• Aucun résultat trouvé

Molécules et matériaux organiques

N/A
N/A
Protected

Academic year: 2022

Partager "Molécules et matériaux organiques"

Copied!
11
0
0

Texte intégral

(1)

-1-

Molécules et matériaux organiques

Partie 1. Addition nucléophile suivie d’élimination (A

N

+ E) 1.2. Synthèse des esters et des amides

Objectifs du chapitre

→ Notions à connaître :

Synthèse des esters à partir des acides carboxyliques, chlorures d’acyle et anhydrides d’acide : aspects cinétiques et thermodynamiques, mécanismes limites.

Synthèse des amides à partir des acides carboxyliques, chlorures d’acyle et anhydrides d’acide : aspects cinétiques et thermodynamiques, mécanismes limites.

→ Capacités exigibles :

Expliquer comment obtenir un bon rendement de synthèse d’ester à partir d’un alcool primaire ou secondaire et d’un acide carboxylique selon la méthode d’activation choisie et les conditions expérimentales.

Justifier le choix des conditions opératoires retenues pour la synthèse des amides.

Utiliser la formation des esters et des amides dans le cadre d’une stratégie de synthèse nécessitant la protection d’un groupe hydroxyle ou d’un groupe amino.

Déduire de la structure d’un polyester ou d’un polyamide la formule du ou des monomères correspondants et réciproquement.

L’idée générale du chapitre est de synthétiser les deux principaux groupes dérivés des acides carboxyliques : les esters et les amides.

1. Préparation des esters

1.1. A partir des acides carboxyliques

La préparation des esters à partir des acides carboxyliques est couramment appelée estérification. Cette réaction équilibrée a été étudiée vers 1864 par Berthelot et Péan de Saint Gilles.

Problématique :

Comment synthétiser, avec un bon rendement, un ester ou un amide à partir d’un acide carboxylique ?

Equation de l’estérification de Fischer :

(2)

-2- Expl :

H3C C O

OH

H+

H+

H C

O

OH

H3C C O

OCH3

H C

O

OCH2CH2CH3

+ H2O + CH3OH

Ethanoate de méthyle

+ H2O + CH3CH2CH2OH

Méthanoate de propyle

Ex 1 :

Ex 2 :

H+

Ester cyclique = lactone HO

O

OH O

O

+ H2O

HO

OH +

O

OH HO

O

n n

H+

O

O O

O H

OH n

+ (2n-1) H2O

Macromolécule = PET

Ex 3 :

Ex 4 :

(3)

-3-

1.2. Caractéristiques de la réaction et solutions aux problèmes

- Quatre

caractéristiques

de la transformation : Caractéristique Conséquence ou Solution

Athermique

Lente

Renversable

Limitée

1.3. Mécanisme réactionnel Les « défis » de la réaction :

Etude de document :

Parmi les nombreuses études portant sur la détermination du mécanisme, l’une d’elle utilise des réactifs marqués à l’oxygène 18O, isotope plus lourd que l’oxygène 16O très majoritairement sur Terre.

Lorsque l’alcool est marqué, on note une augmentation de la densité de l’ester, celle de l’eau restant normale.

Interpréter :

(4)

-4- Proposition de mécanisme sans catalyse acide :

Mécanisme avec catalyse acide : AN PUIS E

La réaction est renversable : n’oubliez pas de mettre des doubles flèches : ⇆

Activation électrophile de l’acide carboxylique par le catalyseur acide (équilibre acido-basique rapide-

Addition nucléophile de l’alcool sur l’acide carboxylique activé (étape cinétiquement déterminante)

Prototropie

Elimination d’eau pour permettre la reformation de la double liaison C=O (force motrice de la réaction),

Régénération du catalyseur pour former l’ester.

Pourquoi ce mécanisme est-il impossible en l’état ?

Comment l’utilisation d’un milieu acide permet d’accélérer cette transformation ?

(5)

-5-

L'étape cinétiquement déterminante est la formation de l'intermédiaire tétraédrique. En déduire la loi de vitesse de la réaction :

1.4. Activation ex situ par passage aux chlorures d’acyle

- Cette méthode corrige les problèmes de l’estérification à partir des acides carboxyliques :

Catalyse acide non nécessaire car les chlorures d’acyles sont d’excellents électrophiles : ils n’ont pas besoin d’être activés.

Equation de l’acylation des alcools :

- En pratique : On introduit dans le réacteur une base faible comme la pyridine (soluble en milieu organique) afin d’empêcher la formation de HCl (chlorure d’hydrogène), gaz toxique.

- Expl :

A partir des acides carboxyliques : Lent

Limitée Catalyse acide nécessaire

A partir des chlorures d’acyle : Rapide

Quasi-totale Pas de catalyse

(6)

-6- Mécanisme direct sans étapes de catalyse acido-basique : AN PUIS E

Addition nucléophile de l’alcool sur le chlorure d’acyle (sans activation)

Elimination de Cl-qui permet la reformation de la double liaison C=O

Déprotonation du composé pour obtenir l’ester

Remarque : Les anhydrides d’acide sont également intéressants pour remplacer l’acide carboxylique puisqu’ils sont plus réactifs que ceux-ci vis-à-vis de composés nucléophiles.

+ OH OCOR'

O

O H O

O O R'

R' O O O

O H

+

O O H

N

+

O O

+

N H

La pyridine est-elle indispensable ?

1.5. Une réaction apparentée : la transestérification Consiste à remplacer la chaîne « alcool » d’un ester par une autre.

C17H35 C O

OEt

APTS

C17H35 C O

OCH3

+ CH3OH + EtOH

Mécanisme :

1ère étape : réaction acide/base

C17H35 C O

OEt

C17H35 C O

OEt H

C17H35 C O

OEt H

+ H+ a/b

(7)

-7-

2ème étape : Addition nucléophile

C17H35 C O

OEt H

AN

C17H35 C O

OEt H O

CH3 H + CH3OH

3ème étape : Prototropie

C17H35 C O

OEt H O

CH3 H

C17H35 C O

O H OCH3

Et H prototropie

4ème étape : Elimination

C17H35 C O

O H OCH3

Et H

C17H35 C O

OCH3 H

Et OH

E +

5ème étape : Déprotonation

C17H35 C O

OCH3 H

C17H35 C O

OCH3 - H+

a/b

Application : Biodiesels (Wikipedia)

Terme devenu commun en France pour désigner les esters méthyliques d’huiles végétales (EMHV). La trans-estérification par le méthanol est la réaction chimique à l'origine du biodiesel.

Les biodiesels sont ainsi formés de molécules plus petites que celles de l’huile végétale ce qui permet de diminuer la viscosité du liquide et par suite, son utilisation comme carburant dans les moteurs à allumage par compression (moteur diesel).

(8)

-8-

2. Préparatation des amides

2

1 O

1

O

3 2

1 N

H

1

O

Ester Amide

Les alcools et les amines ont des réactivités en tant que nucléophiles assez similaires. Mais les amines sont de meilleures bases.

Par analogie avec la préparation des esters, on envisage de former les amides par réaction entre un acide carboxylique et une amine.

2.1. A partir des acides carboxyliques - A température ambiante, ça ne marche pas vraiment !

o Pourquoi ?

o Pourquoi n’avait-on pas ce problème lors de la préparation des esters ?

- Mais à haute température… c’est mieux !

Seul un chauffage fort et une forte pression permettent d’inverser le sens de réaction acido-basique, car elle est exothermique. Chauffer une réaction exothermique déplace l’équilibre en sens inverse.

L’inversion de la réaction acide-base entre l’acide et l’amine redonne l’acide et l’amine qui peuvent réagir ensemble pour conduire à l’amide.

Cette méthode n’est donc pas utilisée au laboratoire mais peut l’être à l’échelle industrielle.

(9)

-9-

2.2. Activation ex-situ de l’acide carboxylique : acylation des amines Ecrire l’équation de la réaction :

L’utilisation de la pyridine pour empêcher la formation de HCl n’est pas toujours indispensable, car l’amine, si elle est introduite en excès, peut jouer le rôle de base et capter l’ion H+.

- Mécanisme de l’acylation des amines :

Addition nucléophile de l’amine sur le chlorure d’acyle (sans activation)

Elimination de Cl-qui permet la reformation de la double liaison C=O

Déprotonation du composé pour obtenir l’amide

O N H H Cl

O N

HH NH2

O

Cl Cl

O N H H

N N

O H N H

+ +

+ +

- Mécanisme de l’acylation des amines avec un anhydride d’acide :

(10)

-10- Document : Acides aminés et liaison peptidique

Les acides aminés sont des acides carboxyliques porteurs d’un groupe amino. Ceux que l’on rencontre le plus souvent dans la nature sont les 2-aminoacides, encore appelés acides -aminés ou -aminoacides (-NH2 sur le carbone en  du groupe carboxyle). Les acides aminés sont les unités structurales de base des protéines.

Expl :

C C O NH2 OH H

H

2 1

C C O NH2 OH H3C

H 1

2 C C

O NH2 OH HOH2C

H

2 1

C C O NH2 OH PhH2C

H

2 1

glycine alanine sérine phénylalanine

Propriétés acido-basiques des acides aminés

Les acides aminés possèdent à la fois un groupe acide -COOH (R-COOH/R-COO-) et un groupe basique -NH2 (R-NH3+/R-NH2).

En solution aqueuse, la structure d’un acide aminé dépend donc de la valeur du pH.

Expl : pour la glycine : -COOH/-COO- : pKa1 = 2,4 -NH3+/-NH2 : pKa2 = 9,8

pH

2,4 9,8

H3N COOH H3N COO H2N COO

Liaison peptidique :

Les acides aminés donnent lieu à une grande diversité de combinaisons en biologie parce que ceux-ci peuvent se polymériser : on forme ainsi des polypeptides. De tels polymères se forment à la suite de réactions répétées de la fonction acide carboxylique d’un acide aminé avec le groupe amino d’un autre, ce qui aboutit à l’élaboration d’une chaîne d’amides. Le lien amide qui unit des acides aminés est appelé liaison peptidique.

Exemple de dipeptide :

C C O H2N

CH3 H

C C O

OH N

CH2Ph H H liaison peptidique

Ce dipeptide est obtenu par condensation de deux acides aminés : l’alanine et la phénylalanine.

La liaison peptidique a une structure plane :

En effet, une délocalisation à laquelle participent les atomes d’oxygène, de carbone et d’azote est observée :

C O

N

C O

N Pour ce faire, les liaisons représentées doivent être coplanaires.

(11)

-11-

Exemple de protéine :

Toutes les protéines sont formées d'une succession d'acides aminés liés les uns aux autres dans un ordre précis. Le lysozyme illustré ci-contre, par exemple, est formé de l'union de 129 acides aminés. Le premier est la lysine, le second, la valine, le troisième, la phénylalanine ... et le dernier, le 129e, la leucine. La séquence des acides aminés d'une protéine (quel acide aminé est le premier, le second, le troisième, ... , le dernier) constitue ce qu'on appelle la structure primaire de la protéine. Les radicaux des acides aminés ont des propriétés chimiques différentes.

Certains sont hydrophobes, d'autres hydrophiles, certains s'ionisent négativement et d'autres positivement. Certains radicaux peuvent former des liaisons chimiques plus ou moins fortes avec d'autres radicaux. Il peut donc y avoir dans une chaîne d'acides aminés des interactions entre les radicaux. Certains se repoussent et d'autres se rapprochent et forment des liens chimiques. La chaîne d'acides aminés aura donc tendance à se replier sur elle-même pour adopter une structure tridimensionnelle précise.

3. Préparatation des autres dérivés d’acides

Chlorures d’acyles

Formés à partir des acides carboxyliques, en utilisant un agent chlorant qui remplace –OH par –Cl comme avec les alcools : Expl : Chlorure de thionyle SOCl2 (chauffage) :

+ SOCl 2 + SO 2(g) + HCl (g)

Intérêt : Les sous-produits non désirés (SO2 et HCl sont gazeux : ils quittent le milieu sans qu’il ne soit nécessaire de réaliser une opération de séparation)

Anhydrides d’acides

- Préparation par déshydratation de deux molécules d’acide carboxylique au moyen d’un agent déshydratant comme l’anhydride phosphorique (P4O10) avec chauffage

O

OH P4O10

O

O O

+ H2O 2

Références

Documents relatifs

Préciser  le  comportement  électrophile  ou  nucléophile  de  chacun  des  réactifs.. Proposer  un  mécanisme  pour  cette

1. Par analogie avec la réaction d’hydratation en milieu acide, proposer un mécanisme pour l’action du chlorure d’hydrogène HCl sur l’éthène. Si le chlorure d’hydrogène

Isomère d’un composé carbonlylé énolisable, issu du déplacement d’un atome d’hydrogène de l’atome de carbone « en alpha » vers l’atome d’oxygène, via deux

B est traité par un dérivé organométallique M (préparé à partir d’une solution de iodométhane dans l’éther et de magnésium) pour donner, après hydrolyse acide, un

De formule C 15 H 24 cet hydrocarbure A, très répandu dans la nature, fait partie de la famille des sesquiterpènes, trimères naturels de l'isoprène (2-méthylbuta-1,3-diène). a)

1. Par analogie avec la réaction d’hydratation en milieu acide, proposer un mécanisme pour l’action du chlorure d’hydrogène HCl sur l’éthène. Si le chlorure d’hydrogène

Obtenues par répétition d’une ou plusieurs unités structurales appelées motifs, les polymères sont un mélange de macromolécules dont il est facile d’adapter

 Comparer les réactivités électrophiles des acides carboxyliques, chlorures d’acyle, anhydrides d’acide, esters, amides, les aptitudes nucléofuges des groupes