• Aucun résultat trouvé

Relaxation theorems in nonlinear elasticity

N/A
N/A
Protected

Academic year: 2022

Partager "Relaxation theorems in nonlinear elasticity"

Copied!
14
0
0

Texte intégral

(1)

www.elsevier.com/locate/anihpc

Relaxation theorems in nonlinear elasticity

Omar Anza Hafsa

a

, Jean-Philippe Mandallena

b,c,

aLMGC (Laboratoire de Mécanique et Génie Civil), UMR-CNRS 5508, Université Montpellier II, Place Eugène Bataillon, 34090 Montpellier, France

bEquipe AVA (Analyse Variationnelle et Applications), Centre Universitaire de Formation et de Recherche de Nîmes, Site des Carmes, Place Gabriel Péri, Cedex 01, 30021 Nîmes, France

cI3M (Institut de Mathématiques et Modélisation de Montpellier), UMR-CNRS 5149, Université Montpellier II, Place Eugène Bataillon, 34090 Montpellier, France

Received 21 September 2006; accepted 30 November 2006 Available online 28 December 2006

Abstract

Relaxation theorems which apply to one, two and three-dimensional nonlinear elasticity are proved. We take into account the fact an infinite amount of energy is required to compress a finite line, surface or volume into zero line, surface or volume. However, we do not prevent orientation reversal.

©2006 Elsevier Masson SAS. All rights reserved.

Keywords:Relaxation; Nonlinear elasticity; Determinant condition

1. Main results 1.1. Introduction

Consider an elastic material occupying in a reference configuration Ω ⊂RN with N =1,2 or 3, whereΩ is bounded and open with Lipschitz boundary∂Ω. The mechanical properties of the material are characterized by a stored-energy functionW:M3×N→ [0,+∞](assumed to be Borel measurable) in terms of which the total stored- energy is the integral

I (u):=

Ω

W

u(x)

dx (1)

with∇u(x)∈M3×Nthe gradient ofuatx, whereM3×Ndenotes the space of all real 3×Nmatrices. In order to take into account the fact that an infinite amount of energy is required to compress a finite line (N=1), surface (N=2) or volume (N=3) into zero line, surface or volume, i.e.,

* Corresponding author.

E-mail addresses:anza@lmgc.univ-montp2.fr (O. Anza Hafsa), jean-philippe.mandallena@unimes.fr (J.-P. Mandallena).

0294-1449/$ – see front matter ©2006 Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.anihpc.2006.11.005

(2)

W (ξ )→ +∞ as

|ξ| →0 ifN=1,

|ξ1ξ2| →0 ifN=2,

|detξ| →0 ifN=3,

(2) we consider the following conditions:

(C1)there existα, β >0such that for everyξ∈M3×1, if |ξ|αthenW (ξ )β

1+ |ξ|p forN=1;

(C2)there existα, β >0such that for everyξ=1|ξ2)∈M3×2, if |ξ1ξ2|αthenW (ξ )β

1+ |ξ|p

forN=2, whereξ1ξ2denotes the cross product of vectorsξ1, ξ2∈R3; (C3)for everyδ >0, there existscδ>0such that for everyξ∈M3×3,

if |detξ|δthenW (ξ )cδ

1+ |ξ|p , where detξ denotes the determinant ofξ, and

(C4)W (P ξ Q)=W (ξ )for allξ∈M3×3and allP , Q∈SO(3)

for N=3, with SO(3):= {Q∈M3×3: QTQ=QQT=I3 and detQ=1}, whereI3denotes the identity matrix inM3×3andQTis the transposed matrix ofQ. (In fact, (C4) is an additional condition which is not related to (2).

However, it means thatWis frame-indifferent, i.e.,W (P ξ )=W (ξ )for allξ ∈M3×3and allP ∈SO(3), and isotropic, i.e.,W (ξ Q)=W (ξ )for allξ∈M3×3and allQ∈SO(3), see for example [12] for more details.)

Fixp∈ ]1,+∞[, setWg1,p;R3):= {uW1,p;R3): u=gon∂Ω}, wheregis given continuous piecewise affine function fromΩtoR3, define the integral

QI (u):=

Ω

QW

u(x) dx,

whereQW:M3×N→ [0,+∞]denotes the quasiconvex envelope ofW, and consider the following assertions:

(R1) inf{I (u): uWg1,p;R3)} =inf{QI (u): uWg1,p;R3)};

(R2) if un u with {un}n1 minimizing sequence for I in Wg1,p;R3), then u¯ is a minimizer for QI in Wg1,p;R3);

(R3) if u¯ is a minimizer for QI in Wg1,p;R3), then there exists a minimizing sequence {un}n1 for I in Wg1,p;R3)such thatunu,¯

where “” denotes the weak convergence inW1,p;R3). In this paper we prove (see Section 1.3) the following relaxation theorems:

Theorem 1.1.(N=1)If(C1)holds and ifW is coercive, i.e.,W (ξ )C|ξ|pfor allξ∈M3×Nand someC >0, then (R1),(R2)and(R3)hold.

Theorem 1.2.(N=2)If (C2)holds and ifW is coercive, then(R1),(R2)and(R3)hold.

Theorem 1.3.(N=3)If (C3)and(C4)hold and ifWis coercive, then(R1),(R2)and(R3)hold.

Typically, these theorems can be applied with stored-energy functionsWof the form W (ξ ):= |ξ|p+

⎧⎪

⎪⎩ h

|ξ|

ifN=1, h

|ξ1ξ2|

ifN=2, h

|detξ|

ifN=3,

for allξ∈M3×N, whereh:[0,+∞[ → [0,+∞]is Borel measurable and such that for everyδ >0, there existsrδ>0 such thath(t )rδfor all(for example,h(0)= +∞andh(t )=1/ts ift >0 withs >0).

(3)

1.2. Outline of the paper

LetI:W1,p;R3)→ [0,+∞]be defined by I(u):=

⎧⎨

Ω

W

u(x)

dx ifuWg1,p Ω;R3

,

+∞ otherwise,

letQI:W1,p;R3)→ [0,+∞]be defined by QI(u):=

⎧⎨

Ω

QW

u(x)

dx ifuWg1,p Ω;R3

,

+∞ otherwise,

and letI:W1,p;R3)→ [0,+∞]be the lower semicontinuous envelope (or relaxed functional) ofI with respect to the weak topology ofW1,p;R3), i.e.,

I(u):=inf

lim inf

n→+∞I(un):un u

.

Set Y := ]0,1[N and Aff0(Y;R3):= {φ∈Aff(Y;R3): φ=0 on∂Y}, where Aff(Y;R3)denotes the space of all continuous piecewise affine functions fromY toR3, and considerZW:M3×N→ [0,+∞]given by

ZW (ξ ):=inf

Y

W

ξ+ ∇φ(y)

dy: φ∈Aff0

Y;R3 .

Here is the central theorem of the paper:

Theorem 1.4.IfZW is ofp-polynomial growth, i.e.,ZW (ξ )c(1+ |ξ|p)for allξ∈M3×Nand somec >0, then I=Q I.

Herem=3 andN=1,2 or 3, but the proof of Theorem 1.4 (given in Section 3) does not depend on the integers mandN. This immediately gives the following relaxation result:

Corollary 1.5.Under the hypotheses of Theorem1.4, ifW is coercive, then(R1),(R2)and(R3)hold.

Such results was proved by Dacorogna in [8] whenWis continuous and ofp-polynomial growth. The distinguish- ing feature here is that Theorem 1.4 (and so Corollary 1.5) is compatible with (2). More precisely, in Section 4 we prove the following propositions:

Proposition 1.6.(N=1)If (C1)holds thenZW is ofp-polynomial growth.

Proposition 1.7.(N=2)If (C2)holds thenZW is ofp-polynomial growth.

Proposition 1.8.(N=3)If (C3)and(C4)hold thenZW is ofp-polynomial growth.

Theorem 1.4 follows from Propositions 1.9 and 1.10 below whose proofs are given in Section 3:

Proposition 1.9.IfZW is finite thenQW=Q[ZW] =ZW. Furthermore, forN=1 we haveZW=W∗∗, where W∗∗denotes the lower semicontinuous convex envelope ofW.

Proposition 1.10.J0=J1withJ0,J1:W1,p;R3)→ [0,+∞]respectively defined by J0(u):=inf

lim inf

n→+∞I (un): Affg

Ω;R3

un u

(4)

and

J1(u):=inf

lim inf

n→+∞ZI (un): Affg

Ω;R3

un u

,

whereAffg;R3):= {u∈Aff(Ω;R3): u=gon∂Ω}and ZI (u):=

Ω

ZW

u(x) dx.

Taking Proposition 1.9 into account, from Propositions 1.6, 1.7 and 1.8, we see that stored-energy functionsW satisfying (C1) forN=1, (C2) forN=2 and (C3) and (C4) forN=3, are not quasiconvex, so that the integralI (u) in (1) is not weakly lower semicontinuous onW1,p;R3)(see [4, Corollary 3.2]). Thus, the Direct Method of the Calculus of Variations cannot be applied to study the existence of minimizers ofI inWg1,p;R3). For this reason, in the present paper we establish relaxation theorems instead of existence theorems. (In fact, the term “relaxation”

means “generalized existence”, see [10,9,6] for a deeper discussion.)

Other related results can be found in [7,5] where we refer the reader. The present work improves our previous one [1] (see also [2,3]). The main new contribution of the present paper is the treatment of the caseN=3.

The plan of the paper is as follows. The proofs of Theorems 1.1, 1.2 and 1.3 are given in Section 1.3 (although these can be easily deduced from the previous discussion). Section 2 presents some preliminaries. In Section 3 we prove Propositions 1.9 and 1.10 and Theorem 1.4. Finally, Section 4 contains the proofs of Propositions 1.6, 1.7 and 1.8.

1.3. Proof of Theorems 1.1, 1.2 and 1.3

According to Corollary 1.5, we see that Theorems 1.1, 1.2 and 1.3 are immediate consequences of respectively Propositions 1.6, 1.7 and 1.8.

2. Preliminaries

In this section we recall some (classical) definitions and results. These will be used throughout the paper.

Letm, N 1 be two integers. For any bounded open set D⊂RN, we denote by Aff(D;Rm)the space of all continuous piecewise affine functions fromD toRm, i.e.,u∈Aff(D;Rm)if and only ifu is continuous and there exists a finite family(Di)iIof open disjoint subsets ofDsuch that|D\

iIDi| =0 and for everyiI,∇u(x)=ξi

inDi withξi∈Mm×N (where| · |denotes the Lebesgue measure inRN). For anygW1,p(D;Rm)withp >1, we set

Affg

D;Rm :=

u∈Aff D;Rm

: u=gon∂D (Aff0(D;Rm)corresponds to Affg(D;Rm)withg=0) and

Wg1,p D;Rm

:=

uW1,p D;Rm

: u=gon∂D ,

(where∂Ddenotes the boundary ofD). FixgW1,p;Rm)whereΩ⊂RNis bounded and open with Lipschitz boundary. The following density theorem will play an essential role in the proof of Theorem 1.4:

Theorem 2.1.(Ekeland and Temam[10]) Affg;Rm)is dense inWg1,p;Rm)with respect to the strong topology ofW1,p;Rm).

Letf:Mm×N→ [0,+∞]be Borel measurable and letZf:Mm×N→ [0,+∞]be defined by Zf (ξ ):=inf

Y

f

ξ+ ∇φ(x)

dx: φ∈Aff0

Y;Rm

withY := ]0,1[N. To prove Propositions 1.6, 1.7 and 1.8, we will use the following properties ofZf:

(5)

Proposition 2.2.(Fonseca[11])

(i) For every bounded open setD⊂RN with|∂D| =0and everyξ∈Mm×N, Zf (ξ )=inf

1

|D|

D

f

ξ+ ∇φ(x)

dx: φ∈Aff0

D;Rm .

(ii) IfZf is finite thenZf is rank-one convex, i.e., for everyξ, ξ∈Mm×Nwithrank(ξ−ξ)1, Zf

λξ+(1λ)ξ

λZf (ξ )+(1λ)Zf (ξ).

(iii) IfZf is finite thenZf is continuous.

(iv) For every bounded open setD⊂RN with|∂D| =0, everyξ ∈Mm×Nand everyφ∈Aff0(D;Rm), Zf (ξ ) 1

|D|

D

Zf

ξ+ ∇φ(x) dx.

Note that Proposition 2.2 is not exactly the one that can found in Fonseca. Nevertheless, it can be proved using the same arguments than the one given by Fonseca (for more details see [2, Remark A.2]).

Quasiconvexity is the correct concept to deal with multiple integral problems in the Calculus of Variations. For the convenience of the reader, we recall its definition:

Definition 2.3.(Morrey [13]) We say thatf is quasiconvex if for everyξ∈Mm×N, every bounded open setD⊂RN with|∂D| =0 and everyφW01,(D;Rm),

f (ξ ) 1

|D|

D

f

ξ+ ∇φ(x) dx.

Remark 2.4.Clearly, iff is quasiconvex thenZf =f.

By the quasiconvex envelope off, that we denoteQf, we mean the greatest quasiconvex function which less than or equal tof. (Thus,f is quasiconvex if and only ifQf =f.) To prove Proposition 1.9 we will need Theorem 2.5:

Theorem 2.5.(Dacorogna[8,9])Iff is continuous and finite thenQf =Zf. LetF:W1,p;Rm)→ [0,+∞]be defined by

F(u):=

⎧⎪

⎪⎩

Ω

f

u(x)

dx ifuWg1,p

Ω;Rm ,

+∞ otherwise,

letQF:W1,p;Rm)→ [0,+∞]be given by QF(u):=

⎧⎪

⎪⎩

Ω

Qf

u(x)

dx ifuWg1,p Ω;Rm

,

+∞ otherwise,

and letF:W1,p;Rm)→ [0,+∞]be the lower semicontinuous envelope (or relaxed functional) ofIwith respect to the weak topology ofW1,p;Rm), i.e.,

F(u):=inf

lim inf

n→+∞F(un):un u

,

where “” denotes the weak convergence inW1,p;Rm). We close this section with the following integral repre- sentation theorem that we will use in the proof of Theorem 1.4:

(6)

Theorem 2.6.(Dacorogna [8,9])Iff is continuous and ofp-polynomial growth, i.e., f (ξ )c(1+ |ξ|p)for all ξ∈Mm×N and somec >0, thenF=QF.

3. Proof of Propositions 1.9 and 1.10 and Theorem 1.4

3.1. Proof of Proposition 1.9

Since ZW is finite, ZW is continuous by Proposition 2.2(iii). From Theorem 2.5, we deduce that Q[ZW] = Z[ZW]. ButZ[ZW] =ZW by Proposition 2.2(iv), henceQ[ZW] =ZW. On the other hand, asZWWwe have Q[ZW]QW. Moreover, asQW is quasiconvex, from Remark 2.4 we see thatZ[QW] =QW, and consequently QWQ[ZW]. It follows thatQW=Q[ZW] =ZW.

Assume thatN =1. Then, quasiconvexity is equivalent to convexity (see [9, Theorem 1.1, p. 102]). Thus,ZW is convex (resp.ZW∗∗=W∗∗) sinceZW =QW (resp.W∗∗is convex). ButZW is continuous (resp.W∗∗W), henceZWW∗∗(resp.W∗∗ZW). It follows thatZW=W∗∗.

3.2. Proof of Proposition 1.10

ClearlyJ1J0. We are thus reduced to prove that

J0J1. (3)

We need the following lemma:

Lemma 3.1.Ifu∈Affg;R3)thenJ0(u)ZI (u).

Proof of Lemma 3.1. Letu∈Affg;R3). By definition, there exists a finite family(Ωi)iI of open disjoint subsets ofΩ such that|Ω\ ∪iIΩi| =0 and, for everyiI,∇u(x)=ξi inΩi withξi∈M3×N. Given anyδ >0 and any iI, we considerφi∈Aff0(Y;R3)such that

Y

W

ξi+ ∇φi(y)

dyZW (ξi)+ δ

|Ω|. (4)

Fix any integern1. By Vitali’s covering theorem, there exists a finite or countable family (ai,j +εi,jY )jJi of disjoint subsets ofΩi, whereai,j∈RNand 0< εi,j<1n, such that|Ωi\

jJi(ai,j+εi,jY )| =0 (and so

jJiεi,jN =

|Ωi|). Defineψn:Ω→R3by ψn(x):=εi,jφi

xai,j εi,j

ifxai,j+εi,jY.

Clearly, for everyn1,ψn∈Aff0;R3), ψnL;R3)1

nmax

iI φiL(Y;R3) and ∇ψnL;M3×N)max

iIφiL(Y;M3×N), hence (up to a subsequence)ψn

0 inW1,;R3), where “” denotes the weak convergence inW1,;R3).

Consequently,ψn0 inW1,p;R3). Moreover, I (u+ψn)=

iI

Ωi

W

ξi+ ∇ψn(x) dx

=

iI

jJi

εNi,j

Y

W

ξi+ ∇φi(y) dy

=

iI

|Ωi|

Y

W

ξi+ ∇φi(y) dy.

(7)

Asu+ψn∈Affg;R3)for alln1 andu+ψn uinW1,p;R3), from (4) we deduce that J0(u)lim inf

n→+∞I (u+ψn)

iI

|Ωi|ZW (ξi)+δ=ZI (u)+δ,

and the lemma follows. 2

Fix anyuW1,p;R3)and any sequenceun uwithun∈Affg;R3). Using Lemma 3.1 we haveJ0(un) ZI (un)for alln1. Thus,

J0(u)lim inf

n→+∞J0(un)lim inf

n→+∞ZI (un), and (3) follows.

3.3. Proof of Theorem 1.4

Since ZW is of p-polynomial growth, ZW is finite, and so ZW is continuous by Proposition 2.2(iii). From Theorem 2.1 it follows that

J1(u)=inf

lim inf

n→+∞ZI (un):Wg1,p Ω;R3

un u

.

But QW =Q[ZW] by Proposition 1.9, hence J1=QI by Theorem 2.6. On the other hand, given any uW1,p;R3)and anyun uwithunWg1,p;R3), we haveZI (un)I (un)for alln1. Thus,

J1(u)lim inf

n→+∞ZI (un)lim inf

n→+∞I (un),

and soJ1I. ButIJ0andJ0=J1by Proposition 1.10, henceI=J1, and the theorem follows.

4. Proof of Propositions 1.6, 1.7 and 1.8

4.1. CaseN=1

In this section we prove Proposition 1.6.

Proof of Proposition 1.6. By (C1) it is clear that if|ξ|αthenZW (ξ )β(1+ |ξ|p). Fix anyξ∈M3×1such that

|ξ|αand considerφ∈Aff0(Y;R3)given by φ(x):=

ifx∈ ]0,12], (1x)ν ifx∈ ]12,1[ withν∈R3such that|ν| =2α. Then,

ξ+ ∇φ(x)=

|ξ+ν| ifx∈ ]0,12[,

|ξν| ifx∈ ]12,1[,

hence|ξ+ ∇φ(x)|min{|ξ+ν|,|ξν|}|ν| − |ξ|αfor allx∈ ]0,12[ ∪ ]12,1[, and from (C1) we deduce that ZW (ξ )

Y

W

ξ+ ∇φ(x) dxβ

Y

1+ξ+ ∇φ(x)p

dxβ22pmax 1, αp

1+ |ξ|p .

It follows thatZW (ξ )β22pmax{1, αp}(1+ |ξ|p)for allξ∈M3×1. 2

(8)

4.2. CaseN=2

In this section we prove Proposition 1.7. We begin with the following lemma.

Lemma 4.1.Under(C2)there existsγ >0such that for allξ=1|ξ2)∈M3×2, if min

|ξ1+ξ2|,|ξ1ξ2|

αthenZW (ξ )γ

1+ |ξ|p .

Proof. Letξ=1|ξ2)∈M3×2be such that min{|ξ1+ξ2|,|ξ1ξ2|}α(withα >0 given by (C2)). Then, one the three possibilities holds:

(i) |ξ1ξ2| =0;

(ii) |ξ1ξ2| =0 withξ1=0;

(iii) |ξ1ξ2| =0 withξ2=0.

SetD:= {(x1, x2)∈R2:x1−1< x2< x1+1 and−x1−1< x2<1−x1}and, for eacht∈R, defineϕt∈Aff0(D;R) by

ϕt(x1, x2):=

⎧⎪

⎪⎩

t x1+t (x2+1) if(x1, x2)Δ1, t (1x1)t x2 if(x1, x2)Δ2, t x1+t (1x2) if(x1, x2)Δ3, t (x1+1)+t x2 if(x1, x2)Δ4

with

Δ1:=

(x1, x2)D: x10 andx20

; Δ2:=

(x1, x2)D: x10 andx20

; Δ3:=

(x1, x2)D: x10 andx20

; Δ4:=

(x1, x2)D: x10 andx20 . Considerφ∈Aff0(D;R3)given by

φ:=ν1, ϕν2, ϕν3) with

⎧⎪

⎪⎨

⎪⎪

ν= ξ1ξ2

|ξ1ξ2| if (i) is satisfied,

|ν| =1 andξ1, ν =0 if (ii) is satisfied,

|ν| =1 andξ2, ν =0 if (iii) is satisfied (ν1,ν2,ν3are the components of the vectorν). Then,

ξ+ ∇φ(x)=

⎧⎪

⎪⎩

1ν|ξ2+ν) ifx∈int(Δ1), 1ν|ξ2ν) ifx∈int(Δ2), 1+ν|ξ2ν) ifx∈int(Δ3), 1+ν|ξ2+ν) ifx∈int(Δ4)

(where int(E)denotes the interior of the setE). Taking Proposition 2.2(i) into account, it follows that ZW (ξ )1

4

W (ξ1ν|ξ2+ν)+W (ξ1ν|ξ2ν)+W (ξ1+ν|ξ2ν)+W (ξ1+ν|ξ2+ν)

. (5)

But|1ν)2+ν)|2= |ξ1ξ2+1+ξ2)ν|2= |ξ1ξ2|2+ |1+ξ2)ν|2|1+ξ2)ν|2,and so (ξ1+ν)2ν)1+ξ2)ν= |ξ1+ξ2|.

Similarly, we obtain:

1ν)2ν)|ξ1ξ2|;

1+ν)2ν)|ξ1+ξ2|;

1+ν)2+ν)|ξ1ξ2|.

(9)

Thus,|1ν)2+ν)|α,|1ν)2ν)|α,|1+ν)2ν)|αand|1+ν)2+ν)|α, because min{|ξ1+ξ2|,|ξ1ξ2|}α. Using (C2) it follows that

W (ξ1ν|ξ2+ν)β

1+1ν|ξ2+ν)p β2p

1+(ξ1|ξ2)p+(−ν|ν)p β22p+1

1+ |ξ|p . In the same manner, we have:

W (ξ1ν|ξ2ν)β22p+1

1+ |ξ|p

; W (ξ1+ν|ξ2ν)β22p+1

1+ |ξ|p

; W (ξ1+ν|ξ2+ν)β22p+1

1+ |ξ|p ,

and, from (5), we conclude thatZW (ξ )β22p+1(1+ |ξ|p). 2

Proof of Proposition 1.7. Letξ=1|ξ2)∈M3×2. Then, one the four possibilities holds:

(i) |ξ1ξ2| =0;

(ii) |ξ1ξ2| =0 withξ1=ξ2=0;

(iii) |ξ1ξ2| =0 withξ1=0;

(iv) |ξ1ξ2| =0 withξ2=0.

For eacht∈R, defineϕt∈Aff0(Y;R)by

ϕt(x1, x2):=

⎧⎪

⎪⎩

t x2 if(x1, x2)Δ1, t (1x1) if(x1, x2)Δ2, t (1x2) if(x1, x2)Δ3, t x1 if(x1, x2)Δ4 with

Δ1:=

(x1, x2)Y:x2x1x2+1

; Δ2:=

(x1, x2)Y:−x1+1x2x1

; Δ3:=

(x1, x2)Y:−x2+1x1x2

; Δ4:=

(x1, x2)Y:x1x2x1+1 .

Considerφ∈Aff0(Y;R3)given by

φ:=ν1, ϕν2, ϕν3) with

⎧⎪

⎪⎪

⎪⎪

⎪⎩

ν=α(ξ1ξ2)

|ξ1ξ2| if (i) is satisfied,

|ν| =α if (ii) is satisfied,

|ν| =αandξ1, ν =0 if (iii) is satisfied,

|ν| =αandξ2, ν =0 if (iv) is satisfied (ν1,ν2,ν3are the components of the vectorνandα >0 is given by (C2)). Then,

ξ+ ∇φ(x)=

⎧⎪

⎪⎩

1|ξ2+ν) ifx∈int(Δ1), 1ν|ξ2) ifx∈int(Δ2), 1|ξ2ν) ifx∈int(Δ3), 1+ν|ξ2) ifx∈int(Δ4)

(where int(E)denotes the interior of the setE). Taking Proposition 2.2(iv) into account, it follows that ZW (ξ )1

4

ZW (ξ1|ξ2+ν)+ZW (ξ1ν|ξ2)+ZW (ξ1|ξ2ν)+ZW (ξ1+ν|ξ2)

. (6)

(10)

But ξ1+2+ν)2=(ξ1+ξ2)+ν2= |ξ1+ξ2|2+ |ν|2= |ξ1+ξ2|2+α2α2, hence|ξ1+2+ν)|α.Similarly, we obtain|ξ12+ν)|α,and so

minξ1+2+ν),ξ12+ν)α.

In the same manner, we have:

min(ξ1ν)+ξ2,(ξ1ν)ξ2α; minξ1+2ν),ξ12ν)α; min(ξ1+ν)+ξ2,(ξ1+ν)ξ2α.

Using Lemma 4.1 it follows that ZW (ξ1|ξ2+ν)γ

1+1|ξ2+ν)p γ2p

1+1|ξ2)p+(0|ν)p

max

1, αp γ2p+1

1+ |ξ|p . Similarly, we obtain:

ZW (ξ1ν|ξ2)max 1, αp

γ2p+1

1+ |ξ|p

; ZW (ξ1|ξ2ν)max

1, αp γ2p+1

1+ |ξ|p

; ZW (ξ1+ν|ξ2)max

1, αp γ2p+1

1+ |ξ|p ,

and, from (6), we conclude thatZW (ξ )max{1, αp}γ2p+1(1+ |ξ|p). 2 4.3. CaseN=3

In this section we prove Proposition 1.8. We begin with three lemmas.

Lemma 4.2.If (C3)holds thenZWis finite.

Proof. Clearly, ifξ∈M3×3thenZW (ξ ) <+∞withM3×3:= {ξ∈M3×3: detξ=0}. We are thus reduced to prove that ZW (ξ ) <+∞ for allξ ∈M3×3\M3×3. Fix ξ =1|ξ2|ξ3)∈M3×3\M3×3 whereξ1, ξ2, ξ3∈R3 are the columns ofξ. Then rank(ξ )∈ {0,1,2}(where rank(ξ )denotes the rank of the matrixξ).

Step1.We prove that ifrank(ξ )=2thenZW (ξ ) <+∞. Without loss of generality we can assume that there exist λ, μ∈Rsuch thatξ3=λξ1+μξ2. Given anys∈R, considerD⊂R3given by

D:=int 8

i=1

Δsi

(7) (where int(E)denotes the interior of the setE) with:

Δs1:=

(x1, x2, x3)∈R3: x10, x20, x30 andx1+x2+sx31

; Δs2:=

(x1, x2, x3)∈R3: x10, x20, x30 and −x1+x2+sx31

; Δs3:=

(x1, x2, x3)∈R3: x10, x20, x30 and −x1x2+sx31

; Δs4:=

(x1, x2, x3)∈R3: x10, x20, x30 andx1x2+sx31

; Δs5:=

(x1, x2, x3)∈R3: x10, x20, x30 andx1+x2sx31

; Δs6:=

(x1, x2, x3)∈R3: x10, x20, x30 and −x1+x2sx31

; Δs7:=

(x1, x2, x3)∈R3: x10, x20, x30 and −x1x2sx31

; Δs8:=

(x1, x2, x3)∈R3: x10, x20, x30 andx1x2sx31 .

(11)

Clearly,Dis bounded, open and|∂D| =0. For eacht∈R, defineϕs,t∈Aff0(D;R)by

ϕs,t(x1, x2, x3):=

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

t (x1+1)−t x2t sx3 if(x1, x2, x3)Δs1, t x1t (x2+1)−t sx3 if(x1, x2, x3)Δs2, t (x1−1)+t x2t sx3 if(x1, x2, x3)Δs3,

t x1+t (x2−1)−t sx3 if(x1, x2, x3)Δs4,

t (x1+1)−t x2+t sx3 if(x1, x2, x3)Δs5, t x1t (x2+1)+t sx3 if(x1, x2, x3)Δs6, t (x1−1)+t x2+t sx3 if(x1, x2, x3)Δs7,

t x1+t (x2−1)+t sx3 if(x1, x2, x3)Δs8.

(8)

(Note thatϕs,tis simply the only function, affine on everyΔsi, null on∂D, such thatϕs,t(0)= −t.) Fix s∈R\

λμ,μ), λ+μ,+μ) and considerφ∈Aff0(D;R3)given by

φ:=s,ν1, ϕs,ν2, ϕs,ν3) withν:= ξ1ξ2

|ξ1ξ2|2,1,ν2,ν3are the components of the vectorν). Then,

ξ+ ∇φ(x)=

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎨

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

1ν|ξ2ν|ξ3sν) ifx∈int Δs1

, 1+ν|ξ2ν|ξ3sν) ifx∈int

Δs2 , 1+ν|ξ2+ν|ξ3sν) ifx∈int

Δs3 , 1ν|ξ2+ν|ξ3sν) ifx∈int

Δs4 , 1ν|ξ2ν|ξ3+sν) ifx∈int

Δs5 , 1+ν|ξ2ν|ξ3+sν) ifx∈int

Δs6 , 1+ν|ξ2+ν|ξ3+sν) ifx∈int

Δs7 , 1ν|ξ2+ν|ξ3+sν) ifx∈int

Δs8 . As detξ=0,ξ1ξ3=μ(ξ1ξ2)andξ2ξ3=λ(ξ2ξ1)we have

det

ξ+ ∇φ(x)=

⎧⎪

⎪⎪

⎪⎪

⎪⎩

s+μ) ifx∈int Δs1

∪int Δs7 s+μ) ifx∈int ,

Δs2

∪int Δs8 sμ) ifx∈int ,

Δs3

∪int Δs5 s++μ) ifx∈int ,

Δs4

∪int Δs6

.

It follows that for a.e.xD,|det(ξ+ ∇φ(x)|min{|s+μ)|,|s+μ)|,|sμ)|,|s++μ)|} =:δ (δ >0). Taking Proposition 2.2(i) into account and using (C3), we see that there existscδ>0 such that

ZW (ξ ) 1

|D|

D

W

ξ+ ∇φ(x)

cδ+ cδ

|D|ξ+ ∇φpLp(D;R3), which implies thatZW (ξ ) <+∞.

Step2. We prove that ifrank(ξ )=1 thenZW (ξ ) <+∞. Without loss of generality we can assume that there existλ, μ∈Rsuch thatξ2=λξ1andξ3=μξ1. ConsiderD⊂R3 given by (7) withs∈R\ {−μ, μ}, and define φ∈Aff0(D;R3)byφ:=s,ν1, ϕs,ν2, ϕs,ν3)withν=1, ν2, ν3)∈R3\ {0}such thatν, ξ1 =0, where, for every i∈ {1,2,3},ϕs,νi is defined by (8) witht=νi. By Proposition 2.2(iv) we have

ZW (ξ )1 8

ZW (ξ1ν|ξ2ν|ξ3sν)+ZW (ξ1+ν|ξ2ν|ξ3sν) +ZW (ξ1+ν|ξ2+ν|ξ3sν)+ZW (ξ1ν|ξ2+ν|ξ3sν) +ZW (ξ1ν|ξ2ν|ξ3+sν)+ZW (ξ1+ν|ξ2ν|ξ3+sν) +ZW (ξ1+ν|ξ2+ν|ξ3+sν)+ZW (ξ1ν|ξ2+ν|ξ3+sν)

.

(12)

Noticing thats∈R\ {−μ, μ}it is easy to see that:

rank(ξ1ν|ξ2ν|ξ3sν)=2;

rank(ξ1+ν|ξ2ν|ξ3sν)=2; rank(ξ1+ν|ξ2+ν|ξ3sν)=2;

rank(ξ1ν|ξ2+ν|ξ3sν)=2;

rank(ξ1ν|ξ2ν|ξ3+sν)=2; rank(ξ1+ν|ξ2ν|ξ3+sν)=2;

rank(ξ1+ν|ξ2+ν|ξ3+sν)=2;

rank(ξ1ν|ξ2+ν|ξ3+sν)=2, and using Step 1 we deduce thatZW (ξ ) <+∞.

Step 3.We prove thatZW (0) <+∞. This follows from Step 2 by using Proposition 2.2(iv) withD⊂R3given by (7) withs∈R, andφ∈Aff0(D;R3)defined byφ:=s,ν1, ϕs,ν2, ϕs,ν3)with1, ν2, ν3)∈R3\ {0}, where, for everyi∈ {1,2,3},ϕs,νi is defined by (8) witht=νi. 2

Lemma 4.3.Under(C3)there existsc >0such that for everyξ∈M3×3, if ξis diagonal thenZW (ξ )c

1+ |ξ|p .

Proof. Combining Lemma 4.2 with Proposition 2.2(ii), we deduce thatZWis continuous, and so there existsc0>0 such thatZW (ξ )c0for all ξ ∈M3×3with|ξ|23. Moreover, it is obvious thatZW (ξ )c1(1+ |ξ|p)for all ξ∈M3×3such that|detξ|1, wherec1>0 is given by (C3) withδ=1. We are thus led to considerξ∈M3×3such thatξ is diagonal,|detξ|1 and|ξ|23, i.e.,ξ=ij)withξij=0 ifi=j,

|ξ11ξ22ξ33|1 and |ξ11|2+ |ξ22|2+ |ξ33|23.

Then, one the six possibilities holds:

(i) |ξ11|1,|ξ22|1 and|ξ33|1;

(ii) |ξ22|1,|ξ33|1 and|ξ11|1;

(iii) |ξ33|1,|ξ11|1 and|ξ22|1;

(iv) |ξ11|1,|ξ22|1 and|ξ33|1;

(v) |ξ22|1,|ξ33|1 and|ξ11|1;

(vi) |ξ33|1,|ξ11|1 and|ξ22|1.

Claim 1.There exists c2>0 such that if ξ is diagonal with |detξ|1 and satisfies either (i),(ii) or (iii), then ZW (ξ )c2(1+ |ξ|p).

ConsiderD⊂R3given by (7) withs=1, and defineφ∈Aff0(D;R3)byφ:=1,ν1, ϕ1,ν2, ϕ1,ν3), where 1, ν2, ν3)=

(2,0,0) if (i) is satisfied, (0,2,0) if (ii) is satisfied, (0,0,2) if (iii) is satisfied,

and, for everyi∈ {1,2,3},ϕ1,νi is defined by (8) withs=1 andt=νi. It is then easy to see that for a.e.xD, det

ξ+ ∇φ(x)

⎧⎪

⎪⎩

2|ξ22||ξ33| − |detξ| if (i) is satisfied, 2|ξ11||ξ33| − |detξ| if (ii) is satisfied, 2|ξ11||ξ22| − |detξ| if (iii) is satisfied,

so that|det(ξ+ ∇φ(x))|1. Taking Proposition 2.2(i) into account, using (C3) and noticing that|∇φ(x)| =2√ 3 for a.e.xD, we deduce thatZW (ξ )c2(1+ |ξ|p)withc2:=c12p(1+(2

3)p).

Références

Documents relatifs

Nous avons montré dans notre étude, en accord avec les données de la littérature, que l’astigmatisme postérieur présente des caractéristiques différenciables chez les

C’est variable, première consultation, je trouve que le diagnostic de l’EDMC n’est pas si difficile à faire que ça parce que on a des critères bien définis donc ce n’est

— “Dialoguer avec des hommes illustres.. avec Xavier Cervantes), “Sur les théâtres de l’histoire : Tamerlan et Bajazet en France et en Angleterre (1529-1724)”,

A travers nos résultats, il a été mis en évidence que l’âge avait une influence significative sur les infestations par les parasites gasto-intestinaux mais

• Compositions de dérivés polyphénoliques stilbéniques et leurs applications pour lutter contre les pathologies et le vieillissement des organismes vivants,. • Vercauteren

Le laboratoire analyse régulièrement les indicateurs déterminés lors des revues de direction afin de suivre l’efficacité de notre système de gestion de la qualité, ainsi que

Introduction : Le projet REMEDE (Réussites et Échecs de la Médecine pré-moderne), dans le cadre duquel s’inscrit cette thèse d’exercice de médecine générale, étudie les

Peut-on, sans développer une psychologie intra-individuelle, qui nous ramènerait au niveau I de la catégorisation de Doise (1982), émettre l'hypothèse de l'existence d'une