• Aucun résultat trouvé

Search for dark matter in association with a Higgs boson decaying to b -quarks in pp collisions at √s = 13 TeV with the ATLAS detector

N/A
N/A
Protected

Academic year: 2022

Partager "Search for dark matter in association with a Higgs boson decaying to b -quarks in pp collisions at √s = 13 TeV with the ATLAS detector"

Copied!
22
0
0

Texte intégral

(1)

Article

Reference

Search for dark matter in association with a Higgs boson decaying to b -quarks in pp collisions at √s = 13 TeV with the ATLAS detector

ATLAS Collaboration

ANCU, Lucian Stefan (Collab.), et al.

Abstract

A search for dark matter pair production in association with a Higgs boson decaying to a pair of bottom quarks is presented, using 3.2 fb −1 of pp collisions at a centre-of-mass energy of 13 TeV collected by the ATLAS detector at the LHC. The decay of the Higgs boson is reconstructed as a high-momentum bb¯ system with either a pair of small-radius jets, or a single large-radius jet with substructure. The observed data are found to be consistent with the expected backgrounds. Results are interpreted using a simplified model with a Z′ gauge boson mediating the interaction between dark matter and the Standard Model as well as a two-Higgs-doublet model containing an additional Z′ boson which decays to a Standard Model Higgs boson and a new pseudoscalar Higgs boson, the latter decaying into a pair of dark matter particles.

ATLAS Collaboration, ANCU, Lucian Stefan (Collab.), et al . Search for dark matter in

association with a Higgs boson decaying to b -quarks in pp collisions at √s = 13 TeV with the ATLAS detector. Physics Letters. B , 2017, vol. 765, p. 11-31

DOI : 10.1016/j.physletb.2016.11.035

Available at:

http://archive-ouverte.unige.ch/unige:89831

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at √

s = 13 TeV with the ATLAS detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received16September2016

Receivedinrevisedform17November2016 Accepted21November2016

Availableonlinexxxx Editor:W.-D.Schlatter

AsearchfordarkmatterpairproductioninassociationwithaHiggsbosondecayingtoapairofbottom quarks ispresented,using3.2 fb1 ofpp collisions atacentre-of-massenergyof13 TeVcollectedby theATLASdetectorattheLHC.ThedecayoftheHiggsbosonisreconstructedasahigh-momentumbb¯ systemwitheitherapairofsmall-radiusjets,orasinglelarge-radiusjetwithsubstructure.Theobserved dataarefoundtobeconsistentwiththeexpectedbackgrounds.Resultsareinterpretedusingasimplified modelwithaZgaugebosonmediatingtheinteractionbetweendarkmatterandtheStandardModelas wellasatwo-Higgs-doubletmodelcontaininganadditional ZbosonwhichdecaystoaStandardModel HiggsbosonandanewpseudoscalarHiggsboson,thelatterdecayingintoapairofdarkmatterparticles.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Althoughdark matter (DM)constitutes the dominant compo- nentofmatterintheuniverse,littleisknownaboutitsproperties andparticlecontent[1].Theleadinghypothesissuggeststhatmost DMisintheformofstable,electrically neutral, massiveparticles withcosmologicalconstraintsindicatingthatDMinteractionswith StandardModel(SM)particlesoccurataweakscaleorbelow[2].

Collider-basedsearchesfortheparticlecontentofDMprovideim- portantinformationcomplementary to thatfromdirect andindi- rectdetectionexperiments[3].

Atraditionaldark-mattersignature ata proton–protoncollider is one where one or more SM particles, X, are produced and detected, recoiling against missingtransverse momentum with magnitudeEmissT associatedwiththenon-interactingDMcandi- date.AnumberofsearchesattheLargeHadronCollider(LHC)[4]

have been performed recently, where X is considered to be a hadronic jet [5,6], b- or t-quarks [7–9], a photon [10–13], or a W/Z boson [14–17]. The discovery of a Higgs boson, h [18,19], providesa new opportunityto search forDM productionvia the h+EmissT signature [20–22].Incontrastto mostoftheaforemen- tionedprobes,Higgsbosonradiationfroman initial-statequarkis Yukawa-suppressed.Asaresult,inapotentialsignaltheHiggsbo- sonwouldbepartoftheinteractionproducingtheDM,providing uniqueinsightintothestructureoftheDMcouplingtoSM parti- cles.Recently,theATLASCollaborationhaspublishedsuchsearches using20.3fb1 ofproton–protoncollision dataat

s=8TeV, ex-

E-mailaddress:atlas.publications@cern.ch.

ploitingtheHiggsbosondecaystotwophotonsorapairofbottom quarks[23,24].

This Letter presents an update on the search for h+EmissT , wheretheHiggsbosondecaystoapairofbottomquarks(hbb),¯ using 3.2fb1 of pp collision datacollected by the ATLAS detec- toratacentre-of-massenergyof13TeVduring2015. Theresults are interpreted in the context of simplified models of DM, char- acterised by a minimal particle content and the corresponding renormalisableinteractions[25].

Many simplified models of DM production contain a massive particle which can be a vector, an axial-vector, a scalar or a pseudoscalar,andmediatestheinteractionbetweenDMandStan- dardModelparticles.Inthissearch,simplifiedmodels involvinga vector mediator are consideredfollowing the recommendationin Ref.[26].

In the first model [21], a vector mediator, Z, is exchanged in the s-channel, radiates the Higgs boson and decays into two DM particles. A diagram for this process is shown in Fig. 1(a).

The vector mediator has an associated baryon number B, which isassumedtobegaugeinvariant underU(1)B thusallowing itto coupleto quarks[27].Thissymmetry isspontaneously brokento generatethe Z mass.However,thereisno Z couplingtoleptons assuchcouplingsaretightlyconstrainedbydileptonsearches.Fi- nally, the dark-matter candidate carries a baryon number, which allows it to coupleto quarks through the Z. The parameters of thismodelareasfollows:thecouplingof Ztodarkmatter(gχ);

the coupling of Z to quarks (gq);the coupling of Z to the SM Higgs boson(gZ);the mixinganglebetween thebaryonic Higgs boson,introduced inthemodelto generatethe Z mass,andthe http://dx.doi.org/10.1016/j.physletb.2016.11.035

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

1 66

2 67

3 68

4 69

5 70

6 71

7 72

8 73

9 74

10 75

11 76

12 77

13 78

14 79

15 80

16 81

17 82

18 83

19 84

20 85

21 86

22 87

23 88

24 89

25 90

26 91

27 92

28 93

29 94

30 95

31 96

32 97

33 98

34 99

35 100

36 101

37 102

38 103

39 104

40 105

41 106

42 107

43 108

44 109

45 110

46 111

47 112

48 113

49 114

50 115

51 116

52 117

53 118

54 119

55 120

56 121

57 122

58 123

59 124

60 125

61 126

62 127

63 128

64 129

65 130

Fig. 1.Diagramsshowingthesimplifiedmodelswhere(a)aZdecaystoapairof DMcandidatesχχ¯afteremittingaHiggsbosonh,andwhere(b)aZdecaystoa HiggsbosonhandthepseudoscalarAofatwo-Higgs-doubletmodel,andthelatter decaystoapairofDMcandidatesχχ¯.

SM Higgs boson (sinθ);the Z mass (mZ); andthe DM particle mass(mχ).

In thesecond model, apart fromthe vector mediator, the SM isextended byan additional Higgsfield doublet,resultingin five physical Higgs bosons [22]: a light scalar h associated with the observed Higgs boson, a heavy scalar H, a pseudoscalar A, and two charged scalars H±. The vector mediator is produced res- onantly and decays as Zh A in a Type-II two-Higgs-doublet model(2HDM)[28].Thepseudoscalar A subsequentlydecaysinto twoDMparticleswithalarge branchingratio.Adiagramforthis process is shown in Fig. 1(b). To define the model, the ratio of theup- anddown-typevacuumexpectationvalues,tanβ,mustbe specified along with the Z gauge coupling, gZ, the DM particle mass, mχ, and the Z and A masses, mZ and mA, respectively.

The results presented are for the alignment limit, in which the h–H mixing angle α is related to β by α=βπ/2. Only re- gions of parameter space consistent with precision electroweak constraints[29] andwithconstraints fromdirectsearches fordi- jetresonances[30–32]areconsidered.AstheA bosonisproduced on-shellanddecaysintoDM,themassoftheDMparticledoesnot affectthekinematicpropertiesorcross-section ofthesignal pro- cessifitisbelowhalfofthe A bosonmass.Hence,the Z-2HDM model is interpreted in the parameter spaces of Z mass (mZ), A mass(mA)andtanβ.

2. ATLASdetector

ATLAS isa multi-purposeparticle physics detector[33] atthe LHC,withanapproximatelyforward-backwardsymmetricandher- metic cylindrical geometry.1 At its innermost part lies the inner detector (ID), immersed in a 2 T axial magnetic field provided byathinsuperconductingsolenoid,consistingofsiliconpixeland microstripdetectors,whichprovideprecisiontrackinginthepseu- dorapidity range |η|<2.5. It is complemented by a transition radiationtrackerproviding trackingandparticleidentification in- formation for |η|<2.0. Between Run 1 and Run 2 of the LHC, the pixel detector was upgraded by the addition of a new in- nermostlayer[34] thatsignificantlyimprovestheidentificationof heavy-flavourjets[35,36].Thesolenoidissurroundedbysampling calorimeters: a lead/liquid-argon (LAr) electromagnetic calorime- terfor |η|<3.2 and a steel/scintillator tile hadronic calorimeter for |η|<1.7. Additional LAr calorimeters withcopper and tung- stenabsorbersprovidecoverageup to|η|=4.9.Intheoutermost part,air-coretoroidsprovidethemagneticfieldforthemuonspec-

1 ATLAS uses a right-handed coordinate system with itsorigin at the nomi- nalinteractionpoint(IP)inthe centreofthedetector andthe z-axisalongthe beampipe.Thex-axispointstowardsthecentreoftheLHCring,andthe y-axis pointsupwards.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φis the azimuthalanglearound the beampipe.The pseudorapidity ηis definedas η= −ln[tan(θ/2)],whereθ isthe polarangle.Finally,theangulardistance R isdefinedas

(φ)2+(η)2.

trometer. The latterconsistsof threelayers of gaseous detectors:

monitoreddrifttubesandcathodestripchambersformuonidenti- ficationandmomentummeasurementsfor|η|<2.7,andresistive- plateandthin-gapchambersfortriggeringupto|η|=2.4.A two- level trigger system, custom hardware followed by a software- based level, is used to reduce the eventrate to about 1 kHz for offlinestorage.

3. Dataandsimulationsamples

The data sample used in this search, collected during nor- mal operation of the detector, corresponds to an integrated lu- minosity of 3.2fb1. The primary data sample is selected using acalorimeter-based EmissT triggerwithathresholdof70 GeV.The trigger efficiencyforsignaleventsselected bythe offlineanalysis is about90%foreventswith EmissT of 150 GeVandreaches100%

foreventswithEmissT largerthan200 GeV.

Signal samples are generated at tree level with MadGraph5_aMC@NLO2.2.3 [37], interfacedtoPythia8.186[38]

using the NNPDF2.3 parton distribution function (PDF) set [39]

andtheA14parametertune[40]forpartonshowering,hadronisa- tion,underlying-eventsimulation,andforsimulationoftheHiggs boson decay toa pair ofbottom quarks. Forthe vector-mediator simplified models, signals are generatedwith mediator massbe- tween 10 and 2000 GeV and DM particle mass between 1 and 1000 GeV. The event kinematics are largely independent of the other parametersofthemodel,andthusthesamevaluesofthese parametersarechosenfollowingtherecommendationsinRef.[26]:

=1.0,gq=1/3, gZ=mZ,sinθ=0.3.FortheZ-2HDMmodel, ppZAhχχ¯h samples are producedwith Z mass val- uesbetween600and1000 GeV, A massvaluesbetween300and 800 GeV (wherekinematically allowed),anda DMmassvalue of 100 GeV.Theotherparameterschosenforthismodelaretakento betanβ=1.0 andgZ=0.8.

Higgs boson production in association with a W or Z vector boson, V h,ismodelledusingPythia8.186andtheNNPDF2.3PDF set.Thesamplesare normalisedusingtheSMtotalcross-sections calculatedatnext-to-leadingorder(NLO)[41]andnext-to-next-to- leadingorder(NNLO)[42]inQCDforW handZh,respectively,and include NLO electroweak corrections [43]. In all cases, the Higgs bosonmassissetto125 GeV.

Simulated samples of vector boson production in association with jets, W/Z +jets, where the W or Z bosons decay in all leptonic decay modes, are generated using SHERPA2.1.1 [44], in- cluding b- and c-quark mass effects,and the CT10PDF set [45].

Matrixelements are calculatedforup totwo partonsatNLOand four partons at LO using the Comix [46] and OpenLoops [47]

matrix element generators and merged withthe SHERPA parton shower[48]usingtheME+PS@NLOprescription[49].Thecross- sectionsaredeterminedatNNLO[50] inQCD.Furthermore,these backgrounds are split intodifferentcomponents accordingto the true flavour of the two jets that are used to identify the flavor of the reconstructed Higgsboson candidate,as described in Sec- tion 5:l denotesa light quark (u,d,s) ora gluon andtheheavy quarks are denoted by c and b.Thisdivision isperformedto al- low accurate modelling ofthe W/Z+heavy-flavour backgrounds inthecombinedfitdescribedinSection8.

Diboson productionmodes, including Z Z, W W,andW Z pro- cesses, with one boson decaying hadronically andthe other lep- tonically are simulatedusingtheSHERPA2.1.1 generatorwiththe CT10 PDF set. They are calculated for up to one (Z Z) or zero (W W/W Z) additionalpartonsatNLOandup tothreeadditional partons at LO using the Comix and OpenLoops matrix element generatorsandmergedwiththeSHERPApartonshowerusingthe

Références

Documents relatifs

definitions of the parameters of the F1 and F2 trajectories of the triphthong /iaul are shown schematically. These definitions are identical to those used for

En résumé, la mise en place d’un système HACCP, constitué de bonnes pratiques d’hygiène adaptées et d’un plan HACCP qui respecte tous les principes cités dans

https://doi.org/10.1371/journal.pone.0235210.g001.. The effects of fragmentation are expected to impact functional diversity in several ways: a) functional richness, evenness

L’échangeur qu’on a vue dans l’unité de traitement de brut sud (UTBS) est composée de deux échangeurs de type tube-calandre, disposés en série, où cette dernière

Nous tenons à remercier le Dieu tout puissant de nous avoir donné la santé et la volonté, pour finir ce travail,.. Mes remerciements vont En particulier à :

Ces résultats coïncident avec les normes certifiées dans la pharmacopée européenne alors on peut dire que le test de solubilité et positif.. Figure III.1: Aspect du

The second section describes the history of the Danube water protection regime, including three stages of regime development: from the Bucharest Declaration to the 1994

José Muchnik ripercorre le tappe che hanno portato alla concettualizzazione dei sistemi agroalimentari localizzati (SIAL), alla loro evoluzione come strumento teorico e di