

TA = 25°C P Package

ÎÎÎÎÎÎÎÎÎÎÎÎ

753 Amplifiers Tested From 6 Wafer Lots VDD = 5 V

Figure 3

50

40

30

20

10

4 3 2 1 0 – 1 – 2 – 3 – 4 60

5

Percentage of Units – %

0 – 5

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE

VIO – Input Offset Voltage – mV P Package

TA = 25VDD = 10 V°C

ÎÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎÎ

753 Amplifiers Tested From 6 Wafer Lots

Figure 4

50

40

30

20

10

8 6 4 2 0 – 2 – 4 – 6 – 8 60

10 αVIO – Temperature Coefficient – µV/°C

Percentage of Units – %

0 – 10

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

P Package TA = 25°C to 125°C VDD = 5 V

ÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎ

324 Amplifiers Tested From 8 Wafer Lots

Outliers:

ÎÎÎÎÎ

(1) 20.5 µV/°C

Figure 5

– 10 0

Percentage of Units – %

10 60

– 8 – 6 – 4 – 2 0 2 4 6 8 10

20 30 40 50

DISTRIBUTION OF TLC271 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT

TA = 25°C to 125°C Outliers:

P Package

ÎÎÎÎÎ

ÎÎÎÎÎ

(1) 21.2 µV/°C

ÎÎÎÎÎÎÎÎÎÎÎÎ

ÎÎÎÎÎÎÎÎÎÎÎÎ

324 Amplifiers Tested From 8 Wafer lots VDD = 10 V

αVIO – Temperature Coefficient – µV/°C

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(14)

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)

Figure 6

0 0

VOH – High-Level Output Voltage – V

IOH – High-Level Output Current – mA – 10 5

– 2 – 4 – 6 – 8

1 2 3 4

TA = 25°C VID = 100 mV

VDD = 5 V VDD = 4 V

VDD = 3 V

HIGH-LEVEL OUTPUT VOLTAGE vs

HIGH-LEVEL OUTPUT CURRENT

ÁÁÁ

ÁÁÁ

ÁÁÁ

VOH

Figure 7

0 0

IOH – High-Level Output Current – mA – 40 16

– 10 – 20 – 30

2 4 6 8 10 12 14

VDD = 16 V

ÎÎÎÎÎ

ÎÎÎÎÎ

VDD = 10 V

VID = 100 mV TA = 25°C HIGH-LEVEL OUTPUT VOLTAGE

vs

HIGH-LEVEL OUTPUT CURRENT

VOH – High-Level Output Voltage – V

ÁÁ

ÁÁ

ÁÁ

VOH

– 5 – 15 – 25 – 35

Figure 8

0

VDD – Supply Voltage – V

16

2 4 6 8 10 12 14

14 12 10 8 6 4 2 16

0

VID = 100 mV RL = 10 kΩ TA = 25°C

HIGH-LEVEL OUTPUT VOLTAGE vs

SUPPLY VOLTAGE

VOH – High-Level Output Voltage – V

ÁÁ

ÁÁ

VOH

Figure 9

– 1.7 – 1.8 – 1.9 – 2 – 2.1 – 2.2 – 2.3

100 75 50 20 0 – 25 – 50 VDD – 1.6

125 TA – Free-Air Temperature – °C

– 2.4 – 75

IOH = – 5 mA VID = 100 mA VDD = 5 V

VDD = 10 V

HIGH-LEVEL OUTPUT VOLTAGE vs

FREE-AIR TEMPERATURE

VOH – High-Level Output Voltage – V

ÁÁ

ÁÁ

VOH

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(15)

Figure 10

0 300

VOL – Low-Level Output Voltage – mV

VIC – Common-Mode Input Voltage – V 4 700

1 2 3

400 500 600

TA = 25°C IOL = 5 mA VDD = 5 V

VID = – 1 V

LOW-LEVEL OUTPUT VOLTAGE vs

COMMON-MODE INPUT VOLTAGE

650

550

450

350

ÁÁ

ÁÁ

ÁÁ

VOL

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

VID = – 100 mV

Figure 11

2500

VIC – Common-Mode Input Voltage – V 300

350 400 450 500

2 4 6 8 10

VDD = 10 V IOL = 5 mA TA = 25°C

VID = – 1 V VID = – 2.5 V VID = – 100 mV

LOW-LEVEL OUTPUT VOLTAGE vs

COMMON-MODE INPUT VOLTAGE

1 3 5 7 9

VOL – Low-Level Output Voltage – mV

ÁÁÁ

ÁÁÁ

VOL

Figure 12

0

VID – Differential Input Voltage – V

– 10

– 2 – 4 – 6 – 8

800 700 600 500 400 300 200 100 0

IOL = 5 mA VIC = VID/2 TA = 25°C

VDD = 10 V

LOW-LEVEL OUTPUT VOLTAGE vs

DIFFERENTIAL INPUT VOLTAGE

VOL – Low-Level Output Voltage – mV

ÁÁ

ÁÁ

VOL

– 1 – 3 – 5 – 7 – 9

ÎÎÎÎ

ÎÎÎÎ

VDD = 5 V

Figure 13

– 75 0

TA – Free-Air Temperature – °C 125 900

– 50 – 25 0 25 50 75 100 100

200 300 400 500 600 700 800

VIC = 0.5 V VID = – 1 V IOL = 5 mA

LOW-LEVEL OUTPUT VOLTAGE vs

FREE-AIR TEMPERATURE

VOL – Low-Level Output Voltage – mV

ÁÁ

ÁÁ

VOL

ÎÎÎÎ

ÎÎÎÎ

VDD = 10 V

ÎÎÎÎ

VDD = 5 V

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(16)

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)

Figure 14

LOW-LEVEL OUTPUT VOLTAGE vs

LOW-LEVEL OUTPUT CURRENT

0

IOL – Low-Level Output Current – mA 1

8 0

1 2 3 4 5 6 7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

VID = – 1 V VIC = 0.5 V TA = 25°C

VDD = 5 V

VOL – Low-Level Output Voltage – mV

ÁÁ

ÁÁ

VOL

ÎÎÎÎ

ÎÎÎÎ

VDD = 3 V

ÎÎÎÎ

VDD = 4 V

Figure 15

0

IOL – Low-Level Output Current – mA 3

30 0

5 10 15 20 25

0.5 1 1.5 2

2.5 TA = 25VIC = 0.5 V°C VID = –1 V

VDD = 10 V

VDD = 16 V LOW-LEVEL OUTPUT VOLTAGE

vs

LOW-LEVEL OUTPUT CURRENT

VOL – Low-Level Output Voltage – mV

ÁÁ

ÁÁ

ÁÁ

VOL

Figure 16

0

AVD – Differential Voltage Amplification – V/mV

60

16 0

2 4 6 8 10 12 14

10 20 30 40 50

VDD – Supply Voltage – V

85°C 125°C TA = – 55°C

ÎÎÎÎ

ÎÎÎÎ

RL = 10 kΩ

LARGE-SIGNAL

DIFFERENTIAL VOLTAGE AMPLIFICATION vs

SUPPLY VOLTAGE

ÁÁ

ÁÁ

ÁÁ

AVD

ÎÎÎ

ÎÎÎ

0°C

ÎÎÎ

ÎÎÎ

25°C

Figure 17

– 75

TA – Free-Air Temperature – °C 50

125 0

– 50 – 25 0 25 50 75 100 5

10 15 20 25 30 35 40 45

VDD = 5 V

VDD = 10 V LARGE-SIGNAL

DIFFERENTIAL VOLTAGE AMPLIFICATION vs

FREE-AIR TEMPERATURE

AVD – Large-Signal Differential

ÁÁ

ÁÁ

ÁÁ

AVD Voltage Amplification – V/mV

ÎÎÎÎÎ

ÎÎÎÎÎ

RL = 10 k

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(17)

Figure 18

0.1

125 10000

45 65 85 105

1 10 100 1000

25

TA – Free-Air Temperature – °C

INPUT BIAS CURRENT AND INPUT OFFSET CURRENT

vs

FREE-AIR TEMPERATURE

ÁÁÁÁ

ÁÁÁÁ

ÁÁÁÁ

VDD = 10 V VIC = 5 V See Note A

ÎÎ

ÎÎ

IIB

ÎÎ

ÎÎ

IIO

IIB and IIO – Input Bias and IBI I IO

Input Offset Currents – nA

NOTE A: The typical values of input bias current and input offset current below 5 pA were determined mathematically.

Figure 19

0

VDD – Supply Voltage – V 16

16 0

2 4 6 8 10 12 14

2 4 6 8 10 12 14

TA = 25°C

COMMON-MODE INPUT VOLTAGE (POSITIVE LIMIT)

vs

SUPPLY VOLTAGE

– Common-Mode Input Voltage – VVIC

Figure 20

0

IDD – Supply Current – mA

VDD – Supply Voltage – V 2.5

16 0

2 4 6 8 10 12 14

0.5 1 1.5

2 TA =– 55°C

25°C 70°C 125°C SUPPLY CURRENT

vs

SUPPLY VOLTAGE

ÁÁÁ

ÁÁÁ

ÁÁÁ

DDI

ÎÎÎ

ÎÎÎ

0°C

ÎÎÎÎ

ÎÎÎÎ

VO = VDD /2 No Load

Figure 21

– 75

TA – Free-Air Temperature – °C 2

125 0

0.5 1 1.5

– 50 – 25 0 25 50 75 100 VDD = 10 V

VDD = 5 V

SUPPLY CURRENT vs

FREE-AIR TEMPERATURE

IDD – Supply Current – mA

ÁÁ

ÁÁ

ÁÁ

DDI

ÎÎÎÎÎ

ÎÎÎÎÎ

VO = VDD /2 No Load

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(18)

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)

Figure 22

TA = 25°C See Figure 98 AV = 1 VI(PP) = 1 V RL = 10 kΩ CL = 20 pF 8

7 6 5 4 3 2 1

14 12 10 8 6 4 2 0

16 VDD – Supply Voltage – V

SR – Slew Rate – V/ us

0

SLEW RATE vs

SUPPLY VOLTAGE

sµ

Figure 23

VDD = 10 V

VI(PP) = 1 V VDD = 5 V

RL = 10 kAV = 1

See Figure 99 CL = 20 pF

– 75 0 1 2 3 4 5 6 7 8

100 75 50 25 0 – 25

– 50 125

TA – Free-Air Temperature – °C SLEW RATE

vs

FREE-AIR TEMPERATURE

SR – Slew Rate – V/ ussµ

ÎÎÎÎÎ

ÎÎÎÎÎ

VDD = 10 V

ÎÎÎÎÎ

ÎÎÎÎÎ

VI(PP) = 5.5 V

ÎÎÎÎ

VI(PP) = 1 V

ÎÎÎÎÎ

ÎÎÎÎÎ

VDD = 5 V

ÎÎÎÎÎÎ

ÎÎÎÎÎÎ

VI(PP) = 2.5 V

Figure 24

VI(SEL) = 0 TA = 25°C

– 2.4

– 1.8

– 1.2

– 0.6

14 12 10 8 6 4 2 0

16 – 3

VDD – Supply Voltage – V 0

BIAS-SELECT CURRENT vs

SUPPLY VOLTAGE

– 2.7

– 2.1

– 1.5

– 0.9

– 0.3

Bias-Select Current – uaAµ

Figure 25

ÎÎÎÎ

ÎÎÎÎ

VDD = 5 V

1000 100

9 8 7 6 5 4 3 2 1 0

10000 10

f – Frequency – kHz 10

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

vs FREQUENCY

ÎÎÎÎ

ÎÎÎÎ

TA = 125°C

ÎÎÎÎTA = 25°C

ÎÎÎÎ

ÎÎÎÎ

TA = 55°C

ÎÎÎÎ

ÎÎÎÎ

VDD = 10 V

ÎÎÎÎ

RL = 10 kΩ

ÎÎÎÎÎ

ÎÎÎÎÎ

See Figure 98

– Maximum Peak-to-Peak Output Voltage – VVO(PP)

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(19)

Figure 26

See Figure 100 CL = 20 pF VI = 10 mV VDD = 5 V

2.5

2

1.5

100 75 50 25 0 – 25 – 50 1

125 3

TA – Free-Air Temperature – °C

B1 – Unity-Gain Bandwidth – MHz

– 75

UNITY-GAIN BANDWIDTH vs

FREE-AIR TEMPERATURE

B1

Figure 27

VI = 10 mV CL = 20 pF TA = 25°C See Figure 100 2

1.5

14 12 10 8 6 4 2 1

16 2.5

VDD – Supply Voltage – V 0

UNITY-GAIN BANDWIDTH vs

SUPPLY VOLTAGE

B1 – Unity-Gain Bandwidth – MHzB1

Phase Shift AVD VDD = 5 V

RL = 10 kTA = 25°C

Phase Shift

106 105 104 103 102 101 1

1 M 100 k 10 k 1 k 100 0.1

10 M f – Frequency – Hz

10

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

vs FREQUENCY 107

150°

120° 90° 60°

30°

180°

AVD – Large-Signal Differential

ÁÁ

ÁÁ

AVD Voltage Amplification

Figure 28

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(20)

TYPICAL CHARACTERISTICS (HIGH-BIAS MODE)

Phase Shift AVD TA = 25°C

RL = 10 kVDD = 10 V

Phase Shift

150°

120° 90°

60° 30°

180° 106

105 104 103 102 101 1

1 M 100 k 10 k 1 k 100 0.1

10 M f – Frequency – Hz

10

LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

vs FREQUENCY 107

AVD – Large-Signal Differential

ÁÁ

ÁÁ

AVD Voltage Amplification

Figure 29

Figure 30

0

m – Phase Margin

VDD – Supply Voltage – V 53°

16

2 4 6 8 10 12 14

47° 49°

51°

CL = 20 pF TA = 25°C VI = 10 mV

See Figure 100 PHASE MARGIN

vs

SUPPLY VOLTAGE

46°

45° 48° 50° 52°

ÁÁ

ÁÁ

mφ

Figure 31

– 75 50°

40° 125

– 50 – 25 0 25 50 75 100 42°

44° 46° 48°

VDD = 5 V CL = 20 pF VI = 10 mV See Figure 100

TA – Free-Air Temperature – °C PHASE MARGIN

vs

FREE-AIR TEMPERATURE

m – Phase Margin

ÁÁ

ÁÁ

mφ

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(21)

Figure 32

0

CL – Capacitive Load – pF 50°

25° 100

20 40 60 80

30° 35° 40°

45°

See Figure 100 VI = 10 mV TA = 25°C VDD = 5 mV PHASE MARGIN

vs

CAPACITIVE LOAD

m – Phase Margin

ÁÁ

ÁÁ

mφ

Figure 33

VN – Equivalent Input Noise Voltage – nV/Hz

1

f – Frequency – Hz 400

1000 0

100 200 300

10 100

EQUIVALENT NOISE VOLTAGE vs

FREQUENCY

Vn

ÁÁ

ÁÁ

ÁÁ

ÁÁ

nV/Hz

350

250

150

50

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

ÁÁÁÁÁ

VDD = 5 V TA = 25°C RS = 20 Ω See Figure 99

† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

(22)

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST CONDITIONS

TLC271C, TLC271AC, TLC271BC

UNIT

PARAMETER TEST CONDITIONS TA†A VDD = 5 V VDD = 10 V UNIT

MIN TYP MAX MIN TYP MAX

V I ff l

TLC271C

V 1 4 V

25°C 1.1 10 1.1 10

V

V I ff l

TLC271C

VO = 1.4 V, Full range 12 12

VIO Input offset voltage TLC271AC V

VO = 1.4 V,

VIC = 0 25°C 0.9 5 0.9 5

VIO Input offset voltage TLC271AC VIC 0 mV RS = 50 Ω,

R 100 kΩ Full range 6.5 6.5 mV

TLC271BC

RI = 100 kΩ 25°C 0.25 2 0.26 2

TLC271BC

Full range 3 3

αVIO Average temperature coefficient of input offset voltage

25°C to

70°C 1.7 2.1 µV/°C

IIO Input offset current (see Note 4) VO = VDD /2, 25°C 0.1 0.1

IIO Input offset current (see Note 4) VO VDD /2, pA

VIC = VDD /2 70°C 7 300 7 300 pA

IIB Input bias current (see Note 4) VO = VDD /2, 25°C 0.6 0.7

IIB Input bias current (see Note 4) VO VDD /2, pA

VIC = VDD /2 70°C 40 600 50 600 pA

VICR Common-mode input

25°C

– 0.2 to 4

– 0.3 to 4.2

– 0.2 to 9

–0.3 to 9.2

V VICR Common mode input

voltage range (see Note 5)

Full range – 0.2

to 3.5

– 0.2 to 8.5

V

V Hi h l l l V 100 mV

25°C 3.2 3.9 8 8.7

VOH High-level output voltage VID = 100 mV, V

RL = 100 kΩ 0°C 3 3.9 7.8 8.7 V

OH g p g

RL = 100 kΩ

70°C 3 4 7.8 8.7

V L l l l V 100 mV

25°C 0 50 0 50

VOL Low-level output voltage VID = –100 mV, V

IOL = 0 0°C 0 50 0 50 mV

OL p g

IOL = 0

70°C 0 50 0 50

A Large signal differential R 100 kΩ 25°C 25 170 25 275

AVD Large-signal differential V/ V voltage amplification

RL = 100 kΩ,

See Note 6 0°C 15 200 15 320 V/mV

VD voltage amplification See Note 6

70°C 15 140 15 230

CMRR C d j i i V V i

25°C 65 91 65 94

dB

CMRR Common-mode rejection ratioj VIC = VICRminIC ICR 0°C 60 91 60 94 dB

70°C 60 92 60 94

k Supply voltage rejection ratio V 5 V to 10 V

25°C 70 93 70 93

kSVR Supply-voltage rejection ratio dB (∆VDD /∆VIO)

VDD = 5 V to 10 V

VO = 1.4 V 0°C 60 92 60 92 dB

SVR (∆VDD /∆VIO) VO = 1.4 V

70°C 60 94 60 94

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD /2 25°C – 130 – 160 nA

I S l

VO = VDD /2, 25°C 105 280 143 300

IDD Supply current A

VO = VDD /2, VIC = VDD /2, N l d

0°C 125 320 173 400 µA

DD pp y IC DD

No load 70°C 85 220 110 280

µ

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

(23)

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST

TLC271I, TLC271AI, TLC271BI

UNIT

PARAMETER TEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNIT

CONDITIONS A

MIN TYP MAX MIN TYP MAX

V I ff l

TLC271I

V 1 4 V

25°C 1.1 10 1.1 10

V

V I ff l

TLC271I

VO = 1.4 V, Full range 13 13

VIO Input offset voltage TLC271AI V

VO = 1.4 V,

VIC = 0 V, 25°C 0.9 5 0.9 5

VIO Input offset voltage TLC271AI VIC 0 V, mV RS = 50 Ω,

R 100 kΩ Full range 7 7 mV

TLC271BI

RL = 100 kΩ 25°C 0.25 2 0.26 2

TLC271BI

Full range 3.5 3.5

αVIO Average temperature coefficient of input offset voltage

25°C to

85°C 1.7 2.1 µV/°C

IIO Input offset current (see Note 4) VO = VDD /2, 25°C 0.1 0.1

IIO Input offset current (see Note 4) VO VDD /2, pA

VIC = VDD /2 85°C 24 1000 26 1000 pA

IIB Input bias current (see Note 4) VO = VDD /2, 25°C 0.6 0.7

IIB Input bias current (see Note 4) VO VDD /2, pA

VIC = VDD /2 85°C 200 2000 220 2000 pA

VICR Common-mode input

25°C

– 0.2 to 4

– 0.3 to 4.2

– 0.2 to 9

– 0.3 to 9.2

V VICR Common mode input

voltage range (see Note 5)

Full range – 0.2

to 3.5

– 0.2 to 8.5

V

V Hi h l l l V 100 mV

25°C 3.2 3.9 8 8.7

VOH High-level output voltage VID = 100 mV, V

RL = 100 kΩ – 40°C 3 3.9 7.8 8.7 V

OH g p g

RL = 100 kΩ

85°C 3 4 7.8 8.7

V L l l l V 100 mV

25°C 0 50 0 50

VOL Low-level output voltage VID = –100 mV, V

IOL = 0 – 40°C 0 50 0 50 mV

OL p g

IOL = 0

85°C 0 50 0 50

A Large signal differential R 100 kΩ 25°C 25 170 25 275

AVD Large-signal differential V/ V voltage amplification

RL = 100 kΩ,

See Note 6 – 40°C 15 270 15 390 V/mV

VD voltage amplification See Note 6

85°C 15 130 15 220

CMRR C d j i i V V i

25°C 65 91 65 94

dB

CMRR Common-mode rejection ratioj VIC = VICRminIC ICR – 40°C 60 90 60 93 dB

85°C 60 90 60 94

k Supply voltage rejection ratio V 5 V to 10 V

25°C 70 93 70 93

kSVR Supply-voltage rejection ratio dB (∆VDD /∆VIO)

VDD = 5 V to 10 V

VO = 1.4 V – 40°C 60 91 60 91 dB

SVR (∆VDD /∆VIO) VO = 1.4 V

85°C 60 94 60 94

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD /2 25°C – 130 – 160 nA

I S l

VO = VDD /2, 25°C 105 280 143 300

IDD Supply current A

VO = VDD /2, VIC = VDD /2, N l d

– 40°C 158 400 225 450 µA

DD pp y IC DD

No load 85°C 80 200 103 260

µ

† Full range is – 40°C to 85°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

(24)

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature (unless otherwise noted)

PARAMETER TEST

TLC271M

UNIT

PARAMETER TEST

CONDITIONS TA† VDD = 5 V VDD = 10 V UNIT

CONDITIONS A

MIN TYP MAX MIN TYP MAX

VIO Input offset voltage

VO = 1.4 V,

VIC = 0 V, 25°C 1.1 10 1.1 10 mV

VIO Input offset voltage

RS = 50 Ω,

RL = 100 kΩ Full range 12 12

αVIO Average temperature coefficient of input offset voltage

25°C to

125°C 1.7 2.1 µV/°C

IIO Input offset current (see Note 4) VO = VDD /2, 25°C 0.1 0.1 pA

IIO Input offset current (see Note 4) VO VDD /2,

VIC = VDD /2 125°C 1.4 15 1.8 15 nA

IIB Input bias current (see Note 4) VO = VDD /2, 25°C 0.6 0.7 pA

IIB Input bias current (see Note 4) VO VDD /2,

VIC = VDD /2 125°C 9 35 10 35 nA

VICR Common-mode input

25°C

0 to 4

– 0.3 to 4.2

0 to 9

– 0.3 to 9.2

V VICR Common mode input

voltage range (see Note 5)

Full range 0 to 3.5

0 to 8.5

V

V Hi h l l l V 100 mV

25°C 3.2 3.9 8 8.7

VOH High-level output voltage VID = 100 mV, V

RL = 100 kΩ – 55°C 3 3.9 7.8 8.6 V

OH g p g

RL = 100 kΩ

125°C 3 4 7.8 8.6

V L l l l V 100 mV

25°C 0 50 0 50

VOL Low-level output voltage VID = –100 mV, V

IOL = 0 – 55°C 0 50 0 50 mV

OL p g

IOL = 0

125°C 0 50 0 50

A Large signal differential R 10 kΩ 25°C 25 170 25 275

AVD Large-signal differential V/ V voltage amplification

RL = 10 kΩ

See Note 6 – 55°C 15 290 15 420 V/mV

VD voltage amplification See Note 6

125°C 15 120 15 190

CMRR C d j i i V V i

25°C 65 91 65 94

dB

CMRR Common-mode rejection ratioj VIC = VICRminIC ICR – 55°C 60 89 60 93 dB

125°C 60 91 60 93

k Supply voltage rejection ratio V 5 V to 10 V

25°C 70 93 70 93

kSVR Supply-voltage rejection ratio dB (∆VDD /∆VIO)

VDD = 5 V to 10 V

VO = 1.4 V – 55°C 60 91 60 91 dB

SVR (∆VDD /∆VIO) VO = 1.4 V

125°C 60 94 60 94

II(SEL) Input current (BIAS SELECT) VI(SEL) = VDD /2 25°C – 130 – 160 nA

I S l

VO = VDD /2, 25°C 105 280 143 300

IDD Supply current A

VO = VDD /2, VIC = VDD /2, N l d

– 55°C 170 440 245 500 µA

DD pp y IC DD

No load 125°C 70 180 90 240

µ

† Full range is – 55°C to 125°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

5. This range also applies to each input individually.

6. At VDD = 5 V, VO = 0.25 V to 2 V; at VDD = 10 V, VO = 1 V to 6 V.

(25)

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,

TLC271BC UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 100 kΩ V 1 V

25°C 0.43

V/

SR Sl i i

R 100 kΩ VI(PP) = 1 V 0°C 0.46

V/

SR Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF

I(PP)

70°C 0.36

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 2 5 V

25°C 0.40 V/µs

See Figure 98

VI(PP) = 2.5 VI(PP) 0°C 0.43

70°C 0.34

Vn Equivalent input noise voltage f = 1 kHz, See Figure 99

RS = 20 Ω,

25°C 32 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 55

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 100 kΩ CL = 20 pF,

See Figure 98 0°C 60 kHz

OM p g

RL = 100 kΩ, See Figure 98

70°C 50

B U i i b d id h V 10 mV C 20 pF

25°C 525

B1 Unity-gain bandwidth VI = 10 mV, kH

See Figure 100

CL = 20 pF, 0°C 600 kHz

1 y g

See Figure 100

70°C 400

Ph i VI = 10 mV f = B1

25°C 40°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 0°C 41°

φm g

CL = 20 pF, See Figure 100

70°C 39°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271C, TLC271AC,

TLC271BC UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 100 kΩ V 1 V

25°C 0.62

V/

SR Sl i i

R 100 kΩ VI(PP) = 1 V 0°C 0.67

V/

SR Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF

I(PP)

70°C 0.51

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 5 5 V

25°C 0.56 V/µs

See Figure 98

VI(PP) = 5.5 VI(PP) 0°C 0.61

70°C 0.46

Vn Equivalent input noise voltage f = 1 kHz, See Figure 99

RS = 20 Ω, 25°C 32 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 35

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 100 kΩ CL = 20 pF,

See Figure 98 0°C 40 kHz

OM p g

RL = 100 kΩ, See Figure 98

70°C 30

B U i i b d id h V 10 mV C 20 pF

25°C 635

B1 Unity-gain bandwidth VI = 10 mV, kH

See Figure 100

CL = 20 pF, 0°C 710 kHz

1 y g

See Figure 100

70°C 510

Ph i VI = 10 mV f = B1 25°C 43°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 0°C 44°

φm g

CL = 20 pF, See Figure 100

70°C 42°

(26)

MEDIUM-BIAS MODE

operating characteristics at specified free-air temperature, V DD = 5 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,

TLC271BI UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 100 kΩ V 1 V

25°C 0.43

V/

SR Sl i i

R 100 kΩ VI(PP) = 1 V – 40°C 0.51

V/

SR Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF

I(PP)

85°C 0.35

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 2 5 V

25°C 0.40 V/µs

See Figure 98

VI(PP) = 2.5 VI(PP) – 40°C 0.48

85°C 0.32

Vn Equivalent input noise voltage f = 1 kHz, See Figure 99

RS = 20 Ω,

25°C 32 nV/√Hz

B M i i b d id h V V C 20 pF

25°C 55

BOM Maximum output-swing bandwidth VO = VOH, kH

RL = 100 kΩ CL = 20 pF,

See Figure 98 – 40°C 75 kHz

OM p g

RL = 100 kΩ, See Figure 98

85°C 45

B U i i b d id h V 10 mV C 20 pF

25°C 525

B1 Unity-gain bandwidth VI = 10 mV, MH

See Figure 100

CL = 20 pF, – 40°C 770 MHz

1 y g

See Figure 100

85°C 370

Ph i VI = 10 mV f = B1

25°C 40°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 – 40°C 43°

φm g

CL = 20 pF, See Figure 100

85°C 38°

operating characteristics at specified free-air temperature, V DD = 10 V

PARAMETER TEST CONDITIONS TA

TLC271I, TLC271AI,

TLC271BI UNIT

A

MIN TYP MAX

UNIT

SR Sl i i

R 100 kΩ V 1 V

25°C 0.62

V/

SR Sl i i

R 100 kΩ VI(PP) = 1 V – 40°C 0.77

V/

SR Slew rate at unity gain

RL = 100 kΩ, CL = 20 pF

I(PP)

85°C 0.47

V/µs

SR Slew rate at unity gain CL = 20 pF,

See Figure 98

V 5 5 V

25°C 0.56 V/µs

See Figure 98

VI(PP) = 5.5 VI(PP) – 40°C 0.70

85°C 0.44

Vn Equivalent input noise voltage f = 1 kHz, See Figure 99

RS = 20 Ω, 25°C 32 nV/√Hz

B M i i b d id h V V 3 C 20 pF

25°C 35

BOM Maximum output-swing bandwidth VO = VOH,3 kH

RL = 100 kΩ CL = 20 pF,

See Figure 98 – 40°C 45 kHz

OM p g

RL = 100 kΩ, See Figure 98

85°C 25

B U i i b d id h V 10 mV C 20 pF

25°C 635

B1 Unity-gain bandwidth VI = 10 mV, kH

See Figure 100

CL = 20 pF, – 40°C 880 kHz

1 y g

See Figure 100

85°C 480

Ph i VI = 10 mV f = B1 25°C 43°

φm Phase margin VI = 10 mV,

CL = 20 pF,

f = B1,

See Figure 100 – 40°C 46°

φm g

CL = 20 pF, See Figure 100

85°C 41°

Références

Documents relatifs

Exercice n°3: valeur moyenne et efficace (7 points) Soit la tension périodique u ci-contre:. 1- Calculez sa valeur moyenne<u>, en expliquant bien la

This 2-Pole Noninverting Filter Suits Cascade Requirements on F/V Converter Outputs The circuit shown in Figure C does not require precision passive components, but for best

(destination register for instruction using two 16-bit general-purpose registers) reg16’ Source register for instruction using two 16-bit general-purpose registers mem 8-/16-bit

(D) Alors toutes les trois propri´ et´ es. pr´ ec´ edentes

[r]

(b) Exprime en fonction de  le volume de la ½ boule (c) Calcule le volume de la boîte. Calcule le volume d’air contenu dans

Une bouée de signalisation est constituée d’une demi - sphère de 1,2 m de rayon, surmontée d’un cône de hauteur 3 m.. Calcule le volume d’air contenu dans

The seven bits in the control word are taken from the in- put shift register to a latch sequencer that decodes this data and provides output signals that control the data transfers