• Aucun résultat trouvé

RF link for Implanted Medical Devices (IMDs) and Sub-GHz Inductive Power Transmission

N/A
N/A
Protected

Academic year: 2021

Partager "RF link for Implanted Medical Devices (IMDs) and Sub-GHz Inductive Power Transmission"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01692423

https://hal.archives-ouvertes.fr/hal-01692423

Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

RF link for Implanted Medical Devices (IMDs) and

Sub-GHz Inductive Power Transmission

Antoine Diet, Satvros Koulouridis, Yann Le Bihan, Quang-Trung Luu, Olivier

Meyer, Lionel Pichon, Marc Biancheri-Astier

To cite this version:

Antoine Diet, Satvros Koulouridis, Yann Le Bihan, Quang-Trung Luu, Olivier Meyer, et al.. RF link for Implanted Medical Devices (IMDs) and Sub-GHz Inductive Power Transmission. Journées d’Etude sur la TéléSANté, 6ème edition, Pôle Capteurs, Université d’Orléans, May 2017, Bourges, France. �hal-01692423�

(2)

RF link for Implanted Medical Devices (IMDs)

and Sub-GHz Inductive Power Transmission

A. Diet

1

, S. Koulouridis

1,2

, Y. Le Bihan

1

, Q.-T. Luu

1

, O. Meyer

1

, L. Pichon

1

, M. Biancheri-Astier

1

1

GeePs | Group of electrical engineering - Paris, UMR CNRS 8507, CentraleSupélec, Univ. Paris-Sud, Université Paris-Saclay,

Sorbonne Universités, UPMC Univ Paris 06, 3 & 11 rue Joliot-Curie, Plateau de Moulon 91192 Gif-sur-Yvette CEDEX, France

2

School of Electrical and Computer Engineering, University of Patras, Patras, Greece.

antoine.diet@geeps.centralesupelec.fr, koulouridis@g.upatras.gr

Simulation

1

Power Transfer Efficiency (PTE)

Coupling coefficient

Q-factor of Tx coil

Loaded Q-factor of Rx coil

Rx internal efficiency

Equivalent circuit using Z-matrix as the wireless link between Tx and Rx coil

[D. Ahn et al., Optimal Design of Wireless Power Transmission Links for Millimeter-Sized Biomedical Implants,

IEEE Trans. Biomed. Circuits Syst., pp. 1–13, 2014.]

Rx Part

Tx Part

Coupling link

Receiver power reception susceptibility:

How strongly the implant can receive power

under a given magnetic filed exposure

Transmitter figure-of-merit

How strongly the transmitter

coupled with the receiver

In-body

In-body

Off-body

ε(ω) = ε’(ω) – j ε’’(ω)

ZA1

ZB

ZA2

ZD1

ZD2

 

1

open

short

1

open

meas.

deemb.

Y

Y

Y

Y

Y

1

ZE1

ZE2

VNA measurements

« gives »

Y

open

VNA measurements

« gives »

Y

short

VNA measurements

« gives »

M

L

1

L

2

meas.

Y

deemb.

Y

PORT 1

(VNA)

PORT 2

(VNA)

5-turns coil

...or « SHORT », or OPEN

SMA

cable

SMA

cable

1 mm height

1,25 mm radius

FROM

CONTEXT

TO

EM

MODELLING

ε(ω) = ε’(ω) – j ε’’(ω)

Configuration of the Tx and Rx coil

Parameter

Tx coil

Rx coil

Radius

12 mm

0.5 mm

Height

1 mm

1 mm

Number of turns

1

7

Distance between two coils

12 mm

Configuration of the tissue model

Parameter

Skin Muscle

Bone

Thickness (mm)

2.5

25

22.5

µ

r

1

1

1

ρ (kg/m

3

)

1100

1041

1850

Therm. Cond. (W/K/m)

0.293

0.53

0.41

Blood flow (W/K/m

3

)

9100

2700

3400

- IMDs  high impact of the body on EM fields (modelling

needed with ε’ and ε’’) + radiating and non-radiating modes

- Design of helical RX coils  impacted by the body, lowering

performances (need a figure of merit, see PTE)

- OPTIMAL frequency, mainly due to body

losses and dispersion effects

- OPTIMAL size and orientation, due to the

distribution of H and E

-

...for deembedding connector effects (size

and frequency)

-

...for deembedded measurements in

presence of the phantom (in progress)

-

...for an accurate control of the position

The measurements show an

interesting agreement for

self-inductance evaluation under 300

MHz with a simple calibration test

fixture. Some parasitic elements are

still present after deembedding and

we need to improve the design of

the test fixture to be able to

evaluate the whole impedance

matrix of the 2 coils system.

The design of the coils in the

presence of a biological tissue can

be

fruitfully

helped

with

measurements of the coil inside a

phantom made with Triton X, water

and salt.

This

phantom

relative

permittivity and conductivity are

also given in function of the

frequency. Next step of the design

process is to accurately deembed

and re-simulate to match the

characteristics of the medium for

optimization of the small coils.

Bone (22.5 mm) Muscle (25 mm) Skin (2.5 mm)

Human arm

Rx coil Tx coil Muscle (25 mm)

100 mm

3

0

0

m

m

d

Muscle

Bone

Rx coil Tx coil

Human arm

Rx coil Tx coil

Human arm

top view

front view

Skin

0.00

50.00

100.00

150.00

0

.0

1

0

.0

6

0

.1

1

0

.1

6

0

.2

1

0

.2

6

0

.3

1

0

.3

6

0

.4

1

0

.4

6

0

.5

1

0

.5

6

0

.6

1

0

.6

6

0

.7

1

0

.7

6

0

.8

1

0

.8

6

0

.9

1

0

.9

6

ε'

Frequency (GHz)

permittivity vs freq

Eps_1

Eps_2

Eps_3

Eps_4

0.00

0.20

0.40

0.60

0.80

0

.0

1

0

.0

6

0

.1

1

0

.1

6

0

.2

1

0

.2

6

0

.3

1

0

.3

6

0

.4

1

0

.4

6

0

.5

1

0

.5

6

0

.6

1

0

.6

6

0

.7

1

0

.7

6

0

.8

1

0

.8

6

0

.9

1

0

.9

6

co

n

d

u

ct

iv

it

y

Frequency (GHz)

conductivity vs freq

Cond_1

Cond_2

Cond_3

Cond_4

Phantom made by 28 % triton X – water - salt

VNA 4 ports

Rx coil

Tx coil

5 cm

co

n

d

u

ct

iv

it

y

(S

/m

)

Relative permittivity vs. frequency

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

Tx coil

s radius (mm)

P T E ( % )

Sweeping R

Tissue Sim.

Air Sim.

1.9145 %, 105.8 MHz

6.8265 %, 284.9 MHz

6

7

8

9

10

11

12

13

14

1

2

3

4

5

6

7

Tx coil

s radius (mm)

P T E ( % )

Sweeping R

Tissue Sim.

Air Sim.

1.9145 %, 105.8 MHz

6.8265 %, 284.9 MHz

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

Frequency (MHz)

P T E

Power Transfer Efficiency

Tissue Sim.

Air Sim.

1.5908 %, 86.813 MHz

6.8427 %

284.452 MHz

0

50

100

150

200

250

300

0

1

2

3

4

5

6

7

Frequency (MHz)

P T E

Power Transfer Efficiency

Tissue Sim.

Air Sim.

1.5908 %, 86.813 MHz

6.8427 %

284.452 MHz

CURRENT WORK AND CONCLUSION

PTE

TEST FIXTURE NEEDED:

Using only two coils,

Implanted depth: 10 mm

0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 108 3 4 5 6 7 8 9 10 11 x 10-8 self-inductance on Z11 and Z22 analytical evaluation

deembeddeb measurements, port 2 deembeddeb measurements, port 1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 x 108 3 4 5 6 7 8 9 10 11 x 10-8 self-inductance on Z11 and Z22 analytical evaluation

deembeddeb measurements, port 2 deembeddeb measurements, port 1

Signal

conditioning

+

RF

harvesting

+

COM

(NFC, BT...)

Ground

plane

Electronics

Sensor

body

PATCH

air

Monitoring

Sensor

« in body»

and/ or

« on body»

Antenna or coil...

Inductive Power Transmission (coils)

@ 105MHz

𝑆𝐴𝑅 =

𝜎|𝛦|

2

𝜌

[𝑊/𝑘𝑔]

Références

Documents relatifs

Operation and provision of spaces and facilities will rely on the local climatic condition, technology, security, safety and available guidelines to ensure no harm to the

devices Towards safe and appropriate radiation treatment Safe medical devices for the patient, the health worker and the environment WHO call for innovative technologies that

This paper presents the results of comparative reliability study of two accelerated ageing tests for thermal stress applied on power RF LDMOS: Thermal Shock Tests (TST, air-air

Mansour,” An Integrated Tunable Band-Pass Filter Using MEMS Parallel-Plate Variable Capacitors Implemented with 0.35 μm CMOS Technology, IEEE–International Microwave Symposium,

Wireless portable devices can be divided in two main categories: Wearable Medical Devices (WMDs), placed on the outside of the body, in direct contact or close to the skin,

Une nouvelle m´ethode utilisant des r´eseaux de neu- rones pour mod´eliser le comportement d’un oscillateur contrˆol´e en tension est ´egalement pr´esent´e dans ce pa-

In Section II the method will be detailed; in Section III the de-embedding will be tested on a few graphene passive interconnects and compared with the widely adopted OS; in Section

Prototyped reference coil (RFC1) with the ferrite positioned below (left: top view, right: bottom view). The circuital parameters extracted from experimental and simulation results