• Aucun résultat trouvé

Circuitry and functional aspects of the insular lobe in primates including humans

N/A
N/A
Protected

Academic year: 2022

Partager "Circuitry and functional aspects of the insular lobe in primates including humans"

Copied!
19
0
0

Texte intégral

(1)

131

References

Adjamian, P., Sereda, M., Hall, D.A., 2009. The mechanisms of tinnitus:

perspectives from human functional neuroimaging. Hear Res. 253, 15-31.

Augustine, J.R., 1996. Circuitry and functional aspects of the insular lobe in primates including humans. Brain Res Brain Res Rev. 22, 229-44.

Bayen, T., Cleeremans, A., Wilken, P., 2009. The Oxford Companion to consciousness, Vol., Oxford University Press.

Beard, A.W., 1965. Results of leucotomy operations for tinnitus. J Psychosom Res. 9, 29-32.

Beckmann, C.F., et al., 2005. Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci. 360, 1001-13.

Bekinschtein, T.A., et al., 2009. Neural signature of the conscious processing of auditory regularities. Proc Natl Acad Sci U S A. 106, 1672-7.

Biswal, B., et al., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 34, 537-41.

Boly, M., et al., 2009. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum Brain Mapp. 30, 2393-400.

Boutros, N.N., et al., 2008. Sensory gating in the human hippocampal and rhinal regions: regional differences. Hippocampus. 18, 310-6.

Boveroux, P., et al., 2010. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology.

113, 1038-53.

Bradley, A.-P., 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognition.

30, 1145-1159.

Bressler, S.L., Menon, V., 2010. Large-scale brain networks in cognition:

emerging methods and principles. Trends Cogn Sci. 14, 277-90.

Brozoski, T.J., Ciobanu, L., Bauer, C.A., 2007. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res. 228, 168-79.

Buckner, R.L., Vincent, J.L., 2007. Unrest at rest: default activity and spontaneous network correlations. Neuroimage. 37, 1091-6;

discussion 1097-9.

(2)

132

Buckner, R.L., et al., 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci. 29, 1860-73.

Burton, H., et al., 2012. Altered networks in bothersome tinnitus: a functional connectivity study. BMC Neurosci. 13, 3.

Bush, G., Luu, P., Posner, M.I., 2000. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 4, 215-222.

Cacace, A.T., 2003. Expanding the biological basis of tinnitus: crossmodal origins and the role of neuroplasticity. Hear Res. 175, 112-32.

Calhoun, V.D., 2001. Group ICA of functionnal MRI data: separability, stationarity, and inference. In: Proc. Int. Conf. on ICA and BSS. Vol., ed.^eds., San Diego, pp. 155.

Calhoun, V.D., et al., 2005. Semi-blind ICA of fMRI: A method for utilizing hypothesis-derived time courses in a spatial ICA analysis.

Neuroimage. 25, 527-38.

Craig, A.D., 2002. How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci. 3, 655-66.

Craig, A.D., 2009. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci. 10, 59-70.

Critchley, H.D., Mathias, C.J., Dolan, R.J., 2001. Neuroanatomical basis for first- and second-order representations of bodily states. Nat Neurosci. 4, 207-12.

Damoiseaux, J.S., et al., 2006. Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci U S A. 103, 13848-53.

Daubechies, I., et al., 2009. Independent component analysis for brain fMRI does not select for independence. Proc Natl Acad Sci U S A.

106, 10415-22.

De Luca, M., et al., 2006. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage. 29, 1359-67.

De Martino, F., et al., 2007. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers.

Neuroimage. 34, 177-94.

De Ridder, D., et al., 2005. Transcranial magnetic stimulation for tinnitus : influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression Otol Neurotol. 26, 616-619.

De Ridder, D., et al., 2006. Amygdalohippocampal involvement in tinnitus and auditory memory. Acta Otolaryngol Suppl. 50-3.

De Ridder, D., et al., 2010. Microvascular decompression for tinnitus:

significant improvement for tinnitus intensity without improvement for distress. A 4-year limit. Neurosurgery. 66, 656-60.

(3)

133

De Ridder, D., et al., 2011a. Phantom percepts: tinnitus and pain as persisting aversive memory networks. Proc Natl Acad Sci U S A.

108, 8075-80.

De Ridder, D., et al., 2011b. Transcranial magnetic stimulation and extradural electrodes implanted on secondary auditory cortex for tinnitus suppression. J Neurosurg. 114, 903-11.

De Ridder, D., Vanneste, S., Freeman, W., 2012. The Bayesian brain:

Phantom percepts resolve sensory uncertainty. Neurosci Biobehav Rev.

Dehaene, S., Kerszberg, M., Changeux, J.P., 1998. A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci U S A. 95, 14529-34.

Dehaene, S., et al., 2006. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci. 10, 204-11.

Dehaene, S., Changeux, J.P., 2011. Experimental and theoretical approaches to conscious processing. Neuron. 70, 200-27.

Del Cul, A., Baillet, S., Dehaene, S., 2007. Brain dynamics underlying the nonlinear threshold for access to consciousness. PLoS Biol. 5, e260.

Demeester, K., et al., 2007. Prevalence of tinnitus and audiometric shape.

B-ENT. 3 Suppl 7, 37-49.

Demertzi, A., et al., 2011. Hypnotic modulation of resting state fMRI default mode and extrinsic network connectivity. Prog Brain Res.

193, 309-22.

Demertzi A, G.F., Vanhaudenhuyse A, Tshibanda L, Noirhomme Q, Thonnard M, Charland-Verville V, Kirsch M, Laureys S and Soddu A, submitted. Multiple cognition-related networks are disrupted in patients with consciousness alterations measured by fMRI resting state.

Diederen, K.M., et al., 2010. Deactivation of the parahippocampal gyrus preceding auditory hallucinations in schizophrenia. Am J Psychiatry. 167, 427-35.

Dosenbach, N.U., et al., 2007. Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci U S A. 104, 11073-8.

Downar, J., et al., 2001. The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event- related fMRI study. Neuroimage. 14, 1256-67.

Eckert, M.A., et al., 2009. At the heart of the ventral attention system: the right anterior insula. Hum Brain Mapp. 30, 2530-41.

Eggermont, J.J., Roberts, L.E., 2004. The neuroscience of tinnitus. Trends Neurosci. 27, 676-82.

(4)

134

Eggermont, J.J., 2005. Tinnitus: neurobiological substrates. Drug Discov Today. 10, 1283-90.

Eggermont, J.J., 2012. The Neuroscience of Tinnitus, Vol., Oxford.

Engelien, A., et al., 2000. The parahippocampal region and auditory- mnemonic processing. Ann N Y Acad Sci. 911, 477-85.

Esposito, F., et al., 2005. Independent component analysis of fMRI group studies by self-organizing clustering. Neuroimage. 25, 193-205.

Forman, S.D., et al., 1995. Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magn Reson Med. 33, 636-47.

Fox, M.D., et al., 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 102, 9673-8.

Fox, M.D., Raichle, M.E., 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 8, 700-11.

Frank, E., et al., 2011. Treatment of chronic tinnitus with repeated sessions of prefrontal transcranial direct current stimulation: outcomes from an open-label pilot study. J Neurol.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling.

Neuroimage. 19, 1273-302.

Friston, K.J., et al., 2010. Network discovery with DCM. Neuroimage.

Goebel, G., et al., 2006a. 15-year prospective follow-up study of behavioral therapy in a large sample of inpatients with chronic tinnitus. Acta Otolaryngol Suppl. 70-9.

Goebel, R., Esposito, F., Formisano, E., 2006b. Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single- subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Hum Brain Mapp. 27, 392-401.

Greicius, M.D., et al., 2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A. 101, 4637-42.

Greicius, M.D., et al., 2007. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 62, 429-37.

Grötschel, M., Holland, O., 1985. Solving matching problems with linear programming. Mathematical Programming. 33, 243-259.

Hallam, R.S., Jakes, S.C., Hinchcliffe, R., 1988. Cognitive variables in tinnitus annoyance. Br J Clin Psychol. 27 ( Pt 3), 213-22.

Hallam, R.S., 1996. Manual of the Tinnitus Questionnaire (TQ). Vol., London: Psychological Corporation.

(5)

135

Henry, J.L., Wilson, P.H., 1995. Coping with Tinnitus: Two Studies of Psychological and Audiological Characteristics of Patients with High and Low Tinnitus-Related Distress. Int Tinnitus J. 1, 85-92.

Ho, A.P., et al., 1996. Brain glucose metabolism during non-rapid eye movement sleep in major depression. A positron emission tomography study. Arch Gen Psychiatry. 53, 645-52.

Holmes, A., Friston, K., 1998. Generalisability, random effects and population inference. Neuroimage. 7, 754.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., 2003. A Practical Guide to Support Vector Classification, Vol., Taipei.

Huang, C.M., Liu, G., Huang, R., 1982. Projections from the cochlear nucleus to the cerebellum. Brain Res. 244, 1-8.

Hunter, M.D., et al., 2006. Neural activity in speech-sensitive auditory cortex during silence. Proc Natl Acad Sci U S A. 103, 189-94.

Husain, F.T., et al., 2011. Discrimination task reveals differences in neural bases of tinnitus and hearing impairment. PLoS One. 6, e26639.

Insausti, R., Amaral, D.G., Cowan, W.M., 1987. The entorhinal cortex of the monkey: II. Cortical afferents. J Comp Neurol. 264, 356-95.

Jafri, M.J., et al., 2008. A method for functional network connectivity among spatially independent resting-state components in schizophrenia. Neuroimage. 39, 1666-81.

Jastreboff, P.J., 1990. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 8, 221-54.

Jastreboff, P.J., Hazell, J.W., 1993. A neurophysiological approach to tinnitus: clinical implications. Br J Audiol. 27, 7-17.

Jastreboff, P.J., 2011. Tinnitus Retraining Therapy. In: Textbook of Tinnitus.

Vol., Moller, ed.^eds. Springer.

Kasischke, K.A., et al., 2004. Neural activity triggers neuronal oxidative metabolism followed by astrocytic glycolysis. Science. 305, 99-103.

Kelly, A.M., et al., 2008. Competition between functional brain networks mediates behavioral variability. Neuroimage. 39, 527-37.

Khedr, E.M., et al., 2008. Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies. J Neurol Neurosurg Psychiatry. 79, 212-5.

Kleinjung, T., et al., 2007. Which tinnitus patients benefit from transcranial magnetic stimulation? Otolaryngol Head Neck Surg. 137, 589-95.

Kleinjung, T., et al., 2008. Combined temporal and prefrontal transcranial magnetic stimulation for tinnitus treatment: a pilot study.

Otolaryngol Head Neck Surg. 138, 497-501.

Knight, R.T., Grabowecky, M.F., Scabini, D., 1995. Role of human prefrontal cortex in attention control. Adv Neurol. 66, 21-34; discussion 34-6.

(6)

136

Laird, A.R., et al., 2011. Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci. 23, 4022-37.

Landgrebe, M., 2011. Tinnitus and Psychiatric Co-morbidity. In: Textbook of tinnitus. Vol., Moller, ed.^eds. Springer.

Langguth, B., et al., 2007. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res. 166, 525-36.

Langguth, B., 2011. History and Questionnaires. In: Textbook of tinnitus.

Vol., Moller, ed.^eds. Springer.

Langguth, B., et al., 2012. Efficacy of different protocols of transcranial magnetic stimulation for the treatment of tinnitus: Pooled analysis of two randomized controlled studies. World J Biol Psychiatry.

Larson, P.S., Cheung, S.W., 2011. Deep brain stimulation in area LC controllably triggers auditory phantom percepts. Neurosurgery.

Le Bihan, D., et al., 2001. Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging. 13, 534-46.

Leaver, A.M., et al., 2011. Dysregulation of limbic and auditory networks in tinnitus. Neuron. 69, 33-43.

Legrain, V., et al., 2011. The pain matrix reloaded: a salience detection system for the body. Prog Neurobiol. 93, 111-24.

Linden, D.E., et al., 1999. The functional neuroanatomy of target detection:

an fMRI study of visual and auditory oddball tasks. Cereb Cortex. 9, 815-23.

Llinas, R.R., et al., 1999. Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A. 96, 15222-7.

Lockwood, A.H., et al., 1998. The functional neuroanatomy of tinnitus:

evidence for limbic system links and neural plasticity. Neurology.

50, 114-20.

Lockwood, A.H., et al., 2001. The functional anatomy of gaze-evoked tinnitus and sustained lateral gaze. Neurology. 56, 472-80.

Lockwood, A.H., Salvi, R.J., Burkard, R.F., 2002. Tinnitus. N Engl J Med. 347, 904-10.

Logothetis, N.K., et al., 2001. Neurophysiological investigation of the basis of the fMRI signal. Nature. 412, 150-7.

Logothetis, N.K., 2003. The underpinnings of the BOLD functional magnetic resonance imaging signal. J Neurosci. 23, 3963-71.

Logothetis, N.K., Wandell, B.A., 2004. Interpreting the BOLD signal. Annu Rev Physiol. 66, 735-69.

Maddock, R.J., Garrett, A.S., Buonocore, M.H., 2003. Posterior cingulate cortex activation by emotional words: fMRI evidence from a valence decision task. Hum Brain Mapp. 18, 30-41.

(7)

137

Maudoux, A., et al., 2012a. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res.

Maudoux, A., et al., 2012b. Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS One. 7, e36222.

Maudoux A., V.S., De Ridder D., Vanhecke W., Van de Heyning P., Cabay J- E., Demertzi A., Laureys S., Soddu A., Lefebvre Ph., Gomez F., in prep. Tinnitus is related to the dysfunction of functional interactions involving multiple resting state networks.

McKeown, M.J., et al., 1998. Analysis of fMRI data by blind separation into independent spatial components. Hum Brain Mapp. 6, 160-88.

Meeus, O., Blaivie, C., Van de Heyning, P., 2007. Validation of the Dutch and the French version of the Tinnitus Questionnaire. B-ENT. 3 Suppl 7, 11-7.

Menon, V., Uddin, L.Q., 2010. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 214, 655-67.

Mirz, F., et al., 1999. Positron emission tomography of cortical centers of tinnitus. Hear Res. 134, 133-44.

Moller, 2011. Textbook of Tinnitus, Vol., Springer.

Muhlnickel, W., et al., 1998. Reorganization of auditory cortex in tinnitus.

Proc Natl Acad Sci U S A. 95, 10340-3.

Murphy, J.P., 1951. Frontal lobe surgery in treatment of intractable pain; a critique. Yale J Biol Med. 23, 493-500.

Naatanen, R., et al., 2001. "Primitive intelligence" in the auditory cortex.

Trends Neurosci. 24, 283-8.

Newman, C.W., Jacobson, G.P., Spitzer, J.B., 1996. Development of the Tinnitus Handicap Inventory. Arch Otolaryngol Head Neck Surg.

122, 143-8.

Nielsen, F.A., Balslev, D., Hansen, L.K., 2005. Mining the posterior cingulate: segregation between memory and pain components.

Neuroimage. 27, 520-32.

Norena, A.J., Eggermont, J.J., 2003. Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res. 183, 137-53.

Osaki, Y., et al., 2005. Neural mechanism of residual inhibition of tinnitus in cochlear implant users. Neuroreport. 16, 1625-8.

Palaniyappan, L., Balain, V., Liddle, P.F., 2012. The neuroanatomy of psychotic diathesis: A meta-analytic review. J Psychiatr Res. 46, 1249-56.

Pearson, J.M., et al., 2011. Posterior cingulate cortex: adapting behavior to a changing world. Trends Cogn Sci. 15, 143-51.

(8)

138

Peng, Z., Chen, X.Q., Gong, S.S., 2012. Effectiveness of Repetitive Transcranial Magnetic Stimulation for Chronic Tinnitus: A Systematic Review. Otolaryngol Head Neck Surg.

Petacchi, A., et al., 2005. Cerebellum and auditory function: an ALE meta- analysis of functional neuroimaging studies. Hum Brain Mapp. 25, 118-28.

Raichle, M.E., et al., 2001. A default mode of brain function. Proc Natl Acad Sci U S A. 98, 676-82.

Raichle, M.E., Mintun, M.A., 2006. Brain work and brain imaging. Annu Rev Neurosci. 29, 449-76.

Raichle, M.E., Snyder, A.Z., 2007. A default mode of brain function: a brief history of an evolving idea. Neuroimage. 37, 1083-90; discussion 1097-9.

Rauschecker, J.P., Leaver, A.M., Muhlau, M., 2010. Tuning out the noise:

limbic-auditory interactions in tinnitus. Neuron. 66, 819-26.

Reyes, S.A., et al., 2002. Brain imaging of the effects of lidocaine on tinnitus. Hear Res. 171, 43-50.

Ridgway, G.R., et al., 2009. Issues with threshold masking in voxel-based morphometry of atrophied brains. Neuroimage. 44, 99-111.

Robinson, S.K., et al., 2003. Relationship of tinnitus questionnaires to depressive symptoms, quality of well-being, and internal focus. Int Tinnitus J. 9, 97-103.

Rogers, B.P., et al., 2007. Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging. 25, 1347-57.

Rosazza, C., Minati, L., 2011. Resting-state brain networks: literature review and clinical applications. Neurol Sci. 32, 773-85.

Roy, C.S., Sherrington, C.S., 1890. On the Regulation of the Blood-supply of the Brain. J Physiol. 11, 85-158 17.

Sadaghiani, S., Hesselmann, G., Kleinschmidt, A., 2009. Distributed and antagonistic contributions of ongoing activity fluctuations to auditory stimulus detection. J Neurosci. 29, 13410-7.

Saunders, J.C., 2007. The role of central nervous system plasticity in tinnitus. J Commun Disord. 40, 313-34.

Schlee, W., et al., 2008. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS One. 3, e3720.

Schlee, W., et al., 2009a. Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. 10, 11.

Schlee, W., et al., 2009b. Mapping cortical hubs in tinnitus. BMC Biol. 7, 80.

Schlee, W., 2011. A Global Brain Model of Tinnitus. In: Textbook of tinnitus.

Vol., Moller, ed.^eds. Springer.

(9)

139

Seeley, W.W., et al., 2007. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 27, 2349-56.

Seghier, M.L., et al., 2010. Identifying abnormal connectivity in patients using dynamic causal modeling of FMRI responses. Front Syst Neurosci. 4.

Seki, S., Eggermont, J.J., 2003. Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res. 180, 28-38.

Shulman, A., et al., 1995. SPECT Imaging of Brain and Tinnitus- Neurotologic/Neurologic Implications. Int Tinnitus J. 1, 13-29.

Shulman, A., Strashun, A., 1999. Descending auditory system/cerebellum/tinnitus. Int Tinnitus J. 5, 92-106.

Shulman, A., Goldstein, B., Strashun, A.M., 2009. Final common pathway for tinnitus: theoretical and clinical implications of neuroanatomical substrates. Int Tinnitus J. 15, 5-50.

Singer, T., 2006. The neuronal basis and ontogeny of empathy and mind reading: review of literature and implications for future research.

Neurosci Biobehav Rev. 30, 855-63.

Singh, K.D., Fawcett, I.P., 2008. Transient and linearly graded deactivation of the human default-mode network by a visual detection task.

Neuroimage. 41, 100-12.

Smith, S.M., et al., 2009. Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A.

106, 13040-5.

Smits, M., et al., 2007. Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology. 49, 669-79.

Soddu, A., et al., 2011. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum Brain Mapp.

Sridharan, D., Levitin, D.J., Menon, V., 2008. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A. 105, 12569-74.

Stephan, K.E., et al., 2010. Ten simple rules for dynamic causal modeling.

Neuroimage. 49, 3099-109.

Sullivan, M.D., et al., 1988. Disabling tinnitus. Association with affective disorder. Gen Hosp Psychiatry. 10, 285-91.

Ursu, S., et al., 2009. Conflict-related activity in the caudal anterior cingulate cortex in the absence of awareness. Biol Psychol. 80, 279- 86.

van den Heuvel, M., Mandl, R., Hulshoff Pol, H., 2008. Normalized cut group clustering of resting-state FMRI data. PLoS One. 3, e2001.

(10)

140

van den Heuvel, M.P., et al., 2009. Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp. 30, 3127-41.

van der Loo, E., et al., 2009. Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One. 4, e7396.

Van Hoesen, G., Pandya, D.N., Butters, N., 1975. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. II. Frontal lobe afferents. Brain Res. 95, 25-38.

Vanhaudenhuyse, A., et al., 2010. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain. 133, 161-71.

Vanneste, S., et al., 2010a. The neural correlates of tinnitus-related distress. Neuroimage. 52, 470-80.

Vanneste, S., et al., 2010b. The differences in brain activity between narrow band noise and pure tone tinnitus. PLoS One. 5, e13618.

Vanneste, S., et al., 2011a. Different resting state brain activity and functional connectivity in patients who respond and not respond to bifrontal tDCS for tinnitus suppression. Exp Brain Res. 210, 217- 27.

Vanneste, S., et al., 2011b. The difference between uni- and bilateral auditory phantom percept. Clin Neurophysiol. 122, 578-87.

Vanneste, S., van de Heyning, P., De Ridder, D., 2011c. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci. 34, 718- 31.

Vanneste, S., De Ridder, D., 2012. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 6, 31.

Vincent, J.L., et al., 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 447, 83-6.

Watts, J.W., Freeman, W., 1946. Psychosurgery for the relief of unbearable pain. J Int Coll Surg. 9, 679-83.

Weisz, N., et al., 2005. Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med. 2, e153.

Weisz, N., et al., 2007. The neural code of auditory phantom perception. J Neurosci. 27, 1479-84.

WHO, 1991. Grades of hearing impairment. Hearing Network News. 1.

Young, B.J., et al., 1997. Memory representation within the parahippocampal region. J Neurosci. 17, 5183-95.

(11)

141

Zhou, J., et al., 2010. Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer's disease. Brain. 133, 1352-67.

Zoger, S., Svedlund, J., Holgers, K.M., 2006. Relationship between tinnitus severity and psychiatric disorders. Psychosomatics. 47, 282-8.

Zola-Morgan, S., et al., 1989. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci. 9, 4355-70.

(12)
(13)

143

APPENDIX

Table 1. Regions of interest used for the auditory component selection

x y z t

AUDITORY REGIONS (area)

R Transverse temporal gyrus (41) 41 -23 12 -3.45

R Transverse temporal gyrus (41) 48 -16 10 -3.52

R Transverse temporal gyrus (42) 55 -13 6 -3.52

R Superior temporal gyrus (22) 54 -26 11 -3.21

R Superior temporal gyrus (22) 55 -1 5 -2.84

R Superior temporal gyrus (22) 54 7 0 -3.24

R Insula 43 -6 1 -3.06

L Transverse temporal gyrus (41) -43 -23 12 -2.70 L Transverse temporal gyrus (41) -49 -17 9.8 -3.25

L Transverse temporal gyrus (42) -55 -13 6 -3.24

L Superior temporal gyrus (22) -55 -25 11 -3.14

L Superior temporal gyrus (22) -56 -2 4 -2.99

L Superior temporal gyrus (22) -55 7 0 -2.77

L Insula -43 -6 1 -2.74

ANTI-CORRELATED REGIONS (area)

R Precuneus (7) 20 -78 42 1.79

L Precuneus (7) -22 -80 42 1.52

R Prefrontal cortex (10) 18 45 26 0.94

L Prefrontal cortex (10) -18 44 26 0.71

R Superior frontal gyrus (6) 18 13 62 1.16

L Superior frontal gyrus (6) -19 13 62 1.25

(14)

144

Table 2. Tinnitus population

Patient Sex Age (years) Ear

Tinnitus duration (years)

Tinnitus frequency

(Hz)

THI TQ Score

Initial onset related to

Tinnitus loudness during

scan (0-10)

#1 F 44 Right 9 8000 58/35 Unknown 7

#2 M 47 Right 33 3000 38/22 Unknown 10

#3 M 36 Left 1.75 2500 84/58 Sudden

deafness 6.5

#4 M 66 Left 2 4000 80/56 Earwax

extraction 8

#5 M 67 Left 3.75 1500 30/26 Noise trauma 5

#6 M 57 Bilateral 2 8000 50/52 Unknown 6.5

#7 M 50 Right 10 6000 38/29 Stress 3

#8 F 60 Bilateral >20 4000 20/20 Fatigue 3

#9 F 42 Right 2.4 3000 40/34 Noise trauma 2.5

#10 M 33 Left 3.5 8000 32/22 Unknown 4

(15)

145

Patient

#11 F 60 Bilateral 5 3000 36/21 Unknown 4.5

Patient

#12 F 66 Left 2 6000 16/18 Hypoacousis 4

Patient

#13 F 52 Left 5 6000 44/22 Arnold’s

neuralgia 5

(16)

146

Table 3. Peak voxels and local maxima of the auditory resting state network identified in controls. Stereotaxic coordinates are in normalized Talairach space, p values are corrected for multiple comparisons at the whole brain level (FDR<0.05).

Brain region (area) x y z t p

R Superior & transverse temporal gyrus (41/42/22) Insula

Precentral gyrus (6) Inferior frontal gyrus (45)

49 46 58 40

-18 -12 -6 21

11 11 11 11

10.81 10.76 9.59 5.17

<0.0001

L Superior & transverse temporal gyrus (41/42/22) Transverse temporal gyrus (42)

Insula

Supramarginal gyrus (40) Precentral gyrus (6)

-44 -59 -41 -47 -53

-6 -21 -18 -15 -6

11 17 11 14 8

10.56 4.93 10.12

8.43 8.50

<0.0001

L Cuneus (18) -6 -88 37 7.35 <0.0001

R Precentral gyrus (4) 45 -13 58 6.11 <0.0001

R Anterior Cingulate Cortex (24) 6 -7 43 5.37 <0.0001

(17)

147

Table 4. Peak voxels and local maxima of the auditory resting state network identified in the tinnitus patients. Stereotaxic coordinates are in normalized Talairach space, p values are corrected for multiple comparisons at the whole brain level (FDR<0.05).

Brain region ( area) x y z t p

R Superior & transverse temporal gyrus (41/42/22) Middle Temporal Gyrus (37)

Insula

Precentral Gyrus (4) Inferior Frontal Gyrus (44)

62 64 40 55 49

-18 -48 -18 -9

9 23

5 11 26 23

13.97 6.26 7.16 10.48

6.98

<0.0001

L Superior & transverse temporal gyrus (41/42/22) Insula

Precentral Gyrus (4) Postcentral Gyrus (3,1,2) Inferior Frontal Gyrus (44) Basal ganglia/NAc

-50 -50 -56 -52 -50 -29

-15 -33 6 -9 0 -9

11 20 5 20 17 8

11.09 9.04 10.59

9.96 7.80 7.12

<0.0001

R Cuneus/Precuneus (19/31) 9 -64 25 5.88 <0.0001

L Cuneus/Precuneus (19/31) -15 -64 25 6.20 0.0002

L Middle occipital gyrus (19) -45 -52 7 6.13 <0.0001

L Precentral gyrus (4) -33 -19 46 5.27 <0.0001

R Superior frontal gyrus (6) 6 5 46 4.31 <0.0001

R Prefrontal cortex (10) 3 47 16 5.24 0.001

R Superior parietal cortex (7) 54 -22 52 5.61 0.0001

R Basal ganglia/ NAc 15 -1 -5 5.61 0.0001

L Isthmus of Cingulate Gyrus -9 -40 1 5.72 0.0003

R Thalamus 9 -13 10 5.11 <0.0001

L Thalamus -15 -19 -2 6.44 <0.0001

R Brainstem 6 -19 -23 7.77 <0.0001

(18)

148

Table 5. Peak voxels of areas showing increased and decreased

connectivity in tinnitus as compared to controls. Stereotaxic coordinates are in normalized Talairach space ( p values are cluster level corrected).

Brain region ( area) x y z t p

INCREASED CONNECTIVITY

L Parahippocampal gyrus -21 -28 -17 4.53 0.0001

R/L Brainstem/Cerebellum 2 -21 -19 4.09 0.0004

L Precentral gyrus (6) -42 2 25 4.58 <0.0001

L Superior temporal gyrus -30 -10 -8 4.51 0.0001

L Inferior frontal gyrus (47) -45 14 -5 3.74 0.0009

R Basal ganglia / Nucleus accumbens 9 -1 -5 4.37 0.0002

R Prefrontal cortex (10) 3 50 19 3.81 0.0007

L Postcentral gyrus (3,1,2) -33 -16 43 3.69 0.001

R Parahippocampal gyrus 27 -25 -14 3.47 0.002

R Orbitofrontal cortex (11) 30 20 -11 3.83 0.0007

R Inferior parietal lobe (39) 42 -52 40 3.29 0.003

DECREASED CONNECTIVITY

L Superior frontal gyrus (8) -21 38 46 -4.20 0.0003

L Fusiform gyrus -39 -31 -8 -4.67 <0.0001

R Superior temporal gyrus (41) 39 -28 10 -4.06 0.0004

R Occipital cortex (18) 21 -76 16 -4.74 <0.0001

L Occipital cortex (18) -12 -85 13 -3.57 0.001

L Prefrontal cortex (10) -15 53 4 -4.17 0.0003

(19)

149

Table 6. Regions of interest used for the connectivity graph analysis.

Common names (area) x y z p value

R Primary auditory cortex (41) 48 -25 13 <0.001

L Primary auditory cortex (41) -49 -26 12 0.003

R Superior temporal gyrus (42) 54 -10 9 0.002

L Superior temporal gyrus (42) -53 -11 9 0.004

R Middle frontal gyrus (9) 40 20 34 0.018

L Middle frontal gyrus ( 9) -39 20 34 <0.0001

R Inferior parietal lobe (19) 40 -67 32 0.002

L Inferior parietal lobe (19) -31 -68 32 0.0001

Mesiofrontal lobe (10) 0 57 16 0.002

Anterior cingulate cortex (24) -1 28 19 0.001

Thalamus -2 -5 5 0.007

R Parahippocampal gyrus 23 -21 -16 0.003

L Parahippocampal gyrus -24 -22 -19 0.005

R Amygdala 18 -7 -14 0.01

L Amygdala -17 -3 -20 0.223

L PCC/Precuneus (31) -5 -49 26 <0.001

R Superior occipital gyrus (18) 15 -75 25 0.002

L Superior occipital gyrus (18) -12 -76 25 <0.0001

R Insula 43 -7 6 0.002

L Insula -46 -7 10 0.008

R Basal ganglia/NAc 10 -1 -5 0.003

L Basal ganglia/NAc -8 -1 -6 0.023

Brainstem 0 28 20 0.002

Références

Documents relatifs

Following the application of a principal com- ponent analysis (PCA) algorithm to identify the extreme- most exemplars of both HV and NV for each emotional valence, we again

[r]

Schéma représentant les conséquences des interactions médicamenteuses sur l’effet pharmacologique suite à l’administration concomitante de médicaments pouvant affecter

La Murithienne s'associe Murithienne, Musée de ainsi à la Fondation Jean - Marcel Aubert et Jardin botanique alpin de Champex et au Musée de la la nature ,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Dans cette partie nous avons évalué la fréquence du virus MMTV-like dans 60 échantillons de tissus tumoraux et normaux chez 42 cas de cancer du sein diagnostiqués chez

• La première correspond à la gestion de la discontinuité des propriétés mécaniques à la frontière entre deux zones. En effet, cette discontinuité peut entraîner une

A la retraite de Piéron, son assistant Yves Galifret devient naturellement assistant de Fessard au Laboratoire du Collège de France et poursuit ses recherches