• Aucun résultat trouvé

Equivariant Algebraic Topology and the Equlvar lant Brown Reprcscntabili ty Theorem

N/A
N/A
Protected

Academic year: 2022

Partager "Equivariant Algebraic Topology and the Equlvar lant Brown Reprcscntabili ty Theorem"

Copied!
74
0
0

Texte intégral

(1)
(2)
(3)
(4)
(5)

St.John's

EquivariantAlgebraic Topology andthe Equlvarlant Brown Reprcscntabili tyTheorem

by

©PhilipHoskins

A thesis submitted tothe SchoolofGraduate Studiesin partial fulfillmentof the

requirements for thedegree of Maslc,('fScience

DepartmentofMathematics and Statistics Memorial UniversityofNewfoundland

1912

Newfound land

(6)

1+1

NationalLibrsry

01Canada Bibli01h~uenahonale

duCanada Acquisitionsand [)irecllondesacqulsition~et BibliographicServicesBlanch des services bibliographlques J95Wel.ngIOnSl rOOl 395.rueWclongton

~A~pnl;lno ~A~~Qrlaool

The author has granted an irrevocablenon-exclusive licence allowingthe National Library of Canada tp reproduce, loan, distribute or sell copies of his/herthesis

by

any means and In any form or format,making thisthesisavailable toInterested

persons.

Theauthorretains ownershipof the copyright In his/herthesis, Neitherthe thesisnor substantial extractsfrom it may be printedor otherwise reproduced without his/herpermission.

L'suteur aaccorde una licence Irrevocable et non exclusive permettant II 1a Bibliotheque natlonale du Canada de reproduire,prefer,distribuerou vendre des copies de sa these dE?' quelque manlere et sous quelque forme que cosoltpour mettre desexemplalresde cette these

a

10 disposition des personnes Interessees.

L'auteurconservelaproprletedu droit d'auteur qui protege sa these.Ni la these nJdes extraits substantlels de cellc-cJ ne doivent etre lmprlmes OU autrement reproduits sans son autorisatlon.

ISBN 0- 3 15-82&6 1- 1<

Canada

(7)

Abstract

Themain purpose of this thesis is to give a COllJlltctcproof ofthe Eqnlvariant Drown RcprcscntabiliryTheorem.in the processdevelopingth~equh'arianl algebr,l ic topology neededin the final proof. The proofof the th c-oretu in the category of path-connected G-spaces isgiven in Chapter·1and followsthe proofoflhe non- cquivaelcntcasegivenin Spanier ([Sp], pp-,jOG-411).Thereis another account of the proal given in Switzer ([Swl.pp.152-157) ,which iscloser tothe originalaccount given by Brown[DrI ], Equlvarlant versions ofthetheorem are announcedin [LMS]

and [V], forexample,butno details of the proofsarc given.

InChapter1, the basic theoryof G-spaces and G-mapsispresented.G-finalaut!

G-initialstructures ona sel are defined and sufficient conditionsaregiven which allowsuch G-spacestructuresto be constructed.

The equi\'arianthomotopygroups are defined in Chapter:1and the isomorphisms 1r~f(){)elfn{X1t )and1r~/(X,A ):!!l:"n{XII,All)are established .Thesetw<)results arc then usedto provethe resultsabout equivaelnnt homotopygroupsneededin Chapter 4.

In Chapter 3, G·CW-complexesare defined and ailthenecessney homotopic prep- erticsof G-CW-complexesarc developed,culminatingin the proof ofthe E'lllimri,lllt Whitehead Theorem,

Finally, in Chapter 5, we prove an equivariant versionof the stetcmcntlha Lif,1 Junctor satisfies thewedgeAxiom andthe Mayee-Vletoels Axiom givenillBrown's originalversion ofhistheorem, then italso satis flcsthe EqualizerAxiom givenill Spanier's version or the theorem.This immediately gives a Switecr styleverslon of thcmainrcsult.

(8)

Acknowledge ments

Iwould liketothank theSchool or Gradua teStudiesand the DepartmentofMath- ematic and Statistics fortheirfinanci~supportdurinr;thewritinr; of this thesis.I would especially liketotha nkDr. PeterBooth for his suucstions,encouragement, and valuableadvice givenduring ournumerousdiscussionsconcerninsthe topicsand rcsuhs presented in the thesis.

(9)

iii Tableor Cont en ts

Abstract ... ... .. ...••.• •.• •• .•.•..•. .. ...• ... ..i Acknowledgernt'nh... ...•.•.••.• ••...•.. .. .. ..•. ..•.•. .•ii Chapter1 -Equivariant InitialAnd FinalG·,pac~

Stru ctures.... ... ..•. •.•... •... ...•.•...•....••.•.. •.... .I

Chapter2 -EquivariantHomotopyGroups 21

Chapter3•G·CW· ComplexcsandtheEquivaria nt

\Vhitehea.d.Theorem . 29

Chapter,I•Equivariant Drown Rcprcsentu billty

Theorem•. . . ... .•. . .. . .. . . ... . . . .. . .• ... . . .. . ....•. ·1,\

Chapter 5·The~h,)'Cr.VictorisConditio nand

the EqualizerAxiom 56

References..• . .•..• ....•...•. . .... . . .. ..• .... •. •. ... . ... GO

(10)

Chapter1 Equivariant Initial and Final G-spa.-cc Structurcs Let G be atcpologlcal group and let X beatopologicalspace. The nXis called 11.G"~Jlaceifthereis amap(continuous functio n)

9:GxX _X

suchthat thefollowing conditionsarcsatisfied:

(i)9(9lt9(91,r))=9(9.91,X)for91,92fG, xlX (ii)9(c,r)=xfor allXi X ,whcrceis the identit yinG.

Usually9(9,X)willbedenotedby9r,sc that (i) and (ii)become:

(i)9d92X)

=

(9192)rfor91,92fG,:leX (ii)ex= xfor all:lc'(

Sneha~is calledanadionofGonX.

Foreach

«x,

Gx={gX!gf G}is called the2I:liliof:l.If

s ;

Xthen

as

=~Gr.

AsubsetA~Xisfi.mlby GifGA=A.

IfX and }' are G-spacesthe namap

f :

X- }'is saidto be eqliivariantor a~if for~11:lc'(,geOwe have1(9x)

=

9f(x).Hencefis a G-mar;f.'~ following diagram commutes

GXX..!!... X

1 Q X 11 11

Gx l ' _ Y

.,

where~xand~I'MetheactionsofGonXand}' respec tively, 1.1Proposition. The composit ion oftwoG-mapsisaC·ma p.

.r..mcl:Assume

f :

X _Yandh:l'...ZarcG-maps. Then

(11)

(h o/)(g z ) h(J (gz )) h(g/(z)) gh(J(z)) g(h oll(z)

Examples of a·spaces 1. Trivial a·spaces

Any topologicalspaceXcanbe given the trivialncricnofG,defined hy

¢:GxX _ X

~(g,:r:)

=

e,

In particula rthespacesE"

=

{uR"1[e] ::;I}, S"

=

{x£Rn+l l

Ix l

=I}. and In={(XhX2'''',x..)tR"IO:c::Xi:$1, 1:$i::;n]willalways be giventhe trivial actionoie.

2.Coset or homogeneousG-spaces

IfHis a closedsubgroupofGandGislocally compact Ile uadorff thentile~ctof left cosets~.withthe quotienttopology,is a G-space withactiondefinedby

¢:Gx j

¢(g',g H ) G

Ii

g'gll To shew that

4t

is contin uousconsider the composite

GXG~Gx * .-t.. ]7

whereqisthe quotientmap. SinceG is locallycompactHausdorffandq :G ...~ isan identification,itfollows thattexqisalso an identification($CCfor example

(12)

[nro),4.:1.2,p.101). So,p iscontinuous if anJonlyif~o(10xq)is continuous.But

~0(I GXq)is continuoussince it is equalto the composite

GXG~G-!...*

wherem(g',g)=g'gisthe group multiplicati on.

Fortheremainder ofthe thesisweassumeGis compact Hausdorff .Itisknown (srefor example(0],Proposition3.3,p.23)that~isHausdorff if and onlyifHis c[osl.-il inG.Soilwill alsobe convenient to henceforthassumeallsubgroupsHofG referredtoare closed.

3. Funclion Space!

LetMapo(X, Y)denot ethespace of a-maps from theG-spaceXtothe a·space Y.wilhthecompact opentopology.Thisspace canbegivenaC·actiondefinedby

GxMapo(}<,Y) (9,f)

Mapo(X,Y ) (r- g/(g- Ir

»)

H }"islocallycompact Hausdorff,then we bave the followingexponential law for C·spaccsand C-maps. There is a bijection

definedby

i-« t

wherej(%)(y)

=

f(%,y)[see[D),p,35).

G· inili~ 15 l[llet !! rrs

IfX is aset, then a G-space st ruct ure onXis atopology onXalong with a continuousactionorGonX.

(13)

LetJbe an indexin gsetand let

{Ii :

X - Xj}j'Jhea familyof functions fromthe setX to thetopological spaces

P'..

}j.J.Thena topologyon X issaid to belnilialwith respectto{ljli e)ifitsatieflcsthefullowinguniversal prcpcrtj..;

foranytopological spaceZ,a funct ionh: Z_Xiscontinuousifandonlyifeach compositeliohiscontinuou s. Suchittopologyexist s;it is the topology with eubbasis consisti ngofall setsof the form{fr1(U)IUopeninX,jcJ}.{For morc detnllssec [Brc],p.153).

Now let{Ii:X - Xj} j<J,as above,beafamily of G-maps.Theil the G-SPil.t·c str uct ure onXis sa id to bc.G:..ini.1lalwithrespectlath efunction s{Jilj,)Hitsa lisfk':l lhcfollo winguniverse! property : for anyG-s paceZ,a functionp:Z...X isaa-map ifandonlyifeach compos ite

Ii

0pisa G-m:tp.

Wealso note tha tirp : Z->XisaG-m.lp itfollowsfromProposition1.1 that thecomposi te

h op

is a G-map for eachj(J.Hence,tocstn hlishthatXhn.~the G-initialstructure wit h respecttothefamilyofG-maps{I,:X->

X ,Ld.

weonly needto show thatthe conti nuityof p followsfromthe continuit yoftheeomposh lons

hop,

for alljtJ . Example:ProductofG-spaces

For anyIarnl!v of G·spa ces{Xi}JtJtheprodu ct

II

X,ca llbe given a (;·initi.ll

,.J

structurewithrespectto the projectionsPj:

II

X,... Xj,wherenjdX,hasthe jrJ

initial topology.The act ion ofGon

II

Xjisthe diagOlI::LIactiondelinedbyrP:Gx jd

(Il X ') ... PX

jwhere

~(g, (zjlicJ))

=(gz, lj , J ).Toshow thal¢

i~

continuous,

j.J J.J

considerthefollowingdiagram

Gxni,JXi

---.!....

nj.JXj

'o." j j"

"

Xi

(14)

wherefjhithe action ofGon Xj. ThcnearncompositePj0

if!

is equalto the eomposite

?j

0(IaXPj)which is clearly continous.By the universal propertyCor initialtopologies,; is continuous.We noticethat the projectionsPj:

IT

Xj-+ Xj

jeJ are G-maps.

Leth:Z-+

II

Xjbe a functionfrom the G-spaceZto

11

Xjsuch thatPj0his

~ ~J

a G-maplor eachicl,Thcnfor allZlZ, glG wehave

gh(z) (gp;(h(z))U<J) (g(p;0h)(')U<J)

«p;0h)(g, )lj <J) (p;(h(gz»Jj<J) h(g,)

Thus h is a G-mapandthe G-space structureon

II

Xj is G-initialwithrespect to

jd

b'j)jeJ'

Sufficientconditions for the generalcase are given in the followingresult.

1.2 Proposition.Let{h :X-+Xj}jeJ bealamily clIuncticns Irom thesetXto the G-spaces{X j} joJ.ThenXcanhegivena G-initialstructu re withrespect to{h}jcJ ifthe following conditionsare satisfied:

(i) the functionh:X-+

IT

Xjdefinedbyh(z}=(fj(z )lil1 ),isinjective, and j.J

(ii)h(X) is fixed by G,i.e.iCglG andylh(X),then gylh(X).

P.mcl:

LetXbe giventhe initialtopology with respectto(h }joJ.We have to define

allaction of G onXsuch that the universalpropertyholds.

Using condition(ii)we see that, foreach9lG, :uX, there existsanilX with 1I(i) =gh(z),lind thisi is unique by condition(i).Define

if!:

GxX-+Xby

~(g,.r)

=

i,\Ve have to show that~is continuous.

(15)

itfollow! bythetransitive rule forinitialtop ologies (see (Ora l,5.6.8,p.15-1)tha t Xhastheinitial topologyrcla li'..c to the inj ecti onh,and soh: X_ .\ (X )isa homeomorp hism.

Let0bethe diagonalaction011h(X).The n¢

=

h-I0(IGXh)0h,i.e.weha ve thefc llcwingecmmutativediagram,

a

xh(X)

~

h(X)

' '''I j, -,

GxX --;- X

So4>is continuo ussinceitis the composite of continuousfunc tio ns.

Letp:Z_ Xbe a functionfromthe G·spaceZtoX.Assume hopisaG-map Coreachjf}.Let~x,¢zbe the actions of0onXandZ,respe ctively.ThenI'is11.

G· ma p irpoQ>z

=

9xo(lGxp).Outfro m theargumentabovetPx

=

h- 1o Oo(IGXh).

So we have to show thallheouterperi meterof thefollowingdlagrnmcom mutes:

GxZ

~

Z

GxX X

"

'·"1 f ,-'

a

x"( Xl

~

h(X)

Let(9,Z)' 0xZ.Then

(16)

0(10Xh)(IGXp)(g,,) O(IGxh)(g, *ll O(g,(!i(p(,»)lj, Jll (g!i(P{,lllj<J) (glli op)(')/j<J) (Ui0p)(g' l lj<J) (!;(p(g'll!i <J) h(p(g, )) hp9z(9,z) SoJl(gz )=gp(z)andpis a G-map .• Examples ofa·initialstructuresandProposit ion1.2

1.ProductG-spAces.

Theproducttopology isaspecial caseof theabove proposition withhthe identi ty. Specialexamplesof productG·spaccsarc

~

xe,

*

xSri,

~

xEn,

and

%

xI, whe reG acts triviallycn ",S",En,and1.

2. G-subs paccs.

IfAisa subse tofXthatisfixedbyG, thentheinclusioni :A-+Xsatisfies the conditionsofProposition1.'2whereh "" i.Soif

? :

GxX _ Xisthe action ofGonXthen ¢IG xA--IAistheaction ofGonAwhichgivesA theC·jnit i,,1struct ure011A,whereAhas the subspacetopology.Aisthen calleda G, sllh spacc ofX.

If(X,. )is abasedspace withbasepoint

*,

then(X,.)willhecalled a baseda-spa ce iftheactionofG onXis suchthat*isfixedbyG.

ForG-subspa ceswehavethefollowing:

1.3Propositi on.Let

f :

X - }'bea G-map .Then

(17)

(i)HAis a C-subs pace ofX,then/(A )isa.C·subsp;\ce of}' , (ii)IfBisaC-subspaceof}',then /-1(8)isaC·subspa.c:e ofX.

fulgf,

(i)Wehavetoshow tha.tGf(tl)

=

/(A ).LetileA,gtG.Theng/(lI)

=

/(go)e/(,\) since ga(A.HenceG/(/l)~/(A)andsincee/(,i)=/(A)wehaveG/(A)

=

I(A).

(ii)Let:uj- t( 8)andgeG.Then/(g%)==g/(:)(8since/(%)e8andGil==/J.

Ilenceg:uj-t(B) ,Cr l(D)c;;;:/- t(B) andG/-1(D)

=

/- I( D).• C_fio;\!strl1 ct ll rr~

LetJbe anindexing set andlet

{Ii :

Xj--0XL,JbeII.Familyoffunctions Irom the spaces{Xj}itJtothesd X.Thena topologyonXiss(lidtobe

Iinnl

wit h respect to thefunct ions{fj).i.Jifthe followinguniversa]propertyissatis fied; for anytopologicalspace Z,afunct ionh:X_ Ziscontinuousif andonlyif('a(1I compositeh0

h

is continuous. Thefinaltopology existsand coosistsofa.1Isets U~Xsuch Lhat/Tt(U)is openinXjfer alljcJ.

Nowlet {Ii : Xj_ X)itJoasabove,beafamilyofG·m.t ps.TheilaC-sl',' ce st ructure onXis said to!L:.fin4.1withrespectto{fj}j.Jifitsatisl'iesthefollowing universalprope r ty:for any C·spaceZ,afunction11:X....,ZisilG-map ifand onlyifeachcompositeh0

Ii

is&C-map.AgainwenotethatfromProposition1.1it followsthat ifh:X_ZisaC-map ,thenthecomposite 110

h

isalsoaG·ma pfor eachjcJ.Hen ce, toes tablishthatXhastheC-finalstructure withrespecttothe familyof G-m aps{fj:Xi- XI;.J,weonlyneedtoshowthatthe continuityofh followsfrom thecontinuity of thecompositeshoI;.for alljeJ.

Example:Sum of C·spa ces

For anyfamily of C·space{Xj }itJthe topologica lsum

UX

i•i.e.the disjoinl itJ

union of the spacesXjwiththe usual final topology,canhe givena G-final struct ure with rcspecttotheinclusionsii:Xj...

U

Xj.The actionof G on

U x,

isdefine.J

jtJ j.J

(18)

by:

. ,ax U x;

i<J (g,ri)

u x;

j<J

gXi forg(G,rj!Xj, and[c-l To show that

,p

is continuou swe note that sinceGis compactHausdorff,Gx

U

Xi

i,J has thefinaltopologywit hrespect toIc xii:GxX j-+Gx

U

Xj(see[Bre],4.3.2,

j,J

p.101).Then

f

is continuous since each composite

e

c(Iaxij)=ii~j.whe re¢jis the actionofGonXi'We noticethatthe inclusionsii: Xi....

U

XiareG-maps

jr:,J lor alljd.

Nedleth :

U

Xj...Zbe a functionfrom

U

Xjto the G·spaceZwithh0ija

i,J j<J

C-lIIapforall[cl :ThenwehaveforuXh gcG:

h(gr ) hii(gz) (hoi;)(gx) g(hoi;)(x) gh(i;(x)) gh(x) Thustile universalpropertyis satisfied.

Sufficientconditionsfor theexistence orG-fioalstructuresaregivenin the following result.

1AProposit ion .Let{Ii:Xj-+X}i<Jbe afa mily offunct ions fromthe G·spaccs {Xj} j<Jtothe setX.ThenXcan be given aG-linalst ruclurewithrespect to{fj}i<J if thefollowing conditionsarc satisfied:

(19)

10

(i)thefunctionp:

UX

j- .Xdefinedby p(z;)==f;( z ,)forr,l.\;,is su rjec tive ,

jf J

aod

(ii )Ifp(z;)==p(r j)forXiC\'";.%j (.1( j,withi,it J,thenp(gzi)== 11(9Xj)forallgtG.

P..mszf;From(i)itfollows thitt for each,1:(.\' ,the reisXCUXjsuch1hillp(i)==x,

,it}

Definethe actio n ofGon Xby:

s-c cx-: »

.(9•• )=p(g. )

This action iswell-de finedbycondit ion(ii)

X is giventhefinaltopology wit h respectto thefunctions{!i}jrJ.then I':

U

Xj-+Xisan identi ficat ion. SinceGis locally compactHausdorlT j<J

lax p:G xUXj -t Gx X

jt}

is alsoan identification.Henceit followsfromthefollowing commut a tive dlngrnm.

GxUj </ Xj

~

Gx X

.j l -

x

tha t~iscontinuous.

Leth:X ...Zbea funct ionfromXto theG·spaceZ.Assumeh0

Ii

isaa· map (Ofeachill.Let:rcX.Thenwe havetoshowh(gr)==gh(z)for any9,0.

(20)

II

h(gz ) h(p(gi ))wherei()(jIorsomejfJ h(f;(g' ))

(h o !;)(y.)

g(ho/j)(i) sinceeach h0

Ij

isaG-map gh(f;('»)

gh( x) Sohis'"C-map.•

Examples ofC-fina lstructuresandProp ositio n 1,4

I.Topologicalsums Atopological sum

U

Xjofa·spacesis coveredbythe j<J

abo ve proposit ionwit hptileid entity on

U

Xj' jcJ 2.Quo tientG-space

Lcte-bean equ ivale nce rel ati ononthea-spaceXsuchthatifoX- 1Ithen gr ....911forallx,y£X,9£0.The nby Prop o sit io n1.4,the quotie nt spa ce~ ca nbe give n theG·finalst r uctu rewiththe actionon~definedby

9:GX~ ""~

'(g,!.])

=(g.]

Thepof Propositi on1.5 isthe obvio us ide nt ifica ti on mapX-+~.

In pa rtic u la rifAis a G-s ubspace ofXthen :},the quoti entspace obtained byshrink ingAtoa.point ,CAnbe give nthe C· final struct u rewit hrespe ctto the quotient mapp:

X-f.

Given a based set(Z,.),therule

f .-. Jp.

whe re

f

is abased fu nc tio n }~/A-+Z.determinesabiject ive co rresp on d en ce betweenbasedfun el ions }~/A_ ZandIuuct ioneY-+ZwhichtakeAto

*.

He nceit followsfrom Pro positio n 1..1 th a tpsatisfiesthefollowinguniversal pro perty:

(21)

12

IfZi,abued a·space,thcnlberulef_ lP,where! :(YI A,{A }) ...

(Y,')is "basedG·map.dct<'l'minesabijcetive eorrespcndence be- tween

(i)b...,j G· ma.. ll'/ A. {All-(Z,.),",d (ii)G·map5ofpairs(Y,II)...(Z.-).

If{(X,j•• )};.Jisafamilyofbased G' spacClll,lhcnthewedge

V

Xjisthe

it)

quotientG-s pacelor medfromthe topologicalsum

U

Xjbyid e ntifyingallthe

j,)

basepclnta,and usingtheidentifiedpoin~asbiUl:poinlforthewedge.

3.G·adjundion squares andG-adjunctionspaces Adiagram

or

C-spac es andG-maps

willbecalledaG·a,diundionsquucifthe followinguni\'malproperlyis,."t·

isficd:

ifZ'is anyG-sp aceand

i :

Y_ Z',k:X ...Z'areG·ma~such thatj0

f

=k0i,thenthereexist! aun iquea·m aph:Z...Z' suchthatheI::::jandhoi

=

k.

For thell:iven map.

f

andithe G-spaceZaboveis uniqueup toG.h omeomorphillm inthe followingKOSC.IfZ' isany othera-spa cesuch that

isalsoa a-adjunction square,thenthereare a-mapsh:Z-.Z'andh' :

(22)

13

z'

-+Zdeter mi nedbytheuniversal property fortheG-adju nctionsqua res involvingZandZ',respectively,whicharehomeomor phicinverses

o r

each othee. Thus,hi

=",

hI=

1',

h'l'

=

I,andh'l'

= J.

Theuniqueness of theuniversalproperty, fora-adjunctionsqua resensuresthath'h=lz and hh'=lz',

IfAis aC-subspaceofX.thengiven the G-m:l.p

f :

A _Ywecan form the G-lUIju nd ionsqua re

A

.L;

y

x I

XUJY

Here,X VJYis the quotientspaceofXli Yformedbyidenti fyinga with j{a)for allacA,and giving XUIYthe G-finalst ructurewith respect to the inclusionI :Y- IYVJYandthe function

1 :

X-+YUj Ydefined by J(r )=(x}forXi X.Theactio nofGonXU, Yisgivenby

¢,Gx(X UJY) ~ XU/Y .(g,[, D

=

[gzlfo,g, G, "X

¢(g,

[, D =

[g,)ferg, G,

,<Ie

We secthat¢isconti nuous asin theproof

o r

Propositi on104.TheG-space X UJY will be calledthe G-adjunct ionspacedetermine dbyI.The corre- spond ing functi onp:XliY--fXUJYis defined in the obviousway.

1.5Prop osit ion . Thesquareusedinconstructi nganyG·adjunctio n space is a G·adju nctionsquare.

E,mcl.IfZis a G-spa ceandj:Y ...Z, k :X--fZare G·ma pssuchtha~

j0

f =

k0ithenwecan define A:XUJY--fZbyh([/( z)]

=

k(x)and A(fy!)

=

j(y)(orallxcX,yc}'.Itiseasily seenthathis unique.•

(23)

4.Proper tiesofG·ad jund ionsquares

Thefollowin~resultswillbeutilizedinCh~ptn3onG·CW-complexcs.

1.6Proposition.IfA,8andCareG-spaces, withAaG,slIbsp.,ccofDant!

n

IIG-subspaceofC, lhcn thefollowingdia~ ramis;\G-.djunctionsquare

C-;;;-CI A

wherei a.ndi'are theinclusions andpandp'IIrcthecorrespo nding quolienl G-mtJ.ps.

£..m2I:

IfZisaG-spaceandj:EIA- 0Z,k: C _ ZArCG'lnap~with jop

=

ko ithenWecandefinea uniqueG·map II:CIA~Zby hUeD=k(e) i£ e

rt

AandhUo])=i(A )ifCl(A. Then hoi'

= i

andh

oy

=k.The surjcctivityo£

y

impliesthathisunique.Finally,hisaG-mapsinceCIA hastheG-finalstru cturewithrespecttoi'and

p.•

1.7Corollary.HJis anindexingsetandforcadij(J,(Xj.Aj)isapalrof basedG-spaceswithA.;aG-subspace ofXi>thenthefollowingdiagr.,m isa G-acljunction square:

Uj,JAj

~

Vj,lAj

u "",j v",; ,j

whcre PA andpxarc theobviousquotient G-mApsAndij :Aj....Xiistill:

inclusion foreachj(J,end

Ui

jandVj<J ijarc theob viousG'lRilJl~.

j<J

(24)

IS 1.8Proposition.Let(Xi .A';t.)be apairof baseda·spaces foreachj(Jand let{Ii:Aj- 0ij};<Jbe~familyof baseda·ma ps.Thenthefollowingis a G-adjunctio nsqu are:

V'ol!' Vj<JAj -

v",;, j

Vj<Ji'j

IV",;,

Vic}Xj- Vj.J{Xi U'JYj)

V,.,"

f.m2[: Givenbased G-ma psi :

VY,

-+ Z andk:

V

Xj- IZ suchthat

i.J ie;

e (V Ii)

=k

(V i,i),

then for each restriction

e, :

lj-+Z andkj:

x,

-+Z

I'}

,. J

thereexist saa-maphj :XjUJ,Y;-+Z suchthathjo1;=ljandhj oi;=kj.

Thenifwe defineh:V(XjUj,lj)-+Z by hl(X;U/,lj)::::lhjfo r eachjd, j<J

we havehoVlj =l,ho

Vh

=k. •

j l } joJ

1.9Proposition.LetX,YandZbe G·s paccs,withAaa-subspaceofX.

Thenif

f :

A-+ Y,andg:Y-+Zare G·maps,the outerperimeterofthe followingdiagra m is aa-adjunctionsquareforj :A...Xandthe G·map

sl.

A L y .z; Z

ij

!

I

) 1

x

7

xU/Y

T

(XU/Y)U,Z

CI2cl.

LetI:Z- Wandk:X-+WbeG·maps suchthat

to

(gJ )

=

k0i.

Thcueln cc theleft-hand sq uareis a O·adj unct ionsquare,there exish aG- map h:XU,i'- IW suchthalhOI=log andb»]=k, Butthe right-h andsqu are is alsoaG-adjunctionsqua resothe reexists aG-m aph':(XU/Y)UJZ_ lV suc h thatII' o ~=tandh'og=h.Henceh'og0

J

=hoj=k and so the outer perimeter isaG·adj u nctionsquare.•

(25)

16

5. Comap? ingcylinder

The a-mappingcrlindcr forthe G-mapf:.\'-+ Y is definedallthe a-adjunctio nspacefo rm edviathediagram

x ,

{OJ

-l....

l'

,I I,

Wewilldenote(Xx1)U,YbyM,andcallittheG·mapllillgcylinderfo r

f.

Theact io n ofGallX xIisthe diago nalactionwithGacting trivially on I.H(X,. )and(Y,. )are based G·spaccsand

f :

X ...}' is a baseda-map then the~G-mapping cyli nder,denoted by,fll,is th equotie ntG-spare Ai }=~,with {.X1)asbasepoint

Let

f :

X_ Yhe a basedG·mapand

,.i

j be thereduced G-mapping cylinde r. Then we havethefollo wingcom mutati ve diagram:

x ...!... y

whereiand r arc the based G-mapsdefinedby

;,(X, ') (Ai" .) (.:,OJ,and r, (Ai" . ) (Y,.)

[yJ~ y [x,/1 I(x), whereId,uXandy"Y.

(26)

17

We also havethe based G·mapj:(Y,.)--t(M" . )definedby y1--+!y].By an argument a.nalogous to tha.t innon-equivariantcase,r is a G-bomotopy equivalencewith inverse[,

6.Expandingsequence or G-spaces

LetXo CXlC•.. C

x ..

C.••hean expanding sequence or G-spaces,i.e.

X.. is a G·5ubspar.eofXnH foralln~0,and the setX

= U

X".Let ,,;::0 p:

U

X" ... Xbe definedbyp(z)

=

inez) whereZf Xnandill:X.. ...Xbe

n<?;D

the inclusion.So,by Proposition1.4,.Ycan begiventhe C-Iinalstructure withresp ectto theinclusio ns{in:X..- X}II~O'From theuniversalproperty, it fellows that

f :

X ... Z isaG-mapifand onlyIIX"is a G-map foreach n~O.

1. 10 Proposition.IfXoC XIC•.CX"

c ...

CXis an expanding sequence or a·spaceswhereXhas thea·finalstru ctu rewithrespectto thcinclusions

{inX ..<-tX}n;::o,andAis locallycompact Hausdorff,then

Xo)(ACXI )(A

c ...

X..

x

A

c ...

CX

x

A

isalso an expandingseq uenceofG-spaceswithXxAha ving the C-final structurewithrespecttothe inclusions{i..x1,, :X..xA~Xx A)..zo.

.f.m2{:Leth:X x A-+Z bea functionfromX x Ato the G-spaceZ such that IiIX.. xAisaG-map foralln2:O.By the exponentia l law forG-spaces andG-maps, foreachhJX.. xA there existsaG-maph':X ..-+Ma po( A,Z) and:-.functionh:X-+ MaPG(A,Z)suchthath'=hIX...Since X has the G-finalstructurewithresp ecttothe inclusions,itfollows that

h

is aG-map and hen cehis alsoa G-map.Th usXxAhas the G-finalstruct u re with respectto theinclusions{in)(A:X ..xA4 XxA},,~o.•

7.~

LetXbe a based G-space.ThensinceXx

to )

U• xIis;>a-subs paceof

(27)

18

x

X1,C{X)

= x.MS .•,

isa quot ientG-space.Itwillbe calledtheW1£of X.

DefineS;'=

~

ttx

*

andEir=

~.

l1)C . where

*

xS" and

~

xE"have

thediagonal act ionwit hGactin gtriviallyonS"andEn.The followingfact isneededintheproofof theDrown Ilcprcscntablllty Theorem:

That the lefthand~above isa homeomor phism follows from thefo llowing.

1.11 Proposit ion . LetX andYbe baseda·spaces,where the underlying space ofXis locally co mpact Hausdorff. Then there isa homcomorphistu

(X x Y) XxCy .

!{J:C ~ -+

---xx;-

definedbythe rulethatthe equiv alenceclasses of(z,y, t ),in thetwospac es,corr espond,whereXfX,y'Y .tel,

. . . r

h

C (8)

8<I

~.RccalhngthatIfAISasub sp ace081 en

A

a(By.{O})U(A x1)'

. (X

X

Y) X

xYX

I

we nctfcetho'llC XX; a(XXYX{O}) U( Xx {.}x

t

WealsonotethatXx

(~)

is homcomvrphi ctothe quotient spnceof XXBin which{e] xA,foreachZfX,isidentifiedt.oa scparetepoint.lienee Xx CYis homeomorphicto thequotien~space ofXxYxIwhereforea chzeX, ({z}x Yx{O} U{:e}x{.)x/ ) is identificdtcaseparatc polnt,SinceXXXxG:Y is aquotient space ofXxCYandCYis a quotientspace ofYxJ,then, usingIBroJ,4.3.2,p.101,

x.;e:-

is (essentia lly)a quctlcntspace ofXxYxI under the equi valencerelat ionwewilldeno teby...Thenwehave(:e,y,O)·...

(z,.,O)...(.\J ~ ~~o~uX,yeY.all~(%,.,/)...(%'X~Y~.t,O)for zeX,

«:

Hence----xx;.-J9 homcomorp hlcIo(XxYx {O})U(Xx {.} xI)' In bothcases the actionsofGagree with lhat"IIthe quotienta·space

XxYxl ,. lll ducedb hcdl I ·

(XxYx{OllU(Xx{.}X/ ,thatJsJt se muuceu ytCUJagon aecucn ofO onX xY xi .

(28)

19 Using p, q,rand sto denote the quot ientmaps:

XxY

:(~)X I~C(£>:.!:) .

p:X xy...~, q

x

«, Xx-

r:}' xI_CY and.,:XxC}"_XXxxC,Y, we note that we have

(X

XY)

q(pxl,):XxYxl_C

Xx.

and

,,(Ixx r}:XxYx1_\ XxC,Y .

SinceIamiXarclocally compactHa usdorff,q{px1,)and"(Ixxr) arc identifications,T/Jisabijcctlcn, and since,pq(pxii)=J(lxx r)itfollows that",isII.homeomor phism.•

S. Suspension

LetXbe a G-spacc with basepoint '.ThenXx {OJUXx{I}

u.

x1is a G-subspace ofXx 1 and the suspensionofXis thequotient G-spacedefined by

S XxI

X= Xx(O)UXX{l} UoxI 9. Smashedproduct

LetXandYbe bascdG-spaces. ThenXVY=(Xx{.}) u ({.}xY)isa a·subspaceofXxYand the G·smashcd product isthe quotienta·space

XAY=~~~

Fillally,let

p',,)

be a b;UM G-space andXis a G-space.We define the

space

x:

by adjoiningtoXan additionalpoint00onwhichGact s trivially.

XxV Thenwe haveXi-IIY==,~.

Ifl/is a closed subgrou pof G andXisaG-spacc,we defineXI(={u X /hz

=

;rfor allh}withthe subspace lopology . Then, ifXis Hausdorff,XIlisclosedinX

(29)

20

(sec(OJ.3.9,p,25).If

f :

X ... }'is aa.ma pthen /":XII-+ylldenotes the restri ct ion offtoXH.

1.12Proposi tion.IfX andY arcHa usdorff a·spaces, thentheadjunct ion space XI1U/Hyllisaclosed subs paceof XUJ Y.

b.29I.SinceAllCX",X" is closed inXandyllis closedin Y,it follows fro m a result of gene raltopology (sec[Dul.VI,6.4, p,128) thatX"U",yllwillbell.closed subapece inXU} Y••

Fromthisitfollows that sinceXIfU/Hylland (XU!y)/1havethe sameunderl ying

~,and (XUJ Y)"isasubspace ofXU,Y,they mustbe homeomo rphic ,l.c.

X"U/Hyll=(XUJY)u.

In orderto show that the G· CW-complcxcs defined in Chapter3 arc llausdorff weneedthefollowingresultabout adju nctionspaces.

1.13 Proposition.IfXandYarc norma lspaces andAis a closedsubsetofXthen for any map

J :

A-+Y,XU,Yis alsonormal.

.P.m2(.See{FPj, PrcposltlcnA.4.8(iv),p.260.•

1.14 Proposi tion.(i)IfXandYarc G-spa.ces then(XxY)1l=XIIXl"JI.

(ii)If{Xjlie:J}isan indexedIamily er based G·spaces,then

(V

Xj) H=

V(XJ!l .

~'J

j.J fiQQf.Both (i)and(ii) followquite easily(romthe definitionoftileactionsofGOIL the spacesXxYand

V

Xjorespectively.•

j<J

(30)

21

Chapter2Equivariant Homotopy Groups

Two G-mapsf, g:X- IYaresaid to be a-homotopicifthere exists a G-map F:X xl.... Y, withGactingtriviallyon[,auch thatforallztX,F(x,O)

=

fez) aut!F(z,l)=g(x). Notethat each map PI:X _ Y defined by Fj(x)=F(z,t)is itselfaa-mapsince foruX, geC we have Fj(g%)=F(gx,t)=gF(x,t)=gFI(x).

The set of G-homotoPiclassesof G-maps fromXtoYwill bedenotedby[X : Y]a.

IfA is a a-subspaceofX andB is a G-subspace ofY then two G-maps 1,9: (X, A) ... (Y,B)arc said to bea-homotopic~ifthere is a G-mapF: (XxI,Ax/) ...(Y,B)such that forXfX, F(x,O)=f(x)andF(z,!)

=

9(Z)and for"cA,F(a,l)

=

I(a) for tel. The set ofrelative a·homotopyclasses of G-maps (rom(X , A)to(Y, B)is denotedby[(X,A) :(Y,B)Ja.

IfXandYarcbased G-spaces,thenthe basedG-maps

Ls :

X_ Yare ba~cdG-homotopicif there exists a G-homotopyF : XXI-.Y between / and 9 withF(.,l)==

*

fortel,We write /':::!.G9 todenotethe based G-homotopy.The setof based G·homotopyclasses of based G·mapsfrom X toY willbe denotedby [X,YJ~.'[(X,. ) ,(Y")I~.

Let(X,.)be a basedG·space.Thenfor each closed subgroupHof G, the under- lyingset of the nth e9uh:arianthomotopygroupof typeHis definedby

1r::(X,*) [SH:X}~

~ [ (W

X5",

w x.) '(X" ll:

the canonicalbijection~being defined usingthe universalproperty of quotientG- Qx

S" (G)+

spaces , ...hereSil=~e

11

1\Sr>.Using the fact~l~alA1\5BSiS(A1\B) wehnve H

(31)

22

SinceSiiisit.suspension forn~1,...ecandefinea groupop«ati on on ...!'(X••)ina way analogoustothenon-cquin.rianlusc.1f

Ul.

(gJn~'(X,.)aret,,"Oelements ,then theprodu ct of[J]and

[gl .

denoted.(J).[g).istheG·homoto py clastofthe composite G-map

Sj,2..t SYVSj,!:!!.XVX.:!. X

whereVisthefoldingmapdefined byV(x,.)

=

x, V(.,r)

=

z foralln.\",anti111/

isthecomultip licat ion G-mapgivenby:

lin:5i/ 5

1 /

VS'H

{

([g1l,[=,21J1.-) if O:5l

:5 1.

%,5..-1

[gH,I ' ,'lJ

h [gIl,(z,21-1)])if 1:::;:1$1, z(5..-1 Thisuses the ractthatSit""

(i )+

AS'=-

o r

1\5(5 ..-1)so thatancleme ntof

Sitistheequivalencecl~(gIl,I=,tJlwheregeO,US"-Iandtf!.'Then1111is ca,ily K'CntobeaG-map.

2.1Proposition.LetIIbeaclosedsubgrou p and(X,_) be" basedG-spa ce.There existsa na t ural isomorph ism

Toprovethispropos itionwe needthefollowinglemmas.Firstlet MaPa(X,Y) denotethesetofG-mapsfromXtoYand Map(X,Y)denoteth e set ofallrnaps fromXto Y.

2.2I&mm..a..IfXand Yare G-spaccs,withGactinglriviallyon thelocallycom pact Hausdorff spaceX,thenforeach closedsubgroupJI

o r

Gthere isabijection

Mapa

(~

)(X,y)

~

Map(X,yll).

(32)

23 f.r22f;Deline0 :Ma pc (~xX, V)-+ Map(X , yll)byO(F)(x)

=

F(H,z)for Mapa

(¥,

xX,V)andzeX,and defineif!:Ma p

eX,

yH)-+Mapc

(ft

xX,

v)

by~(f)(gll.x)

=

gf (x)for[cMa p(X,ylf).Wefirst show0and

9

arewell-defined andcontinuous.

SincehO(P)(x)=hF(Il,x)

=

F(hIJ,x)

=

F(Il,z)=O(F)(z),it followsthat the image ofO(F)is a subsetofyll.Definingi:X-+~xXbyi(z )=(/l ,Z),where :reX, wesee thatOfF)=Fi,so0l~:')iscontinuousand0 is well-defined.

We noticethatiC9h 92CGand 9'2'9 1(8, l.e. 9'=92hfor somehell,thenoil(r)= 91111(x)=911(x) (or allxtX.Hencer$(f )is well-defined.Thefunction m:GxX-+

X,definedby m(g,r)=9f(r )where9(Cand;teX tisclearlycontinuoussince q xIx:GxX-+

ft

xXis an identification.Now¢J(j)(q x Ix) =mso¢J(f) is continuous. Also,g'4JU)(gll,z)=9'9[ (Z)=,p(f)(g'gll,z )=tjl(J )(g'(gll ,z)) so thatq,(J) is aG·map and,pisa well-definedfunction.To establishthe biject ionwe have lo showthattP00 and 0o,pequal the respectiveidentityCunct ions.

LetF£ Mapa

xX,Y).Then

(ooO)(F)(gll,x)

=

o(O{F))(gH, x)

=

gO(F)(x) gF(Il,x)

=

F(gll,x) So (,poO)(F)

=

F.Nowlet[cMap(X,ylf ).Then

(00o)(/)(x) O(o(/»)(x ) oU)(II,x) fix)

Helice(00,p)(f)=I.•

(33)

"

2.3

1.srD.wA.

U Xand Yare baseda-spaceswith G actingtrivially on the locally compact Hausdorff spaceX.thenIor cechclosedsubgroup11ofGthereis.\ bijection:

~:We define0and¢as in Lemma 2.2, notingthatO(F)(.)=F(ll,.}

= .

aud

'U)(g1l,·)~gf(.)~g.

=•.

So 0 andrPtake based maps to based maps, which allows us to establishthe biject ion between thetwo sets. •

2.4I&mm..a..IfXandYarea-spaces withGactingtrivially on the locally compact Hausdorff spaceX,Ais any G-subspace ofXandZis any G-subspace of }',with .fAcXand*fZCYthenforeach closed subgroup1lofGthere is a bijcctlou

. (G . G G)

f.rQQI:Define0and rP asInLemma 2.2.LetFe l\Iapo

Ti)(

J.:,

71

XA,

Ii

x.

andfd.1ap(X,A,*), (Y",Zll,*» . IfacAthenO(F)(a)= F(J/,a)cZ"since hF(ll,a)

=

F{hll,a)=F(JI,a)for allhdl,and¢(f)(glf,a)=gf(a),Zsince f(a)cZandGZ==Z. Since0and

,p

are inverses or eachother,thi3allowsU9to establish the bijection .•

IfXisreplaced byXx /andAby •x 1inLemma 2.4,then we havethebijection l\IaPG

((*

x

X

xI,»X. X/) :

(Y ,.»)

~Map

«X

x1,•x1) :(Y1l,.)).

So there is a bijectionbetween the based a-homotopicsor

~

Ilx etoYand Lased

homotopiesor X toyJl. Prooror Proposition 2.1

Let0:Map~(Sif'X)-+ Mapo(S",XII)be defined by o(J)(z)=f(l/,::)for

as-,

Then byLemma 2.3there is a bijection

(34)

s s

Q.:ISii:XJ~

...

(5":

xlif

wherea,([JI)=[0(/)1.We have to show~hatc,isa homomorphism.Let

/0.11 :

51,-+X.ThenQ.is a homomorphismif

a.(lfol ·lId) =

Ci.((/OJ) ·O.([!II).Let 0(/0)=90and0(/1)

=

9•.Then

Ifol ' Ud

isthea-homotopyclass ofthe composite

SH ..!:!!... S'ir ~ XV X -.!.. X.

Similarly[gol[gIl is the G-homotopyclass of thecomposite

lienee a.willbea homomorphismifwe have

cr.([V'o{/oV

Id

0I'll])

=

['VIII0(goV91)011].

Themap"(11/0(gOV91)0IIis given by:

{

([,.2'1.') ~ g,([, .21]) 0';'';

I.

,,8'-' h(=,21-1]) 1---+ 91((Z,2t-1)) ~.:5:1:5: I,%(5..-1• The map V0(foVII)0V/Iis givenby:

{

([gll.[, .2'i1. ') ~;f,([gH.I,.2'iJ) 0';' ';

I. ,,8'-'

(••[gll.(,.2'- 11lJ ~ f,([gH., .2' - 11IJ

I,; ',;

I.,,8'-', If

f :

S'H-+Xthena.([J])isthe G·homolopyclass of the composite

(35)

"

s..!.!!...S;i L x

lIenceo.([Vo(/0 v

I.)

0

vll11

is theC-homotopyclass of

SPI S;rV SH - X

{ ([JI,[z,21J1,') (',IJI,[,,2'-IJI)

fo([JI,I,,2'iJ) f,([II,I, ,2'-IJl)

O:5!:5~

~:Sf::; !.

B,'f,([Il,[,,2'iJ)

=

go([z,2<]) and1>(11I,[z,2' -IJI)~g,([z,2'-IJ), whichimplies that0.([\70(faV III0II,,])=

iV"

0(goV91)0c].Thus o,i,a homomorphismand consequentlyanisomorphism.•

Let(X, A,. )be a pairofa-spaceswithbasepointe, Thenfor each closed subgroup HofGthe nthrela tiveequivarianthomotopy groupof typeJlis definedby;

1t~(X,A ,.) [(Ei't,Si,-t,.):(X,A, .)J~

~ {(~ x

E",

~ x S\ ~ x.):

(X,A, .) J:.

2.5Proposition.Thereis a naturalismorphism

£rW:

This follows from Lemma 2.4, with the proofbeing similartotile proof of Proposition2.1.•

2.6 ~. Givena G-map0' ;(EH,S}',- I,.) -+(X , A,* ),then(01

=

0in 1f::(X, A, * )ifand onlyifQis G·homotopicrelativeto5;'-1toaG·mapBit--tA.

(36)

27

f.rllill:

FromProposition2.5itfollows that[e]=0in~~'(X,A,.)ifand onlyif forthe correspondingmapa' :(E",S,,-I,.)-+(XII,AI/,.),wc have[0']=0 in r ..(XJ1,AII,.). Then a' is homotopicrelativeto$"-1to a mapEn_ Allbya homot opy

F':(£",S..-I,.)x1_(X",AI/ ,.)

(sec for example(Sp], Thm.1,p.372.)

Also aa-homotopyfromQto a G·mapEit-+Ais givenby

F:

(% x

En,

%

X5..-1,

* x.)

X1-+(X,A,.)

whereF(gll,=,t)=gF'(:,t) for geC,leE"andIll.

This G·!Lomotopyisrelative to5;,-1since for zo,5..-1we haveforallttland9'C:

F1(911,Zo) 9F:(Zo) go'(:o) 90(H,:0) 0(9 H, zo).

Conversely,assumethat thcrcisaG·homotopyF:

(*

xEn,~X$"-1,»X .) X J-+(X, A,.)relative to S'H-twithFa

=

0:andFa(En)f; A.Then[c]=[FII in lr~/ (X.A ,.)and a G-homotopyJ((rom PI to the constantmap» xE"_*fXis givenby

whereK(gJl,%,I)=F1(glf,( 1-l)=+tt).

(37)

28

Letn~O. Apair(X.At.)of basedGspace!is saidtohe~ifevery pathcomponent ofXintersectsAand,Cor15k::;n, we have"'l' (X , A•• )

=

0for eachclosedsubgroupHof G.Asa directconsequenceofTheorem2.6 wehavethe followingcorollary.

2.7 Corollary:A pair(X,A,.)isG·n-oonnectedforn~0ifand onlyiffor 0 Sk:5II every G·ma pQ:(£ 1,8;'- 1,. ) - (X,A ••)isG-homotopicrelat iveto

st t

lto some G-map

E;"_A.

Finallywenotethatfromthenatur ality of theisomorphisms1r~1(X ,...)~11"..(XII ,.) andlI"~(X,A,*) ~If..(X H,AH,*)we havethatfor eachclosed subgro upJI

o r

Glhl~

{allowingdiagramcommu tes

--+ ...

,

7r..(XH,A", *)

...!...

",,,(A" ,.) -!'. 1r..(XII,. ) ....!:....1f..(X l/tAII , .)

..!... ...

Since thebotto m row isexact andthe verticalhomomorp hismsarcin fact isomor- phisms,itfollowsthat thetoprowisalso exact.

(38)

"

Chapter 3 G·CW-Complexcsand the EquivariantWhiteheadTheorem LetnbeIt.fixed positiveinteger.The G·spaccX is saidto be ob tainedfrom tileG-spaceAbyatt aching cquivariantn-cellsifforIt.familyorclosed subgroups {llilid}ofGwe haveforeachjlJan indexingsetLjand for each).f Ljthere is a copy(E.\',Si-I)of the pairof triviala·spaces(£ " , S..-I),and we have the following G-adjunction space:

Jj ff:-

X E.\'

"',

We denote

tPl*

xS;-Iby

tPl

and

¢ If!;

x

EX

by

¢t.

We call

¢{

the attaching map for the cquivariantn-cell

7h

xE

A

and we call

3{

the characteristic

map.

We say thatthe pair(X, A)is a G-adjunctionofc9uivariantn-cells.

3.1

Lcmm.a.

If,inthe situationjustdescribed,Ais normaland Til thenXis normal andTlo

£mill .

SinceHjis closed inGfor eachjd,itfollows (secp.3)that

fi;

is Hausdorff for eachicl,SinceGis compact

fi;

is compact, and hence

fi;

xE~isa.compact Hausdorff G·space for eachjfJ,),f LjThus

if;

x

Ei

is norma lsince every compact Hausdorff spaceis normal(sec [Hu], Proposi tion2.7, p. 63).Hencethe topological slim

H if;

xEiis normal andby Proposition 1.13,Xis normal.AlsoXis T1since

".L,

bothAand

Y fi;

xEiare T1(sec[Hul,Proposition 3.7,p,125).•

"ILl

(39)

30

Let(A,")bea.based G-Spll.CC, and let{/lilj(J }be afamily ofdosed subgroups ofG.Iffor eachieJ there is anindexingset Lit andfor each),cLjthereis a copy (Ejf,,.\.Sj,~.Uof

(Ei't"

Si/; I),and¢:~

S it.\ - A

isabased G-map,then there is

~,L,

a based G-adjunctio nsquare:

We saythat the pair(X,A,. )is abaseda-adjunct ionofbased CQuiva riant n-cclls, orthatXisobta inedfromAby attachingbased cquivariantn-cclls.

AO-CW'complexorsimplyG-complexis a G-spaceXsuchthatthere is an expan di ngsequence ofa·spaces

XoCXlC ...CX"

c ...

withthefollowingproperties

(i)thereis a familyof closed subgroupsHjofG indexedbyJ,l.e.{lIj

li cJ},

withthe property that foreachjtJthereillanassocia te dinde xingset Lit and

X '= !J ,. J (if:)

J x

P l,

~.LJ

(ii)(X",X"-l)is a G-adjunct ionofequivarlan t a-cells, and

(iii)X hasunderlying setUn~oXnand carries the G·finalstructu re withrespect totheinclusions{in:X" ... X}..zc-

The~inwci2n.ofXis the largestnsuchthatXcontains ancquivarian t n-ccll.If no suchn existsthen thedimensionofXis saidtobe infinite .

(40)

31

Moregenerally,arda tiveG-CW·complexi5defined as follows.IfAisany

space,then(X,A)is ard alh-eG-CW· complexifthere eJ:ists anexpand ingsequence of a·spaces(notpai rsofG·spaces):

A

=

(X ,A r '

c

(X,A)'

c

(X,A)'

c ...

C(X, A)"C... wil h thefollowingproperties:

(i)there is anindexed family{Jljlid }of closedsubgroupsofG,suchtha.l for eachjcJthere is an associated indexingsetLioand(X, A)O=All

(U (11;)

x

(AI).

j<J

~.LI

(ii)((X,A)", (X,A)"- l )isa a·adjunctionofcquivariantn-cclls forn2::O. (iii )X11Munderlying set U..~o(X, A)"and carriesthe G·final struct urewith rc-

sped tc theindusions{i..:(X,A)" ...(X,A)} ..~_I'

The relati ve djm" m jou ofeX, A),writt en dim(X -A),isthelargestvalu e ofn suchthattheconst ruct ionofX fromA includesancquivarian l a-cell.J(nosuchn exists,therelativedimension isinfinite.

AbasedG-CW-co mplexcanbedefined as abased G·spaceXbytaking thedefini- tionor G·CW ·com plcx,requiringXutobea I-pointspa.ce.,replacing G·spacesby basedG-spa c.cs,mapsbybasedG·maps, disjointunionsbywedgesand G-adj undions bybasedG-adjunctions.

Similarly,a basedrcl&tive C-CW-complex canbedefinedas abasedG-spaceXby taking thedefinitionorrelati ve G-CW -complexandreplacingG·spacebybasedG-

IJl ;\CC,C-ma pbybasedC-map,disjoint unionbywedge, and G-adjunetionby based G·M1junet ion.

3.2 Propositi on.Aa·eW·complexis norma landT1(and hen ce Hausdo rff).

£.mill.

Since XO isdiscrete,itis norma l andT1ByapplyingLemma3.1,we seetha t eachX..isnormal andTlfor eachn~O.SinceX=U"l!;uX ", itis a normalG·space . Hz isa point orX,thenZ(X"forsome n~

o.

ButX"isTl ,10that{e}is closed

(41)

32

inX".SinceXnisclosed inX,itfollows that[e ] is alsoclosed inX.Hence,Xis Tlo .

Sinceany connectedG·CW.comp!cxis G-homotop ycqui\'alcnttoa.based

a·cw·

complex(see [FPI.Cor.2.6.10,p. 82 forthe ncn-equivariantversion],itsullicea to consideronly based G·CW-complcxcsin our discussion.

Intact, each basedG·CW.complexisalso anordinary G-CW.complcxifwe neglect basepoints.This easily follows fromthe followingresult,

3.3L!:mm.a.Let(A,.)be a basedG-spaceand(X, A,.)bea basedG-adj unction of based cquivariantn-cells.Then, disregardingthe basepoint,(X,A)isaa·adjunction ofequivari antn-cells.

f.rQQf.Considerthefollowing diagra m:

LJ fI;

X 5;-1

V f!;xSl'-t V

Si,~~1

...t.

A

",

it J j<J

.l.L, .l.L, ),.L,

I

JJ fi;

xEl'

V

jeJ

ftxEi

I it)

V

Eir,). ~ X

>.,L. )"L , .l.L ,

The right-hand squareis a based G-adjunction squaresince(X,A,t-)is a based G-ad j unct ionof based equivarlanta-cells. The middle..quare is a a-adj ullct ion square byPropositions 1.6 and l.B.Tbleft-hand squarcis a a-adjunction square by CoroUary l.7.Finally,byProposition1.9,the outer perimeterofthe above diagram is a G-adj unctionsquare. The resultfollows.•

3.4~.If(X,_)is a based G·CW-complextbcnXis a G-CW-complex.

~.Thisfollowseasilyfrom Lemma 3.3andthe relevantdefinit ions.• Fromthiswe can concludethatresultsgiven below for ordinaryG-CW.complexcs [e.g.Propositions 3.5,3.6 and 3.9) alsoholdfor based a-CW-oomplcxcs.

The a-mapi:A _ Xis called a~if for all a-homotopic,J(: AxJ _Yand a·maps

I :

X - Ysuchthat

Ii =

[(G,thereexists a G-homotopy

(42)

"

F:XxI _ YsuchthatFa

= f

andiji

=

X, for0$r:51.Thisis equivaleat to sayingthatthefollowingcommutativediagram canhe completedbymansofl-

e-mapF:Xxl _Y.

/ r~

Ax{OJ XxI----W

~

Xx

J~

{O} f

IfIiisa G-subspaceo!X,thenAisca.Ileda~ orXilthereexletsaC-map r :X-+Asuch thatriAistheidentity. TheC-map ris called a~ofX cntcA.

3.5Proposition.ITXis obta ined{romthea·spaceAby attachingequivaria.ota-cells,

thenXx

to}

uAx/isI.e- retract

oe x

xl. .

fm(:We know that thereexislsa non-equivariaatretractionp:E"xI-+E" x

to }

U$"-1XJ(seeforexampleISp),.3.2.4, p.117).ThenifHisaclosed subgroup ofGan equivariantretractionisgivenby:

lx p: ix E" X]

(gH,z ,' )

*

xE"

x {O} U ~x

5"- 1XI

(gH,p(z,<)).

Let~:

if;

x

E! -

X bethe characteristicmapslortheequivatian ta-cells

fi;

xSitjll,),tLofX.Thena. G·retractioo can bedefinedby:

R:X x/ _ Xx{O}U Ax I

(=,1)~ (z,I) ,(¢{(gH;,=l,t ) ~ .\«1xp)(gH;,z,1)) where%fA.,

«t,

gHjf n;Gand:(X.•

(43)

3.6 Corollary.IfXis obtained from the G-spaceAbyatt aching equivariantn-cetts, then the inclusioni:A ...Xis11G-cofib ration.

E.r2Q!:LetR:X xI _ X x{OJ UAxIbe the G-retractiongiven bythe above proposition .We have to show that the followingdiagramcan be completed :

...-"A i l~

AX {O} Xxl-- -.,.Y

"'-.x J{O)~

whereYis anyGspace,[{ and

f

are anyG-maps.Thiscan be done by lettingF bethecomposite

XXI~XxOUAxl~Y.

Thediagramwillbecommuta tive sinceRIAxI=AxIandIlIXx 0=X x O.• Wecan extend thisresult to the casewhere(X , A)isa relative G-CW-complcx.

3.7 Proposition. Let(X,A)be a relativeG·CW-complex.Then the inclusionj ; A ...XisIIG-cofihration.

£IQQ{;LetJ(:Ax1_Yhe a G-homotopyand

t .

Xx{OJ _YbeaG-map wit h f1Ax{OJ

=

/(0'We will constructa G-homotopyF:Xx 1-+Yind uctively on the n-skeletonaof(X,A).

We have

A=(X,Aj-'

c

(X,A)'

c

(X,A)'

c ...c

(X,A)"C...CX where(X ,A)kis obtained(rom(X,A)l'-' by attaching equivariant,(,;·cclls.

Consider the followingdiagram :

(44)

The G·homotopy£0existssince(X,A)Oisobtai nedfromAbyatt aching D-cells, so bytheprevious corollaryA....(X,A)OisaG·cofibratioll.

Ingeneral...ehave:

~ "(,AT

x

1 :;:-1

(X,A)'-'x(O) (X,At xI...!...,Y

"'-.. J /":

/eX, A)n'- 0

(X ,A) x(O)

Hencewe can construct asequenceofG·homotopie:s{F" :0~-1)withF-l

=

A'

suchIhat:

(;) F , =

f1(X,A)"

(;;)F"!( X,A)"-'xI)

=

F' - '

DefineF:XXJ-+YbyF(z,t)=Fn(z, t)for%((X,A)",tel,Fiswell-defined sinceF"!«X,A)n-1x1)=po-I50thalif%( X,A)O,F"(z,t)=pn-l (z,t)

=...

=

F-I(z ,t)=K(z , t).Wca1soknowthatFisa G-map sinceFI«X,A)"x l)=F"and (K, A)xJhasthea·finalstructurewithrespect to{(X , A)·x1}"~_1(byLemma.

3.3).

Finally Po

=

I,sincc b)'(i)if%(X ,A )",

F,(r)=F;'(r)=fer), andFl."x

't

=K,sinccifz(Athen

F(r,l)=r '(r, l)=K(r,t), whichimplies thati:A~XisaG-cafibration.•

a.s

Lcumn.

FcranyIamily{X;}jd oftopo!ogica! spaccs, =-.

( v( X ;

x£"+1),V(Xjx

sn») =

jd jd

o

for0<k:$II.

(45)

"

fI22C:Weusethefactthat

V e x,)(

£,,+1)i:!

(v X i )

XE"+1ard

veXj)(

S" ) :r

ieJ j.J i.J

( V

Xi)xS".LetX=

V

Xiandletp:XxS"- Xandq:Xx£,,+1 _ X

j.J jeJ

bethe projection maps.Then since pandqarefibr:t.tions withfibresS" and

e"u.

respcc til 'cly,we havethefollowingdiagra:n:

withthe twohorizontalrows exact.Sinceqi=pwe lmvcq.i.

=

p•.AlsolI"k(S")

=

0 lor0<k<nand1'.4: (E"+I)=0 for 0<kSn

+

1.Dyexact ness,p.andq.nrc bothisomorph ism s(Of0<I.:<n,andhence,i.isanisomorphism lor0<k<II.

Fork

=

n,q. is an isomorphism andp.is anepimorphin.: llcncei,must be.UI epimor phismfork=n.

Now considerthelongexact sequence

SinceI' .is anisomorphismfor 0<k<n andanepimorphismfork

=

11itfollows that1r!;(XxE",+I,XXS" )

=

0 for0<k::;n .•

3.9 Proposition. HXisobtainedfrom thebasedHausdorff C-spaccAbyal~nching basedequivariantn

+

l-cclle, then(X,A)is C·n-connected.

fmm;Let(X ,A,-)be a baseda-adjunc tion

o r

based equlva rlant n-cclls:

(46)

37

j~ D;x S'J.

I.. Lj

where{J/j JjcJ}is an indexed familyofdosedsubgrou ps ofGand{Lj li d}isan indexedfamilyofsets.

'ra king J1·fixcd pointsets we secfromProp osit ions1.12and 1.14 that tbefollowing is anadj unctionspace:

V (O;)H

XE

A+ 1 -.!.:... XH

jeJ )"Lj

Since

(~) H

x

SA

isa deformationretractof a neighbourhood of

(fI;)H

x

EA

+1,

andI'k

( v ( Ih)H

XEi+1,

V(~)H

X

5") =

0 for 0<

1:.:s

n (Lemma 3.8)it followsas aspecial case ofthe Blakers-Masseyexcision theorem,(see[OKPI,p.211).

that(XJr,AH)isn-connected. Hence'II",I, (X H, AH)'""0 for1

.:s

k

.:s

n andso,by Proposition2.5,I'.F(X,A)=0 for1:::;k:S: n.So(X,A)is G-n-connected.•

3.10

kmrD.a.

If Xisobtainedfrom thebased G-spaceAby attaching based equlv- arianla-cells, and(Y,B,")is a based pairof G·spacessuchthat1r!!(Y,B,.)

=

0 forall closedsubgroupsHofG,then any G-mapf:(X,A ,* )-+(Y,E,.)is based G-homotopi c relativetoAto a G-m apk:(X , . )-+(B,.).

(47)

- - _ . - ---- - - --

- (G G ,G ~

fm2{: Let 9;:

7ij

xE"',

tii

x5"-.

Jf.

X. - (X,A, .)eorrcspcndtothe attachingmap! of the cquivui&lltn-cells.Thente composite

represents ahomotopy classinll'~"(Y,B,.).By Theorem2.6,there exists:lbased G-homoto py

such that

(i) FAgHj,z , t)

=

!(9j{glij .z))for(glfj, z}~ R;x 5"-1 (iilFj(gH;" , O)

=

/« ;(g//;., ))

(iii)Fj(gHjoz,l)t:B.

We canthus defineabasedG· homolopy

K:Xxl_ Y

by K(z,l )=f{z ) for %t:A,tel

and K{¢>j(gHj,z ),I)

=

F';{gllj,%,t) for

(gl/itz)(~)( e-,

1<1.

ClearlytheG-homotopyis,d ativeto A, and

K(4Jj(gH;,z),1)=Fj(gll" z, l )cB for (glljozkjJj x E".G

Thenk(x)=K(x,1)istherequireda-map .•

3.11 Proposition.If(X,A,.)is abasedrelef ....eG·CW·complcx

o r

relativedimension :5n,and(V,B,.)is G-n·connected,then anyG·map f:(X ,A,.)- (Y,n,.)is baseda-homot opic,relati ve toA,to a G·m apfrom(X,.)_(D,.).

(48)

39 fm!l(:We have thefo llowing sequenceoCa·spaces:A=(X,A)Dc...C(X, A)"C ... c(X,A)whcrc«X,A) k,(X,A)1-- 1)is abased G-adjunction orequivariantk-cclls.

Since(X, A)'is obtainedfrom(X, A)O=Aby a.ttachingbased equivariantl·cells,by LClIlma,3,1O,fl(X,A)'is based a·homotopicrelativeto Atoa.G-map(X ,A)l_B viaa basedG-homotopyKI :(X,A)!xI_ (Y,B).Since(X,A)!~(X,A)is a a·cafibrationwe can extendJ( 'toa based G·homotopyF1:(X,A)x1 _(Y, B) suchthatF' !(X ,A)' xl

=

KI.

Now assume thatF""-I:(X,A)x 1 _ (Y,B)with m~2, has been constructed suchthdF,,,,-lj(X,A)"':(X,A)'"-+(Y,B)isa based G-mapwi thFj-I«X,A )"'-l)C

n.

ByLemma3.10 thereis a based G-homotopy

tcr.(X, A)"x1_(Y,B) suchthat[<j {X,A )

c

Band 1('"isrelativeto(X,A)",-t.

Since(X , A)'"'--t(X,A)is a G·cofibrationwe can extendK'"to a based

homotopy

F" ,(X,A)xl _(Y,B) suchtllalFj«X,A)"')

c

B.

lieneewe have a sequence ofbased O·homotopicspe,F1,.. .,F",...suchthat:

(i)}i~-I=Fo'"

(H)fl"((X ,A)")CB

(iii) F'"isaO-ho motopyrelative to(X,A)",-I.

Thesecanbe combinedconsecutiv elyto give a based G·homotopy

suchthatFisrelativetoAand F1(X,A)CB.•

LetXand}' bcpa t h-cc nnectedbasedG·spaces .Thena based G·map!:(X,.)--+

(1',.)isa based C·II-cquivalenccirp':(X",.)--+(yH,.)isann-eq uivalen ce fcr all

(49)

40

closedsubgroup sJlorG (byan n-equiva lence...e meana rrrapj":(X,.)-+(l~'lsuch that/.:"'9(X ,*)-+ll'q(Y,')isanisomo rphismfor 0<q<IIandallepi morphis m forq=n).1£f:X-+Yis aba sed G·n·equi vale ncefor alln?:I, thenIis said to be abas ed G-weak hom otopy cquh·alcncc.

Ail isthereduced G·mappingcylinde rforfwith th eG·ma p si:X-

ii,

and r:Aif-+Y defined inChapte r 1, thensinceris aa·ho motopy equivalen ce,fis a G·n-cq uivalenceifandonly

ie

iis.

3.12Proposit ion.Let

J :

(X, .)-+(Y,.)bea baseda-map.Then(Ai" x,.)is G·n-co nn edcdifAndonlyifi:X-+

u,

is abased G·n-e quivalence.

£.tQQ.(:Considerthelongexactsequence

.. .- +ll'll(X) ..i=-.ll'f!(Ai,)

.s;

xf(A"I"X )

..!...

:l{I(.l:)2=..,1f!~ I (A-IJ )_ ..•

wherek::;n,Uiisa basedG·n· equivalencetheni.:1l'"l~I(X)--+lI'L'_,( KI/)isan isomorphism.Thisimp liestha tkcri,

=

Im

a =

O.Sin cei.:""l'(X) _ K:'(lff, ) is anepimorphismwe havekerj.:::

ll' f!

(i f, )andhenceim

i,

=O. Byexactness 0= im

i,

= kcrd«rrf! (i l/,X).So(Ai" X )isG-n-con nected.

Conveesely,if(l\i"X) isC-n -connededthen

1rl'(M"

X):::0for0.5k::;IIand by a similarargument totheab ove,usin gexactness of thesequence,itcanbe easily shown thaii:X-+Ai,is abased G-n-e quivalcnce.•

ThekeytoprovingtheequivarlantversionoftheWhi teheadTheoremisthefol- lowinglemma.

3.13l&mIn.!!,.Let

I :

(Z,* )-+(Y,_)bea basedG-n-equivalence(IIfinite or infinite) andlet(X, A, _)beabasedrela tiveG-CW-com plexwithdim(X-A) ::;n,Theil fo r anybased G-mapsp:A-+Zandq:X- IYsucn IhatqlA

=

fop, there exist sa basedG-mapp' :X ... Zsuch thatp'IA

=

pandlor!'::::0qrela tivetoA.

f.t22{:LetAf ,bethe reducedG-mapping cylinde rof

I,

withinclu sion ma p si:Z...

Af ,

andj:Y ...

A f,

andthe G-retraclion r:M,-+Y.Provingthe lemma amoun ts toessen tiallycompletingthefollowingdiagramwherep' IA=pandlop'::::GIJ

Références

Documents relatifs

One is the view initiated by Hughlins Jackson and Irwin Feinberg, developped by Christopher Frith, and defended more recently by John Campbell (1999) : thinking is a type

It has a unique asymptotic expansion in any chamber Ao(B).. A PALEY-WIENER THEOREM FOR REAL REDUCTIVE GROUPS 25 endomorphisms of Mo.. Our aim is to show that q0

w II.3 ends b y using the above exact sequence to give a quantative account of the failure of the theory of covering groups for an arbitrary variety, and gives a

Let (~a: hEH~} be an arbitrary collection o/positive numbers indexed over H~. Let 9~ be the directed set consisting of all finite subsets of Hg ordered by inclusion.. We shall

Thus, T(G) and S(G) are different generalizations of the notion of Teichmiiller space to groups of the second kind.. Indeed, the region of discontinuity D of G

Using this result we present a fixed point formula for a cocompact proper G-CW -complex which relates the equivariant L (2) -Euler characteristic of a fixed point CW-complex X s and

[r]

[r]