• Aucun résultat trouvé

Indirect nanoplasmonic sensing

N/A
N/A
Protected

Academic year: 2021

Partager "Indirect nanoplasmonic sensing"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01888095

https://hal-amu.archives-ouvertes.fr/hal-01888095

Submitted on 5 Oct 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Indirect nanoplasmonic sensing

B. Demirdjian, Igor Ozerov, F. Bedu, A. Ranguis, Claude R Henry

To cite this version:

B. Demirdjian, Igor Ozerov, F. Bedu, A. Ranguis, Claude R Henry. Indirect nanoplasmonic sensing.

Nanophotonics and Micro/Nano Optics International Conference, Oct 2018, Rome, Italy. 2018. �hal- 01888095�

(2)

0 20 40 60 80 100 -3

-1 0 1



max

= 1.2 nm

RH = 91 %

  (nm)

RH (%)

RH = 100 % RH = 67 %

Conclusions

High sensitive water sensor (detection of a few hundredths of H

2

O ML)

Detect morphology changes of soot aggregates

Large (P, T) domains of studies

Non destructive probe Outlooks

Quantitive measurements with mass spectrometry

Continuing FDTD simulations

Chemical reactivity gas / nanoparticles:

•Catalysis

Metallic nanoparticles (Pt, Pd, …) + CO, O

2

+ H

2

, NO

x

•Environmental heterogenous reactions

Ice nucleation on soot particles

Photochemistry and reactivity NO

2

/soot  O

3

Indirect nanoplasmonic sensing.

B. Demirdjian, I. Ozerov, A. Ranguis, F. Bedu, C. R. Henry

Aix-Marseille University, CNRS, CINaM UMR 7325, 13288 Marseille, France

SCIENTIFIC BACKGROUND GOLD NANODISKS FABRICATION: EBL PROCESS

Development of chemical and biological nanosensors based on the extraordinary optical properties of noble-metal nanoparticles.

Nanosensors based on localized surface plasmon resonance (LSPR) are sensitive to small local changes in refractive index at the surface of metal nanoparticles during the adsorption/desorption of molecules.

 These changes induce a shift in the wavelength of the LSPR response.

Variations of the LSPR peak extinction is linked to the collective oscillation of electrons in the metal. The minimum of reflection corresponds to a maximum of absorption.

Sample holder = borosilicate glass window, e = 1 mm, Ø = 25,4 mm Cleaning: acetone + US, then isopropanol + US, EDI rinsing,

oxygen plasma oven at 150°C (300 W during 10 min)

PMMA spin-coating (resin 950 K at 4 %, speed : 4000 rpm, e = 270 nm annealing 10 min at 170°C)

Gold layer deposition (5 nm)

to remove the charges (Edwards 306)

The gold film is irradiated with an electron beam (Raith PIONNEER) Area of 1 x 1 mm2

Revelation in acetone (Au is removed) then with MIBK/IPA 1 : 3 during 45 s Then with IPA during 45 s ( holes in the resin)

Cr and Au evaporation within the PMMA resin (Edwards 306) eCr = 2 nm, eAu = 20 nm

Lift-off of the resin (acetone + US)

The response of LSPR nanosensors follows a simple model described by the group of Campbell:

Δλ = m (n

2

-n

1

) [1 - exp(-2d/l

d

)] (1)

Δλ: wavelength shift

m: sensitivity of the refractive index (RI)

n2 and n1: RIs of different surrounding media d: effective thickness of the adsorbate layer

ld: characteristic decay length of the evanescent electromagnetic field.

Gas adsorption on nanoparticles modify their surface dielectric properties

 a shift in the wavelength of the LSPR response of the underlying gold disk detector.

INDIRECT NANOPLASMONIC SENSING (INPS)

Figure: http://simslab.uwaterloo.ca/research/biomems-sensors.php http://www.insplorion.com/technology/indirect-nanoplasmonic-sensing

RESPONSE OF THE LSPR NANOSENSORS

WATER ADSORPTION ON HYDROPHOBIC SOOT PARTICLES

Precise control of the shape, the size and the pitch of gold nanodisks OPTIMISATION OF THE GOLD NANODISKS PARAMETERS

Tapping mode topographical AFM images of gold nanodisks on borosilicate window (images obtained with a PSIA apparatus XE-100)

<p> = 300 nm

<h> = 29 nm, d = 100, 150 nm

Soot particles are involved in several atmospheric processes (ice nuclei, contrails formation, radiative forcing, chemical reactions…), it is important to well characterize the water/soot interaction mechanism

Tapping mode topographical AFM image of AEC soot particles deposited on gold nanodisks (covered by a SiO2 layer). Image obtained with a PSIA apparatus (XE-100).

SOOT DEPOSITION ON GOLD NANODISKS: DROPLET DEPOSITION

400 600 800

0.00 0.02 0.04 0.06 0.08

687

d = 150 nm

absorbance (a. u.)

wavelength (nm)

d = 100 nm 591

LSPR MEASUREMENTS: EXPERIMENTAL SET-UP

F.O. (Avantes FC-IR200-2) + collimating lens (Avantes, COL- UV/VIS)

The sample holder

The INPS UHV experimental set up

“Avasoft-Full”

software on a laptop

Tungsten halogen source (Avantes, AvaLight-HAL-S)

UV-VIS spectrometer (CCD detector, Avantes, AvaSpec-ULS3648-

USB2)

sample

BLUE SHIFT ?  MODELISATION (A. KARAPETYAN)

Evolution of the shift Δλ of the LSPR response versus the relative humidity inside the reactor at room temperature during the adsorption of water vapor on the gold nanodisks covered by a SiO2 layer. Black dots are obtained during the adsorption, and red dots are obtained during the desorption. Error bars are indicated.

 is almost linear vs the relative humidity, at RH = 100%,  = max = 2.42 nm.

 water layer thickness d = 0.67 nm (~ 2.2 water ML) Equation (1)

Good reversibility of the adsorption and desorption curves (H2O physisorption and no chemisorption of water molecules on SiO2)

Highly sensitive sensor: accuracy of the wavelength measurement in the LSPR response is 0.04 nm  detection of about 2/100 of water ML !

REFERENCE : WATER ADSORPTION ON SiO2 / GOLD DISKS

Evolution of the shift Δλ of the LSPR response versus the relative humidity inside the reactor at room temperature during the adsorption of water vapor on soot particles deposited on gold nanodisks covered by a SiO2 layer. Black dots are obtained during the adsorption, and red dots are obtained during the desorption. Error bars are indicated.

Peculiar and reversible blue-shift !

Evolution of the shift Δλ of the LSPR response versus the relative humidity inside the reactor at room temperature during the adsorption of water vapor on soot particles

deposited on gold nanodisks covered by a SiO2 layer. Black dots are obtained during the adsorption, and red dots are obtained during the desorption. Error bars are indicated.

Hydrophobic soot

(laboratory lamp soot)

Hydrophilic soot

(aircraft engine combustor soot)

Absorbance of the thin multilayers system

(C/SiO2/gold/glass) as a function of the incident wavelength. k = 0.75 for the three thicknesses.

Analytical Born and Wolf equations.

Hydrophilic soot aggregates collapse into + dense structures during RH  (Mikhailov):

 RH = 100 % soot aggregates are more compact

• higher mass fractal dimension Df

• smaller gyration radius

• higher n and k values

300 nm

100 nm

TEM picture

TEM picture

0 20 40 60 80 100

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

(nm)

RH (%)

max

= 2.42 nm RH = 100 %

0 20 40 60 80 100

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

max

= 2.0 nm RH = 100 %

  (nm)

RH (%)

300 400 500 600 700

0.70 0.75

Absorbance (a.u.)

Wavelength (nm) h1 = 80 nm, n1 = 2

h2 = 90 nm, n2 = 1.9 h3 = 100 nm, n3 = 1.8

400 500

0.70

80 nm 90 nm 100 nm

From 100 to 90 nm

λ = - 4 nm From 90 to 80 nm

λ = - 3 nm

H2O

Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Berntsen, T.; De Angelo, B. J.; Flanner, M. G.; Ghan, S.; Kärcher, B.; Koch, D.

Bounding the role of black carbon in the climate system: a scientific assessment. J. Geophys. Res. 2013, 118, 5380–5552.

Kahnert, M. Modelling the optical and radiative properties of freshly emitted light absorbing carbon within an atmospheric chemical transport model. Atmos. Chem. Phys. 2010, 10, 1403–1416.

Liu, L.; Mishchenko, M. I. Effects of aggregation on scattering and radiative properties of soot aerosols. J Geophys. Res. 2005, 110, D11211.

Carrico, C. M.; Petters, M. D.; Kreidenweis, S. M.; Sullivan, A. P.; McMeeking, G. R.; Levin, E. J. T.; Engling, G.; Malm, W. C.; Collett Jr., J. L. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmos. Chem. Phys. 2010, 10, 5165–5178.

Cheng, T.; Gu, X.; Yu, W.; Hao, C. Effects of atmospheric water on the optical properties of soot aerosols with different mixing states.

Journal of Quantitative Spectroscopy and Radiative Transfer 2014, 147, 196-206.

Mikhailov, E. F.; Vlasenko, S. S.; Podgorny, I. A.; Ramanathan, V.; Corrigan, C. E. Optical properties of soot–water drop agglomerates: an experimental study. J Geophys. Res. 2006, 111, D07209.

Barbillon, G.; Bijeon, J.-L.; Bouillard, J.-S.; Plain, J.; Lamy de la Chapelle, M.; Adam, P.-M.; Royer, P. Detection in near-field domain of biomolecules adsorbed on a single metallic nanoparticle. J. Microsc. 2008, 229, 270−274.

Larsson, E. M.; Langhammer, C.; Zoric, I.; Kasemo, B. Nanoplasmonic probes of catalytic reactions. Science 2009, 326, 1091-1094.

Jung, L. S.; Campbell, C. T.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S. Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 1998, 14, 5636−5648.

Born, M.; Wolf, E. Principles of Optics, 7th Edition; Cambridge University Press: Cambridge, U.K., 1999.

B. Demirdjian, F. Bedu, A. Ranguis, I. Ozerov, A. Karapetyan, C.R. Henry. Indirect Nanoplasmonic Sensing to Probe with a High Sensitivity the Interaction of Water Vapor with Soot Aerosols. The Journal of Physical Chemistry Letters 2015, 6, 4148-4152.

B. Demirdjian, F. Bedu, A. Ranguis, I. Ozerov, C.R. Henry. Water adsorption by a sensitive calibrated gold plasmonic nanosensor.

Langmuir 2018, 34, 5381-5385.

WATER ADSORPTION ON HYDROPHILIC SOOT PARTICLES

BIBLIOGRAPHY

CONLUSIONS AND OUTLOOKS

Hypothesis: m = 200 nm / RIU and ld= 40 nm

n2-n1 = n (H2Oliq) - n (vacuum) = 1.3330 - 1 = 0.3330

Experimental LSPR responses for gold nanodisks deposited onto a borosilicate glass window vs the diameter, d. Tapping mode topographical AFM images of gold nanodisks with d = 100 and 150 nm. Images obtained with a PSIA XE-100.

FDTD simulations  best theoretical LSPR S/N

signals obtained with the biggest aspect ratio ie the biggest diameter (for a given h)

h d

p

Références

Documents relatifs

increased greatly by increasing relative humidity. Moisture adsorption depends also on the binder type used. All charcoal pellets had compressive strength above 1.0 MPa and

Si vous trouvez l’explication, vous gagnerez un chiffre du code secret (faire valider votre explication par

Mais pour tous ceux qui se pressent chaque matin sur des routes encombrées ou dans des trains bondés – ce qui pourrait concerner bientôt une majorité de la population

said to be about 2 feet thick, was shown at the base of the shallow pit, and I was informed that clay had been worked beneath it..

Ein verwandt- schaftliches Empfinden ergab sich vor allem aus dem gemeinsamen Status einer Republik, aber auch aufgrund der ähnliehen politischen Institutionen und

In the Falck case, the far-sighted family champion of change Alberto Falck—with crucial support of the external CEO Achille Colombo—was able to de-escalate the family business

C’était le moment choisi par l’aïeul, […] pour réaliser le vœu si longtemps caressé d’ accroître son troupeau que les sècheresses, les épizoodies et la rouerie de

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des