• Aucun résultat trouvé

2 W / mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz

N/A
N/A
Protected

Academic year: 2021

Partager "2 W / mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-02929065

https://hal.archives-ouvertes.fr/hal-02929065

Submitted on 11 Dec 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

2 W / mm power density of an AlGaN/GaN HEMT

grown on free-standing GaN substrate at 40 GHz

Mohamed-Reda Irekti, Marie Lesecq, Nicolas Defrance, Etienne Okada, Eric

Frayssinet, Yvon Cordier, Jean-Guy Tartarin, Jean-Claude de Jaeger

To cite this version:

Mohamed-Reda Irekti, Marie Lesecq, Nicolas Defrance, Etienne Okada, Eric Frayssinet, et al.. 2 W

/ mm power density of an AlGaN/GaN HEMT grown on free-standing GaN substrate at 40 GHz.

Semiconductor Science and Technology, IOP Publishing, 2019, 34 (12), pp.12LT01.

�10.1088/1361-6641/ab4e74�. �hal-02929065�

(2)

ACCEPTED MANUSCRIPT

2 W/mm power density of an AlGaN/GaN HEMT grown on

Free-Standing GaN Substrate at 40 GHz

To cite this article before publication: Mohamed-Reda IREKTI et al 2019 Semicond. Sci. Technol. in press https://doi.org/10.1088/1361-6641/ab4e74

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors” This Accepted Manuscript is © 2019 IOP Publishing Ltd.

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. View the article online for updates and enhancements.

(3)

IOP Publishing

Journal Title

Journal XX (XXXX) XXXXXX

https://doi.org/XXXX/XXXX

xxxx-xxxx/xx/xxxxxx 1 © xxxx IOP Publishing Ltd

2 W/mm power density of an AlGaN/GaN

HEMT grown on Free-Standing GaN

Substrate at 40 GHz

Mohamed-Reda Irekti

1,2

, Marie Lesecq

1

, Nicolas Defrance

1

, Etienne Okada

1

, Eric Frayssinet

3

,

Yvon Cordier

3

, Jean-Guy Tartarin

2

and Jean-Claude De Jaeger

1

1 Microwave Power Devices Group Institut d’Electronique, de Microélectronique et de Nanotechnologie,

University of Lille, Villeneuve d’Ascq 59652, France

2 Laboratoire d’Analyse et d’Architecture des Systèmes, Centre National de la Recherche Scientifique,

Toulouse 31400, France.

3 Université Côte d’Azur, CNRS, Centre de Recherche sur l’Hétéro-Epitaxie et ses Applications,

Valbonne 06560, France.

E-mail: mohamedreda.irekti.etu@univ-lille.fr

Received xxxxxx

Accepted for publication xxxxxx Published xxxxxx

Abstract

In this letter, a record performa nce a t 40 GHz obta ined on AlGa N/Ga N high electron mobility tra nsistor (HEMT) grown on Hydride Va por Pha se Epita xy (HVPE) Free-Sta nding Ga N substrate is reported. An output power density of 2 W.mm-1 a ssocia ted with 20.5 % power a dded efficiency

a nd a linea r power ga in (Gp) of 4.2 dB is demonstra ted for 70 nm ga te length device.

The device exhibits a ma ximum DC dra in current density of 950 mA.mm-1 a nd a pea k extrinsic

tra nsconductance (gm Max) of 300 mS.mm-1 a t VDS = 6 V. A 100 GHz ma ximum intrinsic cutoff

frequency fT, a nd a ma ximum intrinsic oscilla tion frequency fMax of 125 GHz a re obta ined from

S-pa ra meters measurement. This performa nce is very promising for HEMTs grown on Free-Sta nding Ga N substra te.

Keywords: free-sta nding Ga N, hydride va por pha se epita xy (HVPE), AlGa N/Ga N, high electron mobility tra nsistor (HEMT), millimeter-wa ve power density

1. Introduction

Ga llium Nitride (Ga N) High Electron Mobility Tra nsistor (HEMT) constitutes the best ca ndida te for millimeter wa ve power a pplica tions [1], due to its rema rka ble ma terial properties such a s high brea kdown volta ge, high sa tura tion velocity, a nd high therma l conductivity. Most AlGa N/Ga N HEMT epila yers a re grown on Silicon Ca rbide (SiC) substrate for high resistivity a nd good therma l ma nagement [2], [3], and on Silicon substra te (Si) beca use of its low-cost, la rge a rea a va ila bility, a nd compa tibility with MOS technology [4]. However, during the epita xia l growth, ma ny defects a ppear in the ma teria l (disloca tions with density from 108 to 1010 cm-2),

beca use of the crysta l la ttice misma tch of 17% (4%) between Ga N a nd Si (SiC) substra te. To this, is a dded a difference in

the therma l expa nsion coefficient of 54% a nd 25% with Si and SiC substra tes respectively, which ca n induce noticea ble tensile stress responsible for la yer cra cking. In this pa per, the device is fa brica ted on AlGa N/Ga N epila yer grown by Meta l Orga nic Chemica l Va por Deposition (MOCVD) on Hydride Va por Pha se Epita xy (HVPE) commercia l Free-Sta nding Ga llium Nitride (Ga N) substra te. This structure presents the a dva ntages of the direct growth of high crysta lline qua lity Ga N with threa ding disloca tion density below 107 cm- 2 [5], [6]. The goa l of this study is to demonstra te the

high microwa ve power performa nce a t 40 GHz of HEMTs on Ga N substra te.

Severa l studies ha ve been conducted previously to fa bricate high-frequency tra nsistors on high qua lity Ga N substra tes.

Page 1 of 4 AUTHOR SUBMITTED MANUSCRIPT - SST-106040.R1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Accepted Manuscript

(4)

2

An output power density of 9.4 W.mm-1 a t 10 GHz [7], and

6.7 W.mm-1 a t 4 GHz using ba ck-ba rrier [8] a re reported.

With a n AlN ba rrier, Da vid J.Meyer et a l. obta ined 1 W.mm-1

a t 40 GHz with a cutoff frequency fT of 165 GHz and

a 171 GHz ma ximum oscilla tion frequency [9]. Thus, it has been demonstra ted tha t AlGa N/Ga N HEMT homo -epita xial devices present releva nt DC cha ra cteristics a nd microwa ve power performa nces [10]–[14]. Furthermore, beyond the expected benefit of better relia bility on high crysta l qua lity ma teria ls, further progress of performa nce is still a chieva ble by improving the epila yer design a nd growth a s well a s the tra nsistor process.

In this letter, DC a nd RF electrica l performa nces a re described a nd sta te of the a rt microwa ve performa nce such a s a power density of 2 W.mm-1 a t 40GHz a re ca rried out demonstra ting

the ca pa bility of a n AlGa N/Ga N HEMT grown on doped Free-Sta nding Ga N substra te.

2. Material growth and device technology

2.1 Material growth

From commercia l Hydride Va por Pha se Epita xy (HVPE) Free-Sta nding (2-inches dia meter) Ga N substra tes (ρ ≤ 30 mΩ.cm) supplied by Saint-Gobain Lumilog, a sufficiently thick a nd resistive 10 µm Ga N buffer la yer is grown by Meta l Orga nic Chemica l Va por Deposition (MOCVD) in a close-coupled showerhea d Aixtron rea ctor. This thick buffer is needed to minimize lea ka ge current and to limit the coupling of the conductive substra te with the AlGa N/Ga N heterostructure, a nd thus lowering RF dielectric losses. As in ref [15], growth conditions a re chosen to obtain 3 µm carbon rich resistive GaN layer before the growth of 7 µm unintentiona lly doped (UID) Ga N. The HEMT a ctive la yers consist of a 11 nm thick Al0.26Ga0.74N ba rrier ca pped

with 3 nm thick in-situ grown SiN la yer. A 1.5 nm thick AlN exclusion la yer is used to reduce a lloy sca ttering a nd to improve ca rrier confinement within the 2D electron ga s (2DEG) (Fig. 1 (a )). The direct growth of AlGa N/Ga N la yers permits the suppression of the nuclea tion la yer, which is considered a s a therma l ba rrier [16]. X-ra y diffra ction performed on the structure shows tha t the high qua lity of the free-sta nding Ga N substra tes is well replica ted: full width a t ha lf ma ximum for the (002) a nd (302) rocking curves a re 98” and 200” respectively.

This structure produces a 2DEG with a tota l cha rge density of 8.5 × 1012 /cm2 a nd a n electron mobility of 2200 cm2/V.s

obta ined from Ha ll effect mea surement. This mobility and cha rge density tra nsla te to a 2DEG sheet resista nce of 356 Ω/sq a t room tempera ture.

2.2 Device technology

The device fa brica tion sta rts with a lignment ma rks ma de by Inductively Coupled Pla sma (ICP) etching. Using a Cl2/Ar

pla sma chemistry, a lignment ma rks a re etched to a depth of 650 nm. The process continues with the deposition of ohmic conta cts meta lliza tion Ti/Al/Ni/Au (12/200/40/100 nm) by e-bea m eva pora tion a fter in-situ-Argon (Ar) ion e-bea m etching (IBE), where more tha n ha lf of the ba rrier la yer is etched to set the meta llic sequentia l closer to the 2D conduction cha nnel without degra ding the UID-Ga N la yer. This is followed by ra pid therma l a nnea ling (RTA) a t 850 °C for 30 s under nitrogen a tmosphere. Then, devices a re isola ted by N+ ion multiple impla nta tions. An a vera ge conta ct resista nce a s low a s RC = 0.34 Ω.mm is mea sured by a tra nsmission line model

on different pa tterns. T-sha ped ga te ba sed on Ni/Au (40/300 nm) eva pora ted meta lliza tion with 70 nm footprint (Fig. 1 (b)) a re pa tterned by electron-bea m lithogra phy process using optimized (PMMA/COPO/PMMA) tri-la yer resist sta ck. 400 °C a nnea ling for 20 min under nitrogen a tmosphere is done in order to improve Schottky contact beha vior by reducing the tra pping phenomena under the ga te [17]. Then, Si3N4 pa ssiva tion is performed by Pla sma

-Enha nced Chemica l Va por Deposition (PECVD) a t 340 °C. Fina lly, a Ti/Au sta ck is deposited by eva pora tion to a ccess tra nsistor conta cts. Device under test (DUT) in this pa per fea tures a two-finger configura tion with a ga te length Lg = 70 nm, a ga te width W = 2 x 50 µm a nd source-to-dra in

spa cing LSD = 1.3 µm. Fig. 1 (b) a nd Fig. 1 (c) shows

a Sca nning Electron Microscope (SEM) view of the T-sha ped ga te obta ined on a device with 500 nm source-to-ga te spa cing.

3. Measurements and results

3.1 DC Characteristics

Fig. 1. (a) 3D schematic of the as-fabricated AlGaN/GaN HEMT on Free-Standing GaN substrate before passivation with SiN, (b) SEM image after gate lift-off (c) SEM top view of the device after gate fabrication

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Accepted Manuscript

(5)

3

Fig. 2 shows the output IDS(VDS) cha ra cteristics for a device

featuring 2 fingers of 50 µm each, with a gate-to-drain spacing LDG = 730 nm, a nd a source-to-ga tespa cing LGS = 500 nm.

From these mea surements, a ma ximum DC current density IDS Max of 950 mA.mm-1 is rea ched a t VGS = 1 V, a ssocia ted

with a n ON-resista nce of 3 Ω.mm.

As shown in Fig. 3, for different VGS ra nging from -6 V to

0 V, a n extrinsic tra nsconducta nce gm,ext peak of 300 mS.mm- 1

a t VGS = - 2.5 V a nd VDS = 6 V is obta ined. A threshold volta ge

Vth of -3.5 V is deduced from the tra nsfer cha ra cteristic.

The ga te lea ka ge current is a s low a s 3.10-7 A/mm.

The ION/IOFF ra tio of dra in current IDS is a bove 106.

3.2 RF Characteristics

The sca ttering Sij pa ra meters a re mea sured in the 250 MHz to 67 GHz frequency ra nge, using a Vector Network Ana lyzer (VNA). The ca libra tion procedure is performed on wa fer, using a Line-Reflect-Reflect-Ma tch (LRRM) procedure. The current gain modulus (│H21│) and Mason’s unilateral

ga in (U) a re extra cted from S-pa ra meters versus frequency mea surement. Using Open-Short pa tterns, the inductive and ca pa citive pa d contributions a re de-embedded. The current tra nsition frequency (fT) a nd the ma ximum oscilla tion

frequency (fMax) a re directly extra cted from the first order

linea r frequency regression (- 20 dB/deca de) plots of │H21│and U respectively. These figures of merit are depicted

in Fig. 4 for a bia sing a t VGS = -2.5 V a nd VDS = 6 V,

corresponding to the extrinsic tra nsconductance pea k. An intrinsic current ga in cut-off frequency fT of 100 GHz

a ssocia ted with a ma ximum oscilla tion frequency fMax of

125 GHz a re a chieved. These va lues a re obta ined tha nks to an optimized device processing (T-sha ped ga te), a nd a lso to the high ma teria l qua lity, by using thin ba rrier (11 nm) a nd thick GaN buffer on the Free-Standing GaN substrate. Optimization of thickness and carbon doping level of the C-doped GaN layer may further improve these results. It must be a trade-off between crystal quality and buffer isolation [18], [19].

3.3 Microwave power measurements

Large-signal microwave power measurement was performed at 40 GHz. It is based on an active load pull setup under CW conditions with a large-signal network analyser (LSNA) working up to 50 GHz. At VDS = 10 V and IDS = 300 mA.mm- 1

corresponding to class AB operation, the optimal load impedance is Γload = 0.75∟85°. At this condition, the device

exhibits an output power density (Pout) of 1.2 W.mm-1

associated with a maximum power-added efficiency (PAE) of 26.2 % and a linear gain of 5 dB. Measurement was also carried out at VDS = 15 V and IDS = 300 mA.mm-1 (Fig. 5).For

Γload = 0.7∟80°, an output power density of 2 W.mm-1

associated with a maximum power-added efficiency (PAE) of 20.5 %, and a linear gain of 4.2 dB are achieved.

0 2 4 6 8 10 12 0,0 0,2 0,4 0,6 0,8 1,0 V GS 1 V ID (A/mm ) VD(Volts) -6 V RON = 3.mm

Fig. 2. IDS (VDS) characteristics for a 2 × 50 × 0.07 µm2 AlGaN/GaN HEMT

on Free-Standing GaN substrate.

-6 -4 -2 0 0 50 100 150 200 250 300 VGS (Volt) gm,e xt ( mS.mm -1) 0,0 0,2 0,4 0,6 0,8 1,0 IDS ( A. mm -1)

Fig. 3. Transfer characteristics at VDS = 6 V for a 2 × 50 × 0.07 µm2

AlGaN/GaN HEMT on Free-Standing GaN substrate.

1E9 1E10 1E11 0 10 20 30 40 50 MSG H21 U Slope : -20 dB/dec Frequency(GHz) Ga in (dB) F Max = 125 GHz F T = 100 GHz

Fig. 4. Current gain modulus │H21│, Mason’s unilateral gain (U) and

maximum Stable Gain (MSG) versus frequency for a 2 × 50 × 0.07 µm2

AlGaN/GaN HEMT on Free-Standing GaN substrate at VGS = -2.5 V,

VDS = 6 V

Page 3 of 4 AUTHOR SUBMITTED MANUSCRIPT - SST-106040.R1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Accepted Manuscript

(6)

4

Up to now, this result constitutes the state-of-the-art large signal at 40 GHz for AlGaN/GaN HEMTs on Free-Standing GaN substrate.

4. Conclusion

AlGa N/Ga N HEMT grown on Free-Sta nding Ga N substrate a re fa brica ted. Attra ctive sma ll-signa l a nd RF power performa nces a re demonstra ted for a 2 x 50 x 0.07 µm2

device. A record output power density for HEMT on Free -Sta nding Ga N substra te, a s high a s 2 W.mm- 1 is obta ined at

40 GHz a ssocia ted with a PAE of 20.5 % a nd a linea r power ga in of 4.2 dB. The tra nsistor exhibits intrinsic cut-off frequencies fT = 100 GHz a nd fMax = 125 GHz at

VGS = - 2.5 V a nd VDS = 6 V. These results show the

ca pa bility of AlGa N/Ga N HEMT ba sed on Free-Sta nding Ga N substra te for high millimeter-wa ve power a pplica tions.

Acknowledgements

This work ha s been supported by the cluster of Excellence Ga NeX which belongs to the public funded ‘Investissements d’Avenir’(ANR-11-LABX-0014) program managed by the French Resea rch Na tiona l Agency, a nd a lso by the French Rena tech network.

References

[1] T. Palacios et al., « High-power AlGaN/GaN HEMTs for Ka-band applications », IEEE Electron Device Lett., vol. 26, no 11,

p. 781‑783, nov. 2005.

[2] V. D. Giacomo-Brunel et al., « Industrial 0.15-μm AlGaN/GaN on SiC Technology for Applications up to Ka Band », 13th

European Microwave Integrated Circuits Conference (EuMIC),

p. 1‑4, 2018.

[3] R. Gaska et al., « High-temperature performance of AlGaN/GaN HFETs on SiC substrates », IEEE Electron Device

Lett., vol. 18, no 10, p. 492‑494, oct. 1997.

[4] D. Kim et al., « Ka-Band MMIC Using AlGaN/GaN-on-Si With Recessed High-$k$ Dual MIS Structure », IEEE Electron Device

Lett., vol. 39, no 7, p. 995‑998, juill. 2018.

[5] D. Gogova et al., « High-Quality 2’’ Bulk-Like Free-Standing GaN Grown by Hydride Vapour Phase Epitaxy on a Si-doped Metal Organic Vapour Phase Epitaxial GaN Template with an Ultra-Low Dislocation Density », Jpn. J. Appl. Phys., vol. 44, no 3R, p. 1181, mars 2005.

[6] S. M. Eichfeld et al., « Dual temperature process for reduction in regrowth interfacial charge in AlGaN/GaN HEMTs grown on GaN substrates », Phys. Status Solidi C, vol. 8, no 7‑8, p. 2053‑2055, 2011.

[7] K. K. Chu et al., « 9.4-W/mm power density AlGaN-GaN HEMTs on free-standing GaN substrates », IEEE Electron

Device Lett., vol. 25, no 9, p. 596‑598, sept. 2004.

[8] S. W. Kaun et al., « Reduction of carbon proximity effects by including AlGaN back barriers in HEMTs on free-standing GaN », Electron. Lett., vol. 49, no 14, p. 893‑895, juill. 2013.

[9] D. J. Meyer et al., « High Electron Velocity Submicrometer AlN/GaN MOS-HEMTs on Freestanding GaN Substrates »,

IEEE Electron Device Lett., vol. 34, no 2, p. 199‑201, 2013.

[10] N. Killat et al., « Reliability of AlGaN/GaN high electron mobility transistors on low dislocation density bulk GaN substrate: Implications of surface step edges », Appl. Phys.

Lett., vol. 103, no 19, p. 193507, nov. 2013.

[11] A. Fontserè et al., « Bulk Temperature Impact on the AlGaN/GaN HEMT Forward Current on Si, Sapphire and Free-Standing GaN », ECS Solid State Lett., vol. 2, no 1, p. P4‑P7,

janv. 2013.

[12] D. Zhang et al., « Reliability Improvement of GaN Devices on Free-Standing GaN Substrates », IEEE Trans. Electron Devices, vol. 65, no 8, p. 3379‑3387, 2018.

[13] D. F. Storm et al., « Microwave performance and structural characterization of MBE-grown AlGaN/GaN HEMTs on low dislocation density GaN substrates », J. Cryst. Growth, vol. 305, no 2, p. 340‑345, juill. 2007.

[14] J. K. Gillespie et al., « Uniformity of dc and rf performance of MBE-grown AlGaN/GaN HEMTS on HVPE-grown buffers »,

Solid-State Electron., vol. 47, no 10, p. 1859‑1862, oct. 2003.

[15] E. Frayssinet et al., « Influence of metal‐organic vapor phase epitaxy parameters and Si(111) substrate type on the properties of AlGaN/GaN HEMTs with thin simple buffer », physica status solidi (a), 2017.

[16] G. J. Riedel et al., « Reducing Thermal Resistance of AlGaN/GaN Electronic Devices Using Novel Nucleation Layers », IEEE Electron Device Lett., vol. 30, no 2, p. 103‑106,

févr. 2009.

[17] J. Gerbedoen et al., « Performance of Unstuck - Gate AlGaN/GaN HEMTs on (001) Silicon Substrate at 10 GHz »,

European Microwave Integrated Circuit Conference,

p. 330‑333, 2008.

[18] P. Gamarra et al., « Optimisation of a carbon doped buffer layer for AlGaN/GaN HEMT devices », J. Cryst. Growth, vol. 414, p. 232‑236, mars 2015.

[19] D. F. Storm et al., « Proximity effects of beryllium-doped GaN buffer layers on the electronic properties of epitaxial AlGaN/GaN heterostructures », Solid-State Electron., vol. 54, no 11, p. 1470‑1473, nov. 2010. -20 -15 -10 -5 0 5 10 15 20 25 -20 -15 -10 -5 0 5 10 15 20 25 Pout Gp PAE Pabs (dBm) Pout (d Bm) , Gp (d B) 0 3 6 9 12 15 18 21 24 PAE (%) IDS0 = 300 mA.mm-1 VDS0 = 15 VL = 0.7L80°

Fig. 5. Output power, power gain and power added efficiency versus absorbed power at 40 GHz for a 2 x 50 x 0.07 µm2

AlGaN/GaN HEMT on Free-Standing GaN substrate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Accepted Manuscript

Références

Documents relatifs

La résine optique utilisée pour la définition du motif de grille sert également de masque lors de la gravure ICP SF6/O2 du motif de grille dans la couche de Si3N4.. Après élimination

In [8] the author has demonstrated that high temperature swings can produce mechanical degradation due to coefficient of thermal expansion (CTE) mismatch between the

Objectif : Identifier quelles sont les compétences sages-femmes à développer dans la pratique du dépistage systématique des violences conjugales. Méthode : Revue de la

L’intérêt pour les problèmes d’intégration et de sommation symboliques est bien antérieur aux travaux de Zeilberger. Cependant, quand on évoque l’intégration symbolique dans

La dernière zone examinée est l'interface Schottky de grille. Il s'agit du c÷ur du transistor car de cette région dépend la commande du courant de drain. C'est aussi la zone où

On the other hand, in the structure with buried p-region, there is the advantage of approaching the AlGaN/GaN interface without the necessity to decrease the thickness

Figure 11: Portion of classification maps obtained on Port-au-Prince acquisition using different β parameter values (a): β = 1.2 leading to an overall accuracy of 97.43%; (b) β =

يقيبطلا بناجلا يناثلا لصفلا جئاتنلا ليلحتو ضرع 75 1 - ( مقر لودجلا جئاتن ةشقانمو ةسارد 08 ) ةعرسلا رابتخا للاخ انمصحت ةيباسحلا ةيممعلا