• Aucun résultat trouvé

Molécules et matériaux organiques

N/A
N/A
Protected

Academic year: 2022

Partager "Molécules et matériaux organiques"

Copied!
11
0
0

Texte intégral

(1)

-1-

Molécules et matériaux organiques

Partie 1. Addition nucléophile suivie d’élimination (A N + E)

1.1. Réactivité électrophile des acides carboxyliques et groupes dérivés

Objectifs du chapitre

→ Notions à connaître :

 Activation du groupe carboxyle :

o Ex situ sous forme d’un chlorure d’acyle ou d’un anhydride d’acide ; o In situ par protonation ;

o In vivo par formation de l’acétylCoA.

→ Capacités exigibles :

 Comparer les réactivités électrophiles des acides carboxyliques, chlorures d’acyle, anhydrides d’acide, esters, amides, les aptitudes nucléofuges des groupes partants dans les molécules correspondantes et en déduire l’opportunité ou non d’opérer une activation électrophile du groupe carboxyle.

 Proposer et/ou analyser différents moyens d’activation d’un groupe carboxyle.

Les acides carboxyliques et les groupes fonctionnels qui en dérivent sont fréquemment rencontrés dans les synthèses organiques.

Dans la vie courante, de nombreux esters sont utilisés en parfumerie, mais aussi en tant qu’arômes par l’industrie agro- alimentaire. La fonction amide constitue la liaison peptidique qui sert à lier entre eux les acides aminés dans les protéines.

Avant de s’intéresser aux réactions auxquelles ils participent, il est nécessaire de faire le point sur leur réactivité. Les acides carboxyliques et les groupes qui en dérivent présentent un atome de carbone fonctionnel électrophile. Ils peuvent par conséquent réagir avec des composés nucléophiles, mais une assistance est parfois nécessaire pour activer leur électrophilie. C’est là la problématique centrale de ce premier sous-chapitre :

1. Rencontre avec les acides carboxyliques

1.1. Comment les nommer ?

Nommer les composés suivants :

H-CCOOH CH

3

-COOH CH

3

-(CH

2

)

4

-COOH (CH

3

)

2

CH-COOH HOOC-CH

2-

COOH

Problématique :

Les acides carboxyliques et les groupes fonctionnels qui en dérivent peuvent-ils réagir avec

un composé nucléophile sans activation ?

(2)

-2- 1.2. Comment les fabriquer ?

Rappeler les modes de synthèse des acides carboxyliques au programme de PCSI :

1.3. Structure électronique et géométrie

Que prévoit la méthode VSEPR quant à la géométrie autour du carbone fonctionnel ?

Le groupe « acide carboxylique » est-il polaire ?

Application : Les savons

Les savons sont des carboxylates (à longue de chaîne carbonée R) de potassium (R-COO

-

,K

+

) ou de sodium (R-COO

-

,Na

+

). Composés amphiphiles : une partie est hydrophile (groupe carboxylate polaire + possibilité de liaison hydrogène), une partie est lipophile (chaîne carbonée : interaction de London).

Les parties lipophiles se « lient » à la tache grasse par des interactions de type London, les parties hydrophiles étant orientées vers l’extérieur (schéma 1). Grâce à une action mécanique (manuelle ou machine), la tâche se décolle du tissu : on obtient alors une micelle, c’est-à-dire une entité sphérique constituée en surface d’agents tensio-actifs. Cette micelle est soluble dans l’eau, contrairement à la tache grasse, puisque les têtes hydrophiles sont orientées vers l’extérieur.On aboutit alors lors du rinçage à l’évacuation de la tache grasse avec les eaux usées.

eau

savonneuse micelle

de graisse eau

savonneuse tâche de graisse

tissu

(3)

-3- 1.4. Identification par spectroscopie - Spectroscopie IR :

Comparaison avec les alcools :

Pourquoi la bande de vibration d’élongation de la liaison O-H est-elle beaucoup plus large avec les acides carboxyliques qu’avec les alcools ?

- Spectroscopie RMN :

Spectre en présence d’eau lourde :

Le signal situé vers 12 ppm disparaît en présence d’eau lourde D

2

O. Pourquoi ?

(4)

-4-

2. Réactivité des acides carboxyliques

2.1. Les acides carboxyliques sont des… acides

Identifier l’atome d’hydrogène labile sur un acide carboxylique et dessiner la base conjuguée :

H labile Base conjuguée = ion carboxylate

Donner l’ordre de grandeur du pK

A

du couple Acide carboxylique R-COOH / Ion carboxylate R-COO

-

. Proposer des bases réagissant totalement avec des acides carboxyliques :

Comparer la solubilité dans l’eau de la forme carboxylate R-COO

-

et de l’acide carboxylique. Comment peut-on utiliser cette propriété lors de la phase d’isolement du produit à la fin une synthèse organique ?

Proposer une justification à la différence d’acidité des alcools (pK

A

(ROH/RO

-

) de 16 à 20) et celle des acides carboxyliques.

(5)

-5-

2.2. Orbitales frontalières des acides carboxyliques

Identifier les sites nucléophile et électrophile d’un acide carboxylique grâce aux représentations des orbitales frontalières :

HO BV

L’approche classique (Lewis + mésomérie) conduit-elle à la même conclusion ou à une conclusion différente ?

Que penser de l’électrophilie du carbone fonctionnel ?

Comment l’améliorer ?

(6)

-6-

Remarque : D’un point de vue orbitalaire, protoner un acide carboxylique revient à abaisser l’énergie de la BV. Cette orbitale associée aux propriétés électrophiles du composé voit alors son énergie se rapprocher de celle de la HO d’un nucléophile : la réaction entre le nucléophile et l’électrophile est accélérée.

Ceci a déjà été exploité dans le cours de PCSI pour activer l’électrophilie des dérivés carbonylés (aldéhydes et cétones) en vue de les faire réagir avec des nucléophiles peu efficaces comme les alcools dans le cas de la réaction d’acétalisation.

Profil réactionnels avec ou sans activation électrophile :

2.3. Résumé

Sites réactifs d’un acide carboxylique :

Les acides carboxyliques présentent un site électrophile, un site basique et un site acide

3. Rencontre avec les groupes dérivés des acides carboxyliques

Groupes dérivés des acides carboxyliques = groupes fonctionnels préparés à partir des acides carboxyliques :

Groupe dérivé Exemple Nomenclature

Ester

O O

C

C

2

1

O

1

O

3

Alcanoate d’alkyle

Amide

O C N

N-alkylalcanamide

Chlorure d’acyle

O

C Cl

2

1

Cl

O

3

Chlorure d’alcanoyle

Anhydride d’acide

O O

O

C C

2

1

O

1

O O

2

Anhydridealcanoïque

(7)

-7-

Présents à l’état naturel Fabriqués (in situ)

Formule générale des groupes dérivés des acides carboxyliques :

Les dérivés des acides carboxyliques sont électrophiles, MAIS TOUT DEPEND DE LA NATURE DU GROUPE Z :

4. Réactivité comparée des dérivés des acides carboxyliques

Mécanisme A

N

+ E :

Les acides carboxyliques et les groupes dérivés réagissent avec des nucléophiles selon un mécanisme

d’addition nucléophile puis élimination :

(8)

-8- 4.1. Facilité de l’addition nucléophile ?

L’addition nucléophile est d’autant plus facile que la charge du carbone est élevée. Or le groupement Z intervient par deux effets antagonistes :

 Plus électronégatif que C, il attire les électrons de la liaison C-Z : inductif attracteur

 Grâce à son doublet non liant, il est mésomère donneur

Chlorure d’acyle Anhydride d’acide Ester Amide

Z

Effet inductif

attracteur Fort Fort Fort Moyen

Effet mésomère

donneur Faible Moyen Fort Très fort

Charge du carbone fonctionnel

Facilité de l’addition nucléophile

Quelques remarques :

 Le pouvoir inductif attracteur est fortement lié à l’électronégativité de l’élément : χ

O

et χ

Cl

proches et supérieures à χ

O

.

 Le pouvoir mésomère donneur de Cl est faible car le doublet non liant de Cl est assimilable à une orbitale 3p plus haute en énergie que les OA du carbone… L’interaction est alors considérée peu efficace.

 Dans l’anhydride d’acide, l’effet donneur de l’oxygène se répartit sur deux sites contrairement à l’ester.

4.2. Facilité de l’élimination ?

Le groupement Z doit ensuite quitter la molécule. Meilleur est le pouvoir nucléofuge de Z

-

, plus rapide est l’élimination.

(9)

-9-

Moyen mnémotechnique : Le caractère nucléofuge est difficile à aborder. En revanche, on peut utiliser un « truc » pour se souvenir de la facilité d’un groupement à partir. Il ne n’agit aucunement d’une justification car le caractère nucléofuge n’a rien à voir avec le pK

A

.

Plus le groupe partant est basique, moins il part facilement.

Autrement dit, les meilleurs groupes partants sont les bases les plus faibles (pK

A

petit).

Chlorure d’acyle Anhydride d’acide Ester Amide

pKA(HZ/Z

-

) HCl/Cl

-

-7

RCOOH/RCOO

-

5

ROH/RO

-

18

RNH

2

/RNH

-

35 Facilité de

l’élimination

Remarques :

Pourquoi l’élimination se produit-elle ? Quel est le moteur de cette élimination ?

Données : Energies de liaisons : D(C=O) = 720 kJ.mol

–1

et D(C-O) = 350 kJ.mol

–1

Pourquoi n’observe-t-on pas d’élimination après une addition nucléophile sur un aldéhyde ou une cétone ?

4.3. Bilan

Chlorure d’acyle Anhydride d’acide Ester Amide

Facilité de l’addition

nucléophile + + + - - -

Facilité de

l’élimination + + + - - -

Ordre de réactivité vis-à-vis d’un nucléophile :

(10)

-10- 4.4. Que dit l’approche orbitalaire ?

A l’aide du diagramme d’OM suivant, conclure quant à la réactivité des dérivés d’acide vis à vis d’un nucléophile :

Calculs réalisés par Eric Noizet à l’aide du logiciel Jimp2

(11)

-11-

5. Réactivité comparée des dérivés des acides carboxyliques

A partir de ce qui a été abordé jusqu’ici proposer plusieurs méthodes pour rendre un acide carboxylique plus électrophile :

Et dans la nature ? Activation in vivo par formation de l’acétylCoA

Dans l’organisme, tous les acides gras sont formés à partir de l’éthanol CH

3

-CH

2

-OH obtenu par fermentation du glucose.

L’éthanol est d’abord oxydé en acide éthanoïque CH

3

-COOH qui a besoin d’être activé si on veut pouvoir lui additionner un nucléophile.

L’activation de l’acide éthanoïque est réalisée par estérification avec le groupe thiol (R-SH, analogue soufré des alcools) d’une molécule complexe : le coenzyme A.

L’acétyl-CoA se fixe alors de façon sélective sur une enzyme, où il subit une succession de réactions d’allongement de chaîne

carbonée par additions successives de nucléophiles pouvant mener par exemple à l’acide palmitique (16 atomes de carbone)

ou stéarique (18 atomes de carbone).

Références

Documents relatifs

1. Par analogie avec la réaction d’hydratation en milieu acide, proposer un mécanisme pour l’action du chlorure d’hydrogène HCl sur l’éthène. Si le chlorure d’hydrogène

Dans la première série d'expériences, justifier les proportions obtenues de chaque produit en absence de catalyseur, puis leur évolution en présence de catalyseur. Dans la

Isomère d’un composé carbonlylé énolisable, issu du déplacement d’un atome d’hydrogène de l’atome de carbone « en alpha » vers l’atome d’oxygène, via deux

B est traité par un dérivé organométallique M (préparé à partir d’une solution de iodométhane dans l’éther et de magnésium) pour donner, après hydrolyse acide, un

De formule C 15 H 24 cet hydrocarbure A, très répandu dans la nature, fait partie de la famille des sesquiterpènes, trimères naturels de l'isoprène (2-méthylbuta-1,3-diène). a)

1. Par analogie avec la réaction d’hydratation en milieu acide, proposer un mécanisme pour l’action du chlorure d’hydrogène HCl sur l’éthène. Si le chlorure d’hydrogène

Obtenues par répétition d’une ou plusieurs unités structurales appelées motifs, les polymères sont un mélange de macromolécules dont il est facile d’adapter

 Comparer les réactivités électrophiles des acides carboxyliques, chlorures d’acyle, anhydrides d’acide, esters, amides, les aptitudes nucléofuges des groupes