• Aucun résultat trouvé

TD5 - Ensembles Baire-mesurables

N/A
N/A
Protected

Academic year: 2022

Partager "TD5 - Ensembles Baire-mesurables"

Copied!
2
0
0

Texte intégral

(1)

Théorie descriptive des ensembles TD 5 M2 Logique

TD5 - Ensembles Baire-mesurables

Exercice 1. Ensembles de queue.

On se propose de généraliser le fait que les ensembles Baire mesurablesE0-invariants sont maigres ou comaigres.

Soit(Xn)une famille dénombrable d’espaces polonais. On dit queA⊆Q

n∈NXnest unensemble de queue si pour tout (xn) ∈ A, pour tout k ∈ N et pour tout (y0, ..., yk) ∈ Qk

n=0Xn, on a également (y0, ..., yk, xk+1, xk+2, ...) ∈A. Montrer que tout ensemble de queue Baire-mesurable est soit maigre soit comaigre.

Exercice 2. Loi du 0-1 topologique.

Soit Gun groupe d’homéomorphismes d’un espace de BaireX à base dénombrable d’ouverts.

1. Montrer que les assertions suivantes sont équivalentes :

(a) G est topologiquement transitif : pour tous ouverts non vides U etV de X il existe g∈Gtel que gU∩V est non vide.

(b) Il existe x∈X dont la G-orbite est dense.

(c) L’ensemble desx∈X dont laG-orbite est dense est comaigre.

2. On suppose que G y X est topologiquement transitive, soit A ⊆ X Baire mesurable.

Montrer que si A estG-invariant1 alorsAest soit maigre, soit comaigre.

Exercice 3. Espaces de Baire.

1. Montrer que les espaces compacts sont des espaces de Baire.

2. Montrer que les espaces localement compacts2 sont de Baire.

Exercice 4. Espaces complètement de Baire.

Un espace topologique est complètement de Baire si tous ses fermés dont des espaces de Baire.

1. Donner un exemple d’espace de Baire qui ne soit pas complètement de Baire. On pourra chercher un exemple parmi les sous-ensembles de [0,1]×[0,1].

2. Montrer que les espaces localement compacts et les espaces polonais sont complètement de Baire.

3. Soit A ⊆R un ensemble de Bernstein3. Montrer que A est complètement de Baire, bien queA ne soit pas polonais ni localement compact.

1. C’est-à-dire quegA=Apour toutgG.

2. Un espace topologique est localement compact s’il dispose d’une base d’ouverts d’adhérence compacte.

3. On rappelle que par définition,Aainsi que son complémentaire intersectent tous les sous-ensembles fermés parfaits non vide deR.

Paris 7 1 M2 Logique

(2)

Théorie descriptive des ensembles TD 5 M2 Logique

Indications

— Exercice 3, 1 : utiliser le fait que dans un compact, si(Fn)n∈Nest une famille décroissante de fermés non vide, alors son intersection est non vide.

— Exercice 4, 1 : considérer l’ensemble[0,1]∩Q× {0}∪]0,1[×]0,1[.

— Exercice 4, 2 : Commencer par établir le fait que A et son complémentaire sont denses dansR.

Paris 7 2 M2 Logique

Références

Documents relatifs

bre de généralisations de cette notion d’ensemble de Rosenthal au cas de fonctions à valeurs vectorielles.. On s’intéresse dans cet article

Dans ce paragraphe, T est une distribution x-dissipative sur G , {^} le semi-groupe de mesures engendré, C un sous-semi-groupe fermé de G tel que 1 soit adhérent à C et contenant

On dit qu'une variété est pseudo convexe (cf. Hôrmander [6]) s'il existe dans cette variété une fonction plurisousharmonique positive propre ; un ouvert A d'une variété est

Dans le cas particulier où X est un espace localement compact et où les classes 9L et K sont constituées respectivement par les ensembles ouverts et par les ensembles

à support compact ; l’eiiseinble des fonctious continues sur G, nulles à l’infiui ; l’ensemble des fonctions continues et bornées sur G, Fensemble.. des fonctions

L'espace de Banach dual de A (G) s'identifie, au théorème (3.io), à l'algèbre de von Neumann VN(G) engendrée par les opérateurs de translation à gauche dans L^G), la topologie

3. Extension maximale d'un groupe local.^"— Avant d'établir le théorème I, nous allons démontrer l'existence d'un groupe local maximal unique prolon- geant cp; nous

Nous avons fait figurer ci-après une petite annexe sur une autre question relative aux nombres premiers et à l’entropie.. Bien que les considérations qui y sont développées sont