• Aucun résultat trouvé

R = 10 R = 1k k R = 0k [E-E (N)]/2E [E-E (N)]/2E [E-E (N)]/2E

N/A
N/A
Protected

Academic year: 2022

Partager "R = 10 R = 1k k R = 0k [E-E (N)]/2E [E-E (N)]/2E [E-E (N)]/2E"

Copied!
26
0
0

Texte intégral

(1)

THREE-DIMENSIONAL IMPURITY PROBLEMS WITH COLD ATOMS

Yvan Castin, Christian Trefzger

LKB, Ecole normale sup´erieure (Paris, France) Mauro Antezza

Lab. Charles Coulomb, Universit´e de Montpellier (France) David Hutchinson

University of Otaga, Dunedin, New Zealand

(2)

A RICH PROBLEM

An impurity atom A (mass mA) interacting with another species (or spin state) B (mass mB) [no interaction among B atoms]:

1. monomeron/dimeron pb: a Fermi sea of B atoms on a (narrow) Feshbach resonance [with C. Trefzger]

2. strong localisation of A: the B atoms are randomly pinned at the nodes of an optical lattice [with M. An- tezza, D. Hutchinson, P. Massignan, U. Gavish]

3. photonic band gaps: A is a photon; one B atom per node of an optical lattice [with M. Antezza]

(3)

1 Monomeron-dimeron problem

1.1 Physical motivation

• Monomerons and dimerons are quasi-particles belonging to the general class of Fermi polarons [neutral objects dressed by the Fermi sea, rather than electrons dressed by phonons in solids]

• The ground state of strongly polarized spin 1/2 Fermi gas at unitarity [NA ≪ NB, A =↓, B =↑] is a Fermi gas of monomerons [Chevy; Lobo, Recati, Giorgini, Stringari;

Combescot, Giraud, Leyronas; Mora]

• monomeron = A dressed by particle-hole excitations of B Fermi sea. It is a quasi-particle of dispersion relation

∆E(P) =

P→0 ∆E(0) + P 2

2m + O(P4)

(4)

• At unitarity, measured equation of state of monomerons

≃ an ideal Fermi gas [Navon, Nascimb`ene, Chevy, Sa- lomon]

1.2 Monomeron vs dimeron

• The ground state of A, as the function of the AB scat- tering length a, has two branches with a cusp [Prokof ’ev, Svistunov]

• Dimeron = AB dimer dressed by particle-hole excita- tions of B Fermi sea

• transition from monomeron to dimeron at ac

• ac > 0 (broad Feshbach resonance) “intuitive”: dimer exists in free space for a > 0 only.

(5)

0.5 1 1.5 2 -20

-10 0

[E-E FS(N)]/2E F

0.6 0.7 0.8 0.9 1

-1.2 -1 -0.8 -0.6

-0.2 0 0.2 0.4 0.6

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1

1 1.5 2 2.5 3

-7 -6 -5 -4 -3 -2

[E-E FS(N)]/2E F

0 0.2 0.4 0.6 0.8 1 -0.8

-0.6 -0.4 -0.2

-1 -0.8 -0.6 -0.4 -0.2 0 -0.3

-0.2 -0.1

0 0.5 1 1.5 2

1/(kFa) -1

-0.8 -0.6 -0.4

[E-E FS(N)]/2E F

-4.5 -4.25 -4 -3.75 -3.5 1/(kFa)

-0.1 -0.05

-9 -8.8 -8.6 -8.4 -8.2 -8 1/(kFa)

-0.05 -0.04 -0.03 -0.02 -0.01

(a1)

(a2)

(a3)

(b1)

(b2)

(b3)

(c1)

(c2)

(c3)

M/m = 0.1505 M/m = 1 M/m = 6.6439

k FR * = 0k FR * = 1k FR * = 10

monomeron

dimeron 1/(kFa)c = 1.75

1/(kFa)

c = 2.06

1/(kFa)

c = 1.07 1/(k

Fa)

c = -4.13 1/(k

Fa)

c = -8.38 1/(kFa)

c = -0.58 1/(kFa)c = 0.25 1/(kFa)c = 0.84

1/(kFa)

c = 0.36

(6)

1.3 Two-channel model

H = X

k

~2k2

2mAakak+ ~2k2

2mBbkbk+(Emol+ ~2k2

2(mA + mB))γkγk + Λ

L3/2

X

kA,kB

χ(krel)[γk

A+kBakAbkB + h.c.]

Take cut-off to ∞ for a and Λ fixed (Emol → +∞). Fesh- bach length R = π~4/(µ2Λ2). Free-space dimer iff a > 0.

1.4 How to solve

For Λ = 0:

one A, zero molecule zero A, one molecule E0 = EFS(NB) E0 = EFS(NB − 1) + Emol

∆Epol = 0 ∆Edim = Emol − EF

For Λ > 0: Expand in the number of particle-hole pairs [Chevy ; Combescot, Giraud], here up to one pair.

(7)

ψmono〉= +

ψdim〉=

+ +

+ + +

...

...

B:

A:

B:

A:

Mol:

Mol:

kA=0

vacuum

vacuum

vacuum kmol=q

kA=q-k o

x

q oq

H H k H

H H H

kmol=0 vacuum

kA=q-k

kmol=q-k

vacuum k vacuum

A=-k

xk

oq

+

o H

xk x

k x k’

kA=q-(k+k’)

vacuum q Generalized Chevy Ansätze

(8)

1.5 Numerical result

ac < 0 at large kFR ! Paradoxical. Stable dimeronic branch extends to a regime where no free space dimer.

0 1 2 3 4 5 6 7 8 9 10

k

F

R

* -8

-6 -4 -2 0 2

1/(k

F

a)

c

m_A/m_B=0.1505

m_A/m_B=1

m_A/m_B=6.6439

(a)

(9)

1.6 Analytics

• Two-body scattering amplitude [Petrov]:

fkrel = − 1

a1 + ikrel + krel2 R

• Usual weakly attractive limit: a → 0, R fixed

• Appropriate weakly attractive limit: a → 0, aR fixed

• Define α = m mA

A+mB and

s ≡ αkF (−aR)1/2

Note that s → 0 in the weakly attractive limit a → 0.

(10)

lim

a 0-

∆ E/E

F 0

1/2

s

monomeron dimeron

Nmol=0 Nmol=1

Nmol=0 Nmol=1

mA

mA+mB 1

mB mA

mA mA+mB

mA mA+mB

(11)

Critical scattering length on a narrow Feshbach resonance:

1

kF ac =

kFR→∞ −αkF R +2

π

"

1 − α−2 + 1 2

α−5/2 − α1/2

ln 1 + α1/2 1 − α1/2

#

+ O( 1

kF R)

(12)

1.7 Physical interpretation of 1/(kFa)c < 0

• Stabilization of molecule by Fermi sea

• Molecule energy renormalized by Lambshift:

mol = Emol +

Z d3k (2π)3

χ2(k)Λ2

0 − ~2k2/2µ = − Λ2µ 2π~2a

• Free space: molecule stable iff E˜mol < 0 that is a > 0

• Fermi sea: molecule stable iff E˜mol < EF that is 1

kF a > −αkF R

• For a < 0 this imposes

s > α1/2 =

mA

mA + mB

1/2

(13)

2 Strong (Anderson) localisation of A matterwave

2.1 Physical motivation and configuration

• B randomly filling the nodes of an optical lattice (pocc ≪ 1) with no tunneling

• A does not see the lattice potential, it sees a disordered ensemble of scatterers

• ~2kA2 /2mA ≪ ~ωB so elastic AB scattering

(14)

• A solvable alternative to laser speckle (Aspect). Opti- misation of localisation by tuning the A − B scattering length

• One expects (in 3D) an Anderson transition [mobility edge] between extended states (continuous spectrum) and localized states (point-like spectrum).

2.2 Model

• Each trapped B atom replaced by Wigner-Bethe-Peierls contact conditions at lattice node on A wavefunction, with effective scattering length aeff :

φ(rA) =

rAB→0 D(rB) ×

1

rAB − 1 aeff

| {z }

zero energy scattering state for rAB≫aho

+ O(rAB)

(15)

• Scatterers occupy a sphere of finite but large diameter

2.3 How to solve

• single particle Green’s function in presence of a number NB of B scatterers at energy E = ~2kA2 /2mA exactly given by NB × NB matrix inversion

G(r, r0) = g(r−r0)+2π~2 mA

NB

X

i,j=1

g(r−ri)[M−1]ijg(rj−r0)

Mij =





−2π~2

m g(ri − rj) = eikArij/rij if i 6= j,

ikA + a−1eff if i = j.

where free-space Green’s function g(r − r0) is transla- tionally invariant.

(16)

• Gives access to localisation length ξ: decay length of field radiated by a source of A in the B medium:

G(r, r0) ≃

|r−r0| large Ae−|r−r0|/ξ

|r − r0|α

• Gives access to density ρE of states (E < 0) [real poles of G] or resonances [complex poles of G] (E=Re z0 > 0,

~Γ/2 = − Im z0 > 0)

2.4 Matrix M is not an Anderson problem

• off-diagonal disorder only

• at E > 0, Mij decays slowly for rij → ∞: more slowly than 1/rij3 . So no localized states ? (Boris Altshuler, informal discussion)

(17)

2.5 Numerical results

• pocc = 1/10, diameter= 140d; hNBi ≃ 1.4 × 105

• for aeff < 0, for aeff → +∞, no evidence of localisation [van Tiggelen, Lagendijk]

• The best for localisation is to take aeff ≃ half mean inter-B distance

• Rich situation because we consider also E < 0. E.g.

for aeff = d we shall find three mobility edges, one at positive energy and two at negative energy. Is certainly sensitive to the presence of the lattice.

(18)

LOCALISATION LENGTH

-2 -1.6 -1.2 -0.8 -0.4 0

0 2 4 6 8 10 12

ξ / d

0 0.1 0.2 0.3 0.4 0.5 0.6 0 2 4 6 8 10 12

0 0.1 0.2 0.3 0.4 0.5 0

0.3 0.6 0.9 1.2 1.5 1.8

-2 -1.6 -1.2 -0.8 -0.4 0

0 0.3 0.6 0.9 1.2 1.5 1.8

κ d

(a)

(b)

E / E0

aeff/d =0.1 (black), 0.2 (red), 0.7 (green), 1 (blue), 1.3 (violet)

(19)

DOS WITHOUT/WITH SPATIAL FILTER

Oblique line = mean-field bottom E = ρBgeff

(20)

-2 -1.6 -1.2 -0.8 -0.4 0 0

2 4 6 8 10 12

ξ / d

0 0.1 0.2 0.3 0.4 0.5 0.6 0 2 4 6 8 10 12

-0.2 0.6

mobility edge mobility edge mobility edge

spectral gap ρE=0

localized ρEloc>0

ρ E>0

extended

states

states ρE>0 ρEloc=0

ρ E

loc >0

localized states ρE>0

aeff=d

extended states

ρE>0 ρEloc=0 -1

E / E

0

-1.3

(21)

3 Photonic band gaps

3.1 Physical motivation

• find matter lattices leading to omnidirectional band gaps (OBG) for light

• first studies with extended objects (dielectric spheres) [Ho, Cha Soukoulis, 1990]

• for atoms: Lagendijk et al., 1996 predict OBG for fcc lattice

• Knoester et al. , 2006: Lagendijk’s sum is divergent;

addition by hand of a regularizing term; no OBG for fcc. But this no longer solves the original Hamiltonian problem.

(22)

3.2 Case of classical physics

• for a stationary state of the field at frequency ω, atom in R carries a mean electric dipole D~ (R):

D~ (R) = ǫ0α(ω) X

R6=R

g(R − R)D~ (R)

• α(ω) ∝ 1/(ω − ω0 + iΓ/2) is atomic polarisability

• gij(r) is component along i of electric field radiated in r by a unit dipole oscillating along j and located at the origin of coordinates:

gij(r) ∝ [(ω/c)2δij + ∂rirj]

| {z }

ensures transversality

ei(ω/c)r

| {zr }

scalar field

(23)

• periodic case, Bloch theorem: ~ω = ǫq with D~ (R) = D~ eiq·R

3.3 How to calculate the sum ?

• “formule sommatoire de Poisson” : X

R∈DL

f(R) = 1 V

X

K∈RL

f˜(K)

• but g(0) = ∞ and P

K KiKj/K2 not absolutely conver- gent

• Physical regularising effect: atomic positions delocalized over aho, provides a Gaussian cut-off in Fourier space

g(R − R) → hg(R + u − R − u)iu,u = ¯g(R − R)

(24)

3.4 Looking for band gaps

• none for Bravais lattices (Knoester was right)

• the historical work of Soukoulis predicted OBG for a di- amond lattice of dielectric spheres (fcc+translated copy by (d4, d4, d4)). May be it also works with atoms ?

• we indeed predict a gap for an atomic diamond lattice

• important to check for the absence of free wave (field vanishes on all lattice sites) using

ωfree

c ≥ inf

K6=0

K 2

(25)

Photonic density of states for diamond, k0d = 2 (k0 = ω0/c)

-6 -4 -2 0 2 4 6

(ω−ω0)/Γ 0

1 2

3 4 5

ρ(ω) [1/ΓV L]

diamant extrapole a portee nulle

k0=1.2599 (k0a=2) & a_ho=0.091287 & nq=50

(26)

1 2 3 4 5 k

0

d

0 5 10 15

∆/Γ

diamant

aho=0.08 ; extrapole a portee nulle

4.7 4.8 4.9 5 5.1 5.2 k0d

0 0.2 0.4 0.6 0.8

∆/Γ

Références

Documents relatifs

Concours provincial : FRQSC Avant l'entrée dans le programme ou en 1re année Concours fédéral : BESC (CRSH) Avant l'entrée dans le programme ou en 1re année Bourses de la Fondation

On note ( C ) la courbe de f dans le plan muni d’un repère orthonormé d’unité graphique 3cm.. EXERCICE II

Soit n, un entier naturel et x un réel quelconque.. Soit x un

( C ) est la courbe représentative de f dans un repère orthonormal d’unité graphique 2 cm. I- 1°) Prouver que la courbe ( C ) admet deux asymptotes dont on donnera

Prouver que toutes courbes (C n ) passent par un même point fixe A dont on déterminera les coordonnées. a) Étudier le sens de variation de φ en précisant ses limites aux bornes

Cette BD que les enfants affectionnent peut ainsi être un levier dans l’apprentissage de la lecture, dans l’éducation à l’image, mais aussi pour aborder des questions

Au Mali, APAPE/PH, en plus de sa mission d’appui au pastoralisme et à la gestion des ressources naturelles en lien avec les activités d’AFL dans ce

2) Le dosage de la vitamine D n’est recommandé que dans 2) Le dosage de la vitamine D n’est recommandé que dans les situations cliniques favorisant l’insuffisance ou la.